File size: 19,277 Bytes
1e64633
 
 
 
 
 
 
 
 
 
 
 
96d3878
 
 
 
 
 
1e64633
96d3878
1e64633
96d3878
1e64633
 
 
b6de2a7
 
 
 
 
 
 
 
 
1e64633
 
96d3878
1e64633
 
 
 
 
 
 
 
 
 
 
 
96d3878
1e64633
 
 
 
96d3878
 
1e64633
 
 
 
 
96d3878
 
 
 
 
 
 
 
1e64633
96d3878
1e64633
96d3878
 
1e64633
 
96d3878
 
 
 
1e64633
 
 
 
 
96d3878
1e64633
 
 
 
 
 
 
 
 
96d3878
1e64633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d3878
1e64633
96d3878
ee0b1c3
 
 
 
1e64633
 
96d3878
1e64633
 
 
 
 
 
 
96d3878
1e64633
 
 
96d3878
1e64633
 
 
 
 
 
 
 
 
 
 
96d3878
1e64633
 
 
 
96d3878
1e64633
96d3878
1e64633
 
 
 
96d3878
1e64633
 
 
96d3878
1e64633
 
 
 
96d3878
 
1e64633
 
 
 
 
96d3878
 
 
 
1e64633
96d3878
1e64633
 
 
 
 
 
 
 
 
96d3878
 
 
 
 
 
 
 
 
 
 
1e64633
 
96d3878
1e64633
 
 
 
 
96d3878
 
 
 
1e64633
 
96d3878
1e64633
 
 
 
 
 
96d3878
 
 
1e64633
 
96d3878
1e64633
 
96d3878
 
1e64633
 
ee0b1c3
96d3878
1e64633
 
834f57d
96d3878
 
ee0b1c3
1e64633
ee0b1c3
96d3878
 
 
 
 
 
 
 
 
 
 
 
ee0b1c3
1e64633
96d3878
1e64633
 
96d3878
ee0b1c3
1e64633
ee0b1c3
 
96d3878
 
1e64633
 
96d3878
 
 
 
 
 
 
 
 
1e64633
 
 
 
 
96d3878
ee0b1c3
 
96d3878
 
ee0b1c3
 
96d3878
 
ee0b1c3
96d3878
1e64633
96d3878
1e64633
 
 
96d3878
41bcdc8
1e64633
 
 
 
 
 
ee0b1c3
96d3878
1e64633
 
 
 
 
96d3878
1e64633
96d3878
 
 
 
 
 
 
 
 
 
 
 
 
 
b6de2a7
96d3878
 
 
 
 
 
ee0b1c3
96d3878
 
 
1e64633
 
96d3878
b6de2a7
 
 
 
 
 
 
 
 
96d3878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e64633
 
96d3878
1e64633
 
 
96d3878
 
 
 
1e64633
96d3878
 
 
 
 
 
1e64633
 
96d3878
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import argparse
import os
from omegaconf import OmegaConf
import numpy as np
import cv2
import torch
import glob
import pickle
import sys
from tqdm import tqdm
import copy
import json
from transformers import WhisperModel

from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.utils import datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs
from musetalk.utils.blending import get_image_prepare_material, get_image_blending
from musetalk.utils.utils import load_all_model
from musetalk.utils.audio_processor import AudioProcessor

import shutil
import threading
import queue
import time
import subprocess


def fast_check_ffmpeg():
    try:
        subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
        return True
    except:
        return False


def video2imgs(vid_path, save_path, ext='.png', cut_frame=10000000):
    cap = cv2.VideoCapture(vid_path)
    count = 0
    while True:
        if count > cut_frame:
            break
        ret, frame = cap.read()
        if ret:
            cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
            count += 1
        else:
            break


def osmakedirs(path_list):
    for path in path_list:
        os.makedirs(path) if not os.path.exists(path) else None


@torch.no_grad()
class Avatar:
    def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
        self.avatar_id = avatar_id
        self.video_path = video_path
        self.bbox_shift = bbox_shift
        # 根据版本设置不同的基础路径
        if args.version == "v15":
            self.base_path = f"./results/{args.version}/avatars/{avatar_id}"
        else:  # v1
            self.base_path = f"./results/avatars/{avatar_id}"
            
        self.avatar_path = self.base_path
        self.full_imgs_path = f"{self.avatar_path}/full_imgs"
        self.coords_path = f"{self.avatar_path}/coords.pkl"
        self.latents_out_path = f"{self.avatar_path}/latents.pt"
        self.video_out_path = f"{self.avatar_path}/vid_output/"
        self.mask_out_path = f"{self.avatar_path}/mask"
        self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
        self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
        self.avatar_info = {
            "avatar_id": avatar_id,
            "video_path": video_path,
            "bbox_shift": bbox_shift,
            "version": args.version
        }
        self.preparation = preparation
        self.batch_size = batch_size
        self.idx = 0
        self.init()

