Upload calib.py
Browse files
calib.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Collect calibration dataset."""
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
import torch
|
| 9 |
+
from omniconfig import configclass
|
| 10 |
+
from torch import nn
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
from deepcompressor.app.diffusion.config import DiffusionPtqRunConfig
|
| 14 |
+
from deepcompressor.utils.common import hash_str_to_int, tree_map
|
| 15 |
+
|
| 16 |
+
from ...utils import get_control
|
| 17 |
+
from ..data import get_dataset
|
| 18 |
+
from .utils import CollectHook
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process(x: torch.Tensor) -> torch.Tensor:
|
| 22 |
+
dtype = x.dtype
|
| 23 |
+
return torch.from_numpy(x.float().numpy()).to(dtype)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def collect(config: DiffusionPtqRunConfig, dataset: datasets.Dataset):
|
| 27 |
+
samples_dirpath = os.path.join(config.output.root, "samples")
|
| 28 |
+
caches_dirpath = os.path.join(config.output.root, "caches")
|
| 29 |
+
os.makedirs(samples_dirpath, exist_ok=True)
|
| 30 |
+
os.makedirs(caches_dirpath, exist_ok=True)
|
| 31 |
+
caches = []
|
| 32 |
+
|
| 33 |
+
pipeline = config.pipeline.build()
|
| 34 |
+
model = pipeline.unet if hasattr(pipeline, "unet") else pipeline.transformer
|
| 35 |
+
assert isinstance(model, nn.Module)
|
| 36 |
+
model.register_forward_hook(CollectHook(caches=caches), with_kwargs=True)
|
| 37 |
+
|
| 38 |
+
batch_size = config.eval.batch_size
|
| 39 |
+
print(f"In total {len(dataset)} samples")
|
| 40 |
+
print(f"Evaluating with batch size {batch_size}")
|
| 41 |
+
pipeline.set_progress_bar_config(desc="Sampling", leave=False, dynamic_ncols=True, position=1)
|
| 42 |
+
for batch in tqdm(
|
| 43 |
+
dataset.iter(batch_size=batch_size, drop_last_batch=False),
|
| 44 |
+
desc="Data",
|
| 45 |
+
leave=False,
|
| 46 |
+
dynamic_ncols=True,
|
| 47 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 48 |
+
):
|
| 49 |
+
filenames = batch["filename"]
|
| 50 |
+
prompts = batch["prompt"]
|
| 51 |
+
seeds = [hash_str_to_int(name) for name in filenames]
|
| 52 |
+
generators = [torch.Generator(device=pipeline.device).manual_seed(seed) for seed in seeds]
|
| 53 |
+
pipeline_kwargs = config.eval.get_pipeline_kwargs()
|
| 54 |
+
|
| 55 |
+
task = config.pipeline.task
|
| 56 |
+
control_root = config.eval.control_root
|
| 57 |
+
if task in ["canny-to-image", "depth-to-image", "inpainting"]:
|
| 58 |
+
controls = get_control(
|
| 59 |
+
task,
|
| 60 |
+
batch["image"],
|
| 61 |
+
names=batch["filename"],
|
| 62 |
+
data_root=os.path.join(
|
| 63 |
+
control_root, collect_config.dataset_name, f"{dataset.config_name}-{config.eval.num_samples}"
|
| 64 |
+
),
|
| 65 |
+
)
|
| 66 |
+
if task == "inpainting":
|
| 67 |
+
pipeline_kwargs["image"] = controls[0]
|
| 68 |
+
pipeline_kwargs["mask_image"] = controls[1]
|
| 69 |
+
else:
|
| 70 |
+
pipeline_kwargs["control_image"] = controls
|
| 71 |
+
|
| 72 |
+
# Handle meta tensors by moving individual components
|
| 73 |
+
try:
|
| 74 |
+
pipeline = pipeline.to("cuda")
|
| 75 |
+
except NotImplementedError:
|
| 76 |
+
# Move individual pipeline components that have to_empty method
|
| 77 |
+
if hasattr(pipeline, 'transformer') and pipeline.transformer is not None:
|
| 78 |
+
try:
|
| 79 |
+
pipeline.transformer = pipeline.transformer.to("cuda")
|
| 80 |
+
except NotImplementedError:
|
| 81 |
+
pipeline.transformer = pipeline.transformer.to_empty(device="cuda")
|
| 82 |
+
|
| 83 |
+
if hasattr(pipeline, 'text_encoder') and pipeline.text_encoder is not None:
|
| 84 |
+
try:
|
| 85 |
+
pipeline.text_encoder = pipeline.text_encoder.to("cuda")
|
| 86 |
+
except NotImplementedError:
|
| 87 |
+
pipeline.text_encoder = pipeline.text_encoder.to_empty(device="cuda")
|
| 88 |
+
|
| 89 |
+
if hasattr(pipeline, 'text_encoder_2') and pipeline.text_encoder_2 is not None:
|
| 90 |
+
try:
|
| 91 |
+
