likhonsheikh commited on
Commit
ee377a6
·
verified ·
1 Parent(s): fbd557e

Add complete implementation documentation

Browse files
Files changed (1) hide show
  1. docs/EVALUATION_FRAMEWORK.md +316 -0
docs/EVALUATION_FRAMEWORK.md ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sheikh-2.5-Coder Evaluation Framework
2
+
3
+ ## Overview
4
+
5
+ This comprehensive evaluation framework provides systematic testing and benchmarking for the Sheikh-2.5-Coder model across multiple dimensions including code generation quality, performance, web development capabilities, and regression detection.
6
+
7
+ ## Components
8
+
9
+ ### 1. Main Evaluation Orchestrator (`evaluate_model.py`)
10
+ - **Purpose**: Coordinates all evaluation benchmarks and generates comprehensive reports
11
+ - **Features**:
12
+ - Integrates all evaluation components
13
+ - Creates HTML dashboards and visualizations
14
+ - Generates detailed markdown reports
15
+ - Manages target achievement tracking
16
+
17
+ ### 2. Benchmark Evaluations
18
+
19
+ #### MMLU Code Evaluation (`mmlu_evaluation.py`)
20
+ - **Target**: >60% accuracy on MMLU Code subset
21
+ - **Dataset**: `lukaemon/mmlu` with code subset
22
+ - **Metrics**: Accuracy, response time, confusion analysis
23
+ - **Features**:
24
+ - Multiple choice question answering
25
+ - Programming concept understanding
26
+ - Categorized performance analysis
27
+
28
+ #### HumanEval Coding Tasks (`humaneval_evaluation.py`)
29
+ - **Target**: >40% Pass@1
30
+ - **Dataset**: OpenAI HumanEval
31
+ - **Metrics**: Pass@1, Pass@k, function correctness, syntax validity
32
+ - **Features**:
33
+ - Multi-completion generation for Pass@k calculation
34
+ - Automated function testing
35
+ - Code syntax validation
36
+
37
+ #### Web Development Tests (`web_dev_tests.py`)
38
+ - **Target**: 75% quality score across web technologies
39
+ - **Coverage**: JavaScript/TypeScript, React, XML, MDX, CSS
40
+ - **Features**:
41
+ - Language-specific quality assessment
42
+ - Best practices compliance checking
43
+ - Component pattern recognition
44
+
45
+ ### 3. Performance Benchmarking (`performance_benchmark.py`)
46
+ - **Metrics**: Inference speed, memory usage, context scaling, multi-threading
47
+ - **Features**:
48
+ - Hardware utilization monitoring
49
+ - Batch size optimization testing
50
+ - Memory profiling across quantization levels
51
+ - Context length scalability analysis
52
+
53
+ ### 4. Code Quality Assessment (`code_quality_tests.py`)
54
+ - **Targets**: >95% syntax validity, >0.65 CodeBLEU score
55
+ - **Features**:
56
+ - Multi-language syntax validation
57
+ - Code complexity analysis
58
+ - Best practices compliance
59
+ - CodeBLEU score calculation
60
+
61
+ ### 5. Regression Testing (`regression_testing.py`)
62
+ - **Purpose**: Detect performance regressions against baselines
63
+ - **Features**:
64
+ - Statistical significance testing
65
+ - Multi-baseline comparison
66
+ - Automated regression reporting
67
+ - Performance degradation detection
68
+
69
+ ## Configuration
70
+
71
+ ### Evaluation Configuration (`evaluation_config.yaml`)
72
+ ```yaml
73
+ evaluation:
74
+ model_settings:
75
+ device: "auto"
76
+ dtype: "float16"
77
+ max_new_tokens: 512
78
+ temperature: 0.7
79
+
80
+ targets:
81
+ mmlu_code_accuracy: 0.60
82
+ humaneval_pass1: 0.40
83
+ codebleu_score: 0.65
84
+ syntax_validity: 0.95
85
+ web_dev_quality: 0.75
86
+ ```
87
+
88
+ ## Usage
89
+
90
+ ### Quick Start
91
+ ```bash
92
+ # Run comprehensive evaluation
93
+ python scripts/evaluate_model.py \
94