    def init(self):
        if self.preparation:
            if os.path.exists(self.avatar_path):
                response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
                if response.lower() == "y":
                    shutil.rmtree(self.avatar_path)
                    print("*********************************")
                    print(f"  creating avator: {self.avatar_id}")
                    print("*********************************")
                    osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
                    self.prepare_material()
                else:
                    self.input_latent_list_cycle = torch.load(self.latents_out_path)
                    with open(self.coords_path, 'rb') as f:
                        self.coord_list_cycle = pickle.load(f)
                    input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
                    input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
                    self.frame_list_cycle = read_imgs(input_img_list)
                    with open(self.mask_coords_path, 'rb') as f:
                        self.mask_coords_list_cycle = pickle.load(f)
                    input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
                    input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
                    self.mask_list_cycle = read_imgs(input_mask_list)
            else:
                print("*********************************")
                print(f"  creating avator: {self.avatar_id}")
                print("*********************************")
                osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
                self.prepare_material()
        else:
            if not os.path.exists(self.avatar_path):
                print(f"{self.avatar_id} does not exist, you should set preparation to True")
                sys.exit()

            with open(self.avatar_info_path, "r") as f:
                avatar_info = json.load(f)

            if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
                response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
                if response.lower() == "c":
                    shutil.rmtree(self.avatar_path)
                    print("*********************************")
                    print(f"  creating avator: {self.avatar_id}")
                    print("*********************************")
                    osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
                    self.prepare_material()
                else:
                    sys.exit()
            else:
                self.input_latent_list_cycle = torch.load(self.latents_out_path)
                with open(self.coords_path, 'rb') as f:
                    self.coord_list_cycle = pickle.load(f)
                input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
                input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
                self.frame_list_cycle = read_imgs(input_img_list)
                with open(self.mask_coords_path, 'rb') as f:
                    self.mask_coords_list_cycle = pickle.load(f)
                input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
                input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
                self.mask_list_cycle = read_imgs(input_mask_list)

    def prepare_material(self):
        print("preparing data materials ... ...")
        with open(self.avatar_info_path, "w") as f:
            json.dump(self.avatar_info, f)

        if os.path.isfile(self.video_path):
            video2imgs(self.video_path, self.full_imgs_path, ext='png')
        else:
            print(f"copy files in {self.video_path}")
            files = os.listdir(self.video_path)
            files.sort()
            files = [file for file in files if file.split(".")[-1] == "png"]
            for filename in files:
                shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
        input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))

        print("extracting landmarks...")
        coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
        input_latent_list = []
        idx = -1
        # maker if the bbox is not sufficient
        coord_placeholder = (0.0, 0.0, 0.0, 0.0)
        for bbox, frame in zip(coord_list, frame_list):
            idx = idx + 1
            if bbox == coord_placeholder:
                continue
            x1, y1, x2, y2 = bbox
            if args.version == "v15":
                y2 = y2 + args.extra_margin
                y2 = min(y2, frame.shape[0])
                coord_list[idx] = [x1, y1, x2, y2]  # 更新coord_list中的bbox
            crop_frame = frame[y1:y2, x1:x2]
            resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4)
            latents = vae.get_latents_for_unet(resized_crop_frame)
            input_latent_list.append(latents)

        self.frame_list_cycle = frame_list + frame_list[::-1]
        self.coord_list_cycle = coord_list + coord_list[::-1]
        self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
        self.mask_coords_list_cycle = []
        self.mask_list_cycle = []

        for i, frame in enumerate(tqdm(self.frame_list_cycle)):
            cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame)

            x1, y1, x2, y2 = self.coord_list_cycle[i]
            if args.version == "v15":
                mode = args.parsing_mode
            else:
                mode = "raw"
            mask, crop_box = get_image_prepare_material(frame, [x1, y1, x2, y2], fp=fp, mode=mode)

            cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask)
            self.mask_coords_list_cycle += [crop_box]
            self.mask_list_cycle.append(mask)

        with open(self.mask_coords_path, 'wb') as f:
            pickle.dump(self.mask_coords_list_cycle, f)

        with open(self.coords_path, 'wb') as f:
            pickle.dump(self.coord_list_cycle, f)

        torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))

    def process_frames(self, res_frame_queue, video_len, skip_save_images):
        print(video_len)
        while True:
            if self.idx >= video_len - 1:
                break
            try:
                start = time.time()
                res_frame = res_frame_queue.get(block=True, timeout=1)
            except queue.Empty:
                continue

            bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))]
            ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))])
            x1, y1, x2, y2 = bbox
            try:
                res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
            except:
                continue
            mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))]
            mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))]
            combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)

            if skip_save_images is False:
                cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png", combine_frame)
            self.idx = self.idx + 1

