Upload predict_local.py with huggingface_hub
Browse files- predict_local.py +122 -0
predict_local.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/usr/bin/env python
|
| 2 |
+
# -*- coding:utf-8 -*-
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import jieba
|
| 7 |
+
import jsonlines
|
| 8 |
+
import codecs
|
| 9 |
+
import random
|
| 10 |
+
import fasttext
|
| 11 |
+
|
| 12 |
+
stopwords_set = set()
|
| 13 |
+
basedir = './stopwords/'
|
| 14 |
+
|
| 15 |
+
# 停用词文件
|
| 16 |
+
with open(basedir + 'baidu_stopwords.txt', 'r', encoding='utf-8') as infile:
|
| 17 |
+
for line in infile:
|
| 18 |
+
stopwords_set.add(line.strip())
|
| 19 |
+
with open(basedir + 'cn_stopwords.txt', 'r', encoding='utf-8') as infile:
|
| 20 |
+
for line in infile:
|
| 21 |
+
stopwords_set.add(line.strip())
|
| 22 |
+
with open(basedir + 'hit_stopwords.txt', 'r', encoding='utf-8') as infile:
|
| 23 |
+
for line in infile:
|
| 24 |
+
stopwords_set.add(line.strip())
|
| 25 |
+
with open(basedir + 'scu_stopwords.txt', 'r', encoding='utf-8') as infile:
|
| 26 |
+
for line in infile:
|
| 27 |
+
stopwords_set.add(line.strip())
|
| 28 |
+
|
| 29 |
+
def segment(text):
|
| 30 |
+
# 结巴分词
|
| 31 |
+
seg_text = jieba.cut(text.replace("\t", " ").replace("\n", " "))
|
| 32 |
+
outline = " ".join(seg_text)
|
| 33 |
+
outline = " ".join(outline.split())
|
| 34 |
+
|
| 35 |
+
# 去停用词与HTML标签
|
| 36 |
+
outline_list = outline.split(" ")
|
| 37 |
+
outline_list_filter = [item for item in outline_list if item not in stopwords_set]
|
| 38 |
+
outline = " ".join(outline_list_filter)
|
| 39 |
+
|
| 40 |
+
return outline
|
| 41 |
+
|
| 42 |
+
def predict_score(preds):
|
| 43 |
+
score_dict = {
|
| 44 |
+
'__label__': 0,
|
| 45 |
+
'__label__0': 0,
|
| 46 |
+
'__label__1': 1,
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
score_list = []
|
| 50 |
+
for l, s in zip(*preds):
|
| 51 |
+
score = 0
|
| 52 |
+
for _l, _s in zip(l, s):
|
| 53 |
+
score += score_dict[_l] * _s
|
| 54 |
+
score_list.append(float(score))
|
| 55 |
+
return score_list
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
import argparse
|
| 60 |
+
parser = argparse.ArgumentParser()
|
| 61 |
+
parser.add_argument('--fasttext-model-path', type=str, default="", help="file path", required=True)
|
| 62 |
+
parser.add_argument('--input-file-path', type=str, default="", help="file path", required=True)
|
| 63 |
+
parser.add_argument('--output-file-path', type=str, default="", help="file path", required=True)
|
| 64 |
+
parser.add_argument('--text-key', type=str, default="text", help="file path", required=False)
|
| 65 |
+
parser.add_argument('--output-key', type=str, default="score", help="file path", required=False)
|
| 66 |
+
parser.add_argument('--do-score-filter', action='store_true', default=False, help='do score filter or not', dest='do_score_filter')
|
| 67 |
+
parser.add_argument('--score-thres', type=float, default=0.1, help="score thres", required=False)
|
| 68 |
+
args = parser.parse_args()
|
| 69 |
+
|
| 70 |
+
model_dir = args.fasttext_model_path
|
| 71 |
+
model = fasttext.load_model(model_dir)
|
| 72 |
+
|
| 73 |
+
import jsonlines
|
| 74 |
+
file_path = args.input_file_path
|
| 75 |
+
output_file_path = args.output_file_path
|
| 76 |
+
writer = jsonlines.open(output_file_path, mode='w')
|
| 77 |
+
|
| 78 |
+
dir_path = None
|
| 79 |
+
if os.path.isdir(file_path):
|
| 80 |
+
dir_path = os.listdir(file_path)
|
| 81 |
+
else:
|
| 82 |
+
dir_path = [file_path]
|
| 83 |
+
|
| 84 |
+
lines = 0
|
| 85 |
+
filtered = 0
|
| 86 |
+
start_time = time.time()
|
| 87 |
+
|
| 88 |
+
for file_path in dir_path:
|
| 89 |
+
input_file = os.path.join(args.input_file_path, file_path)
|
| 90 |
+
with jsonlines.open(input_file) as reader:
|
| 91 |
+
for line in reader:
|
| 92 |
+
lines += 1
|
| 93 |
+
if lines % 1000 == 0:
|
| 94 |
+
end_time = time.time()
|
| 95 |
+
elapsed_time = end_time - start_time
|
| 96 |
+
samples_per_second = lines / elapsed_time
|
| 97 |
+
print(f"Processed {lines} lines in {elapsed_time:.2f} seconds.", flush=True)
|
| 98 |
+
print(f"Samples per second: {samples_per_second:.2f}.", flush=True)
|
| 99 |
+
|
| 100 |
+
if args.text_key not in line:
|
| 101 |
+
filtered += 1
|
| 102 |
+
continue
|
| 103 |
+
sentecnce = line[args.text_key]
|
| 104 |
+
outline = segment(sentecnce)
|
| 105 |
+
|
| 106 |
+
preds = model.predict([outline], k=-1)
|
| 107 |
+
score = predict_score(preds)
|
| 108 |
+
#print(preds, score)
|
| 109 |
+
|
| 110 |
+
line[args.output_key] = score[0]
|
| 111 |
+
# do filter
|
| 112 |
+
if args.do_score_filter and line[args.output_key] < args.score_thres:
|
| 113 |
+
filtered += 1
|
| 114 |
+
continue
|
| 115 |
+
writer.write(line)
|
| 116 |
+
|
| 117 |
+
end_time = time.time()
|
| 118 |
+
elapsed_time = end_time - start_time
|
| 119 |
+
samples_per_second = lines / elapsed_time
|
| 120 |
+
print(f"Processed {lines} lines in {elapsed_time:.2f} seconds, Filtered {filtered} samples.", flush=True)
|
| 121 |
+
print(f"Samples per second: {samples_per_second:.2f}.", flush=True)
|
| 122 |
+
|