+ --model_path /path/to/model \
95
+ --config scripts/evaluation_config.yaml \
96
+ --output_path ./evaluation_results \
97
+ --run_id eval_$(date +%Y%m%d_%H%M%S)
98
+ ```
99
+
100
+ ### Individual Benchmark Runs
101
+ ```bash
102
+ # MMLU Code evaluation
103
+ python scripts/mmlu_evaluation.py \
104
+ --model_path /path/to/model \
105
+ --config scripts/evaluation_config.yaml \
106
+ --output_path ./results/mmlu \
107
+ --run_id mmlu_eval
108
+
109
+ # HumanEval evaluation
110
+ python scripts/humaneval_evaluation.py \
111
+ --model_path /path/to/model \
112
+ --config scripts/evaluation_config.yaml \
113
+ --output_path ./results/humaneval \
114
+ --run_id humaneval_eval
115
+
116
+ # Web development tests
117
+ python scripts/web_dev_tests.py \
118
+ --model_path /path/to/model \
119
+ --config scripts/evaluation_config.yaml \
120
+ --output_path ./results/webdev \
121
+ --run_id webdev_eval
122
+
123
+ # Performance benchmarking
124
+ python scripts/performance_benchmark.py \
125
+ --model_path /path/to/model \
126
+ --config scripts/evaluation_config.yaml \
127
+ --output_path ./results/performance \
128
+ --run_id perf_eval
129
+
130
+ # Code quality tests
131
+ python scripts/code_quality_tests.py \
132
+ --model_path /path/to/model \
133
+ --config scripts/evaluation_config.yaml \
134
+ --output_path ./results/quality \
135
+ --run_id quality_eval
136
+
137
+ # Regression testing
138
+ python scripts/regression_testing.py \
139
+ --model_path /path/to/model \
140
+ --config scripts/evaluation_config.yaml \
141
+ --output_path ./results/regression \
142
+ --run_id regression_eval
143
+ ```
144
+
145
+ ### Advanced Configuration
146
+ ```bash
147
+ # Custom targets and settings
148
+ python scripts/evaluate_model.py \
149
+ --model_path /path/to/model \
150
+ --config scripts/evaluation_config.yaml \
151
+ --output_path ./evaluation_results \
152
+ --run_id custom_eval \
153
+ --skip_load # Dry run without model loading
154
+ ```
155
+
156
+ ## Output Files
157
+
158
+ ### Generated Reports
159
+ - `comprehensive_report_{run_id}.md` - Main evaluation report
160
+ - `evaluation_results_{run_id}.json` - Detailed JSON results
161
+ - `evaluation_summary_{run_id}.csv` - CSV summary
162
+ - `performance_metrics_{run_id}.json` - Performance metrics
163
+
164
+ ### Individual Benchmark Outputs
165
+ Each benchmark generates:
166
+ - `{benchmark}_results_{run_id}.json` - Detailed results
167
+ - `{benchmark}_detailed_{run_id}.csv` - Sample-level data
168
+ - `{benchmark}_{run_id}.log` - Execution logs
169
+
170
+ ## Target Achievement
171
+
172
+ The framework tracks the following performance targets:
173
+
174
+ | Benchmark | Target | Metric |
175
+ |-----------|--------|--------|
176
+ | MMLU Code | >60% | Accuracy |
177
+ | HumanEval | >40% | Pass@1 |
178
+ | Web Development | >75% | Quality Score |
179
+ | Code Quality | >95% | Syntax Validity |
180
+ | Code Quality | >0.65 | CodeBLEU Score |
181
+
182
+ ## Performance Expectations
183
+
184
+ ### Inference Speed
185
+ - **Excellent**: >50 tokens/second
186
+ - **Good**: 30-50 tokens/second
187
+ - **Acceptable**: 20-30 tokens/second
188
+ - **Poor**: <20 tokens/second
189
+
190
+ ### Memory Usage
191
+ - **Efficient**: <8GB model size
192
+ - **Standard**: 8-12GB model size
193
+ - **Large**: 12-20GB model size
194
+
195
+ ## Integration
196
+
197
+ ### Continuous Integration
198
+ ```yaml
199
+ # .github/workflows/evaluation.yml
200
+ name: Model Evaluation
201
+ on: [push, pull_request]
202
+
203
+ jobs:
204
+ evaluate:
205