pipeline.text_encoder_2 = pipeline.text_encoder_2.to("cuda")
|
| 92 |
+
except NotImplementedError:
|
| 93 |
+
pipeline.text_encoder_2 = pipeline.text_encoder_2.to_empty(device="cuda")
|
| 94 |
+
|
| 95 |
+
if hasattr(pipeline, 'vae') and pipeline.vae is not None:
|
| 96 |
+
try:
|
| 97 |
+
pipeline.vae = pipeline.vae.to("cuda")
|
| 98 |
+
except NotImplementedError:
|
| 99 |
+
pipeline.vae = pipeline.vae.to_empty(device="cuda")
|
| 100 |
+
|
| 101 |
+
result_images = pipeline(prompt=prompts, generator=generators, **pipeline_kwargs).images
|
| 102 |
+
num_guidances = (len(caches) // batch_size) // config.eval.num_steps
|
| 103 |
+
num_steps = len(caches) // (batch_size * num_guidances)
|
| 104 |
+
assert (
|
| 105 |
+
len(caches) == batch_size * num_steps * num_guidances
|
| 106 |
+
), f"Unexpected number of caches: {len(caches)} != {batch_size} * {config.eval.num_steps} * {num_guidances}"
|
| 107 |
+
for j, (filename, image) in enumerate(zip(filenames, result_images, strict=True)):
|
| 108 |
+
image.save(os.path.join(samples_dirpath, f"{filename}.png"))
|
| 109 |
+
for s in range(num_steps):
|
| 110 |
+
for g in range(num_guidances):
|
| 111 |
+
c = caches[s * batch_size * num_guidances + g * batch_size + j]
|
| 112 |
+
c["filename"] = filename
|
| 113 |
+
c["step"] = s
|
| 114 |
+
c["guidance"] = g
|
| 115 |
+
c = tree_map(lambda x: process(x), c)
|
| 116 |
+
torch.save(c, os.path.join(caches_dirpath, f"{filename}-{s:05d}-{g}.pt"))
|
| 117 |
+
caches.clear()
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@configclass
|
| 121 |
+
@dataclass
|
| 122 |
+
class CollectConfig:
|
| 123 |
+
"""Configuration for collecting calibration dataset.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
root (`str`, *optional*, defaults to `"datasets"`):
|
| 127 |
+
Root directory to save the collected dataset.
|
| 128 |
+
dataset_name (`str`, *optional*, defaults to `"qdiff"`):
|
| 129 |
+
Name of the collected dataset.
|
| 130 |
+
prompt_path (`str`, *optional*, defaults to `"prompts/qdiff.yaml"`):
|
| 131 |
+
Path to the prompt file.
|
| 132 |
+
num_samples (`int`, *optional*, defaults to `128`):
|
| 133 |
+
Number of samples to collect.
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
root: str = "datasets"
|
| 137 |
+
dataset_name: str = "qdiff"
|
| 138 |
+
data_path: str = "prompts/qdiff.yaml"
|
| 139 |
+
num_samples: int = 128
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
if __name__ == "__main__":
|
| 143 |
+
parser = DiffusionPtqRunConfig.get_parser()
|
| 144 |
+
parser.add_config(CollectConfig, scope="collect", prefix="collect")
|
| 145 |
+
configs, _, unused_cfgs, unused_args, unknown_args = parser.parse_known_args()
|
| 146 |
+
ptq_config, collect_config = configs[""], configs["collect"]
|
| 147 |
+
assert isinstance(ptq_config, DiffusionPtqRunConfig)
|
| 148 |
+
assert isinstance(collect_config, CollectConfig)
|
| 149 |
+
if len(unused_cfgs) > 0:
|
| 150 |
+
print(f"Warning: unused configurations {unused_cfgs}")
|
| 151 |
+
if unused_args is not None:
|
| 152 |
+
print(f"Warning: unused arguments {unused_args}")
|
| 153 |
+
assert len(unknown_args) == 0, f"Unknown arguments: {unknown_args}"
|
| 154 |
+
|
| 155 |
+
collect_dirpath = os.path.join(
|
| 156 |
+
collect_config.root,
|
| 157 |
+
str(ptq_config.pipeline.dtype),
|
| 158 |
+
ptq_config.pipeline.name,
|
| 159 |
+
ptq_config.eval.protocol,
|
| 160 |
+
collect_config.dataset_name,
|
| 161 |
+
f"s{collect_config.num_samples}",
|
| 162 |
+
)
|
| 163 |
+
print(f"Saving caches to {collect_dirpath}")
|
| 164 |
+
|
| 165 |
+
dataset = get_dataset(
|
| 166 |
+
collect_config.data_path,
|
| 167 |
+
max_dataset_size=collect_config.num_samples,
|
| 168 |
+
return_gt=ptq_config.pipeline.task in ["canny-to-image"],
|
| 169 |
+
repeat=1,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
ptq_config.output.root = collect_dirpath
|
| 173 |
+
os.makedirs(ptq_config.output.root, exist_ok=True)
|
| 174 |
+
collect(ptq_config, dataset=dataset)
|