    @torch.no_grad()
    def inference(self, audio_path, out_vid_name, fps, skip_save_images):
        os.makedirs(self.avatar_path + '/tmp', exist_ok=True)
        print("start inference")
        ############################################## extract audio feature ##############################################
        start_time = time.time()
        # Extract audio features
        whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path, weight_dtype=weight_dtype)
        whisper_chunks = audio_processor.get_whisper_chunk(
            whisper_input_features,
            device,
            weight_dtype,
            whisper,
            librosa_length,
            fps=fps,
            audio_padding_length_left=args.audio_padding_length_left,
            audio_padding_length_right=args.audio_padding_length_right,
        )
        print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
        ############################################## inference batch by batch ##############################################
        video_num = len(whisper_chunks)
        res_frame_queue = queue.Queue()
        self.idx = 0
        # Create a sub-thread and start it
        process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images))
        process_thread.start()

        gen = datagen(whisper_chunks,
                     self.input_latent_list_cycle,
                     self.batch_size)
        start_time = time.time()
        res_frame_list = []

        for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))):
            audio_feature_batch = pe(whisper_batch.to(device))
            latent_batch = latent_batch.to(device=device, dtype=unet.model.dtype)

            pred_latents = unet.model(latent_batch,
                                    timesteps,
                                    encoder_hidden_states=audio_feature_batch).sample
            pred_latents = pred_latents.to(device=device, dtype=vae.vae.dtype)
            recon = vae.decode_latents(pred_latents)
            for res_frame in recon:
                res_frame_queue.put(res_frame)
        # Close the queue and sub-thread after all tasks are completed
        process_thread.join()

        if args.skip_save_images is True:
            print('Total process time of {} frames without saving images = {}s'.format(
                video_num,
                time.time() - start_time))
        else:
            print('Total process time of {} frames including saving images = {}s'.format(
                video_num,
                time.time() - start_time))

        if out_vid_name is not None and args.skip_save_images is False:
            # optional
            cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
            print(cmd_img2video)
            os.system(cmd_img2video)

            output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4")  # on
            cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
            print(cmd_combine_audio)
            os.system(cmd_combine_audio)

            os.remove(f"{self.avatar_path}/temp.mp4")
            shutil.rmtree(f"{self.avatar_path}/tmp")
            print(f"result is save to {output_vid}")
        print("\n")


if __name__ == "__main__":
    '''
    This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
    '''

    parser = argparse.ArgumentParser()
    parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Version of MuseTalk: v1 or v15")
    parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
    parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
    parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
    parser.add_argument("--unet_config", type=str, default="./models/musetalk/musetalk.json", help="Path to UNet configuration file")
    parser.add_argument("--unet_model_path", type=str, default="./models/musetalk/pytorch_model.bin", help="Path to UNet model weights")
    parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
    parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
    parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
    parser.add_argument("--result_dir", default='./results', help="Directory for output results")
    parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
    parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
    parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
    parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
    parser.add_argument("--batch_size", type=int, default=20, help="Batch size for inference")
    parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
    parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
    parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
    parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
    parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
    parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
    parser.add_argument("--skip_save_images",
                       action="store_true",
                       help="Whether skip saving images for better generation speed calculation",
                       )

    args = parser.parse_args()

    # Configure ffmpeg path
    if not fast_check_ffmpeg():
        print("Adding ffmpeg to PATH")
        # Choose path separator based on operating system
        path_separator = ';' if sys.platform == 'win32' else ':'
        os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
        if not fast_check_ffmpeg():
            print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")

    # Set computing device
    device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")

    # Load model weights
    vae, unet, pe = load_all_model(
        unet_model_path=args.unet_model_path,
        vae_type=args.vae_type,
        unet_config=args.unet_config,
        device=device
    )
    timesteps = torch.tensor([0], device=device)

    pe = pe.half().to(device)
    vae.vae = vae.vae.half().to(device)
    unet.model = unet.model.half().to(device)

    # Initialize audio processor and Whisper model
    audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
    weight_dtype = unet.model.dtype
    whisper = WhisperModel.from_pretrained(args.whisper_dir)
    whisper = whisper.to(device=device, dtype=weight_dtype).eval()
    whisper.requires_grad_(False)

    # Initialize face parser with configurable parameters based on version
    if args.version == "v15":
        fp = FaceParsing(
            left_cheek_width=args.left_cheek_width,
            right_cheek_width=args.right_cheek_width
        )
    else:  # v1
        fp = FaceParsing()

    inference_config = OmegaConf.load(args.inference_config)
    print(inference_config)

    for avatar_id in inference_config:
        data_preparation = inference_config[avatar_id]["preparation"]
        video_path = inference_config[avatar_id]["video_path"]
        if args.version == "v15":
            bbox_shift = 0
        else:
            bbox_shift = inference_config[avatar_id]["bbox_shift"]
        avatar = Avatar(
            avatar_id=avatar_id,
            video_path=video_path,
            bbox_shift=bbox_shift,
            batch_size=args.batch_size,
            preparation=data_preparation)

        audio_clips = inference_config[avatar_id]["audio_clips"]
        for audio_num, audio_path in audio_clips.items():
            print("Inferring using:", audio_path)
            avatar.inference(audio_path,
                           audio_num,
                           args.fps,
                           args.skip_save_images)