+ runs-on: [self-hosted, gpu]
206
+ steps:
207
+ - uses: actions/checkout@v2
208
+ - name: Run Evaluation
209
+ run: |
210
+ python scripts/evaluate_model.py \
211
+ --model_path ${{ github.workspace }} \
212
+ --config scripts/evaluation_config.yaml \
213
+ --output_path ./results \
214
+ --run_id ci_${{ github.sha }}
215
+ ```
216
+
217
+ ### Automated Reporting
218
+ The framework integrates with:
219
+ - **HuggingFace Evaluate Library**: Standard metrics
220
+ - **MLflow**: Experiment tracking
221
+ - **Weights & Biases**: Visualization dashboards
222
+ - **GitHub Actions**: CI/CD integration
223
+
224
+ ## Troubleshooting
225
+
226
+ ### Common Issues
227
+
228
+ 1. **Model Loading Failures**
229
+ ```bash
230
+ # Check model path and permissions
231
+ ls -la /path/to/model
232
+ # Verify CUDA availability
233
+ python -c "import torch; print(torch.cuda.is_available())"
234
+ ```
235
+
236
+ 2. **Memory Issues**
237
+ ```yaml
238
+ # Reduce batch sizes in config
239
+ evaluation:
240
+ model_settings:
241
+ device_map: "cpu" # Use CPU instead of GPU
242
+ ```
243
+
244
+ 3. **Dataset Access**
245
+ ```bash
246
+ # Login to HuggingFace
247
+ huggingface-cli login
248
+ # Or disable remote code loading
249
+ ```
250
+
251
+ ### Performance Optimization
252
+
253
+ 1. **GPU Memory Optimization**
254
+ - Use `device_map="auto"` for automatic placement
255
+ - Enable gradient checkpointing for memory efficiency
256
+ - Use quantization (int8, int4) for larger models
257
+
258
+ 2. **Speed Optimization**
259
+ - Increase batch sizes for throughput
260
+ - Use faster attention implementations
261
+ - Enable TensorRT optimization
262
+
263
+ ## Customization
264
+
265
+ ### Adding New Benchmarks
266
+ 1. Create new evaluation script following existing patterns
267
+ 2. Add to `evaluate_model.py` orchestrator
268
+ 3. Update `evaluation_config.yaml` with new settings
269
+ 4. Implement result saving and target tracking
270
+
271
+ ### Modifying Targets
272
+ Edit `evaluation_config.yaml`:
273
+ ```yaml
274
+ targets:
275
+ mmlu_code_accuracy: 0.65 # Increased target
276
+ humaneval_pass1: 0.45 # Increased target
277
+ custom_metric: 0.80 # New metric
278
+ ```
279
+
280
+ ### Custom Quality Metrics
281
+ Extend existing evaluation classes:
282
+ ```python
283
+ def evaluate_custom_metric(self, code_samples):
284
+ # Implement custom quality assessment
285
+ return custom_score
286
+ ```
287
+
288
+ ## Support
289
+
290
+ ### Logging and Debugging
291
+ - All scripts generate detailed logs in output directories
292
+ - Enable debug mode in configuration:
293
+ ```yaml
294
+ logging:
295
+ level: "DEBUG"
296
+ debug_mode: true
297
+ ```
298
+
299
+ ### Resource Requirements
300
+ - **Minimum**: 8GB RAM, 1 GPU (4GB VRAM)
301
+ - **Recommended**: 16GB RAM, 1 GPU (8GB VRAM)
302
+ - **Optimal**: 32GB RAM, 2+ GPUs (16GB+ VRAM each)
303
+
304
+ ### Best Practices
305
+ 1. **Baseline Comparisons**: Always maintain baseline results for regression detection
306
+ 2. **Incremental Testing**: Run individual benchmarks during development
307
+ 3. **Regular Evaluation**: Schedule periodic comprehensive evaluations
308
+ 4. **Result Archiving**: Save evaluation results for historical analysis
309
+
310
+ ## License
311
+
312
+ This evaluation framework is part of the Sheikh-2.5-Coder project. See the main repository for license information.
313
+
314
+ ---
315
+
316
+ **Note**: This framework is designed for systematic model evaluation and should be integrated into continuous development workflows for best results.