File size: 19,277 Bytes
1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 b6de2a7 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 ee0b1c3 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 ee0b1c3 96d3878 1e64633 834f57d 96d3878 ee0b1c3 1e64633 ee0b1c3 96d3878 ee0b1c3 1e64633 96d3878 1e64633 96d3878 ee0b1c3 1e64633 ee0b1c3 96d3878 1e64633 96d3878 1e64633 96d3878 ee0b1c3 96d3878 ee0b1c3 96d3878 ee0b1c3 96d3878 1e64633 96d3878 1e64633 96d3878 41bcdc8 1e64633 ee0b1c3 96d3878 1e64633 96d3878 1e64633 96d3878 b6de2a7 96d3878 ee0b1c3 96d3878 1e64633 96d3878 b6de2a7 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 1e64633 96d3878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import argparse
import os
from omegaconf import OmegaConf
import numpy as np
import cv2
import torch
import glob
import pickle
import sys
from tqdm import tqdm
import copy
import json
from transformers import WhisperModel
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.utils import datagen
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs
from musetalk.utils.blending import get_image_prepare_material, get_image_blending
from musetalk.utils.utils import load_all_model
from musetalk.utils.audio_processor import AudioProcessor
import shutil
import threading
import queue
import time
import subprocess
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
def video2imgs(vid_path, save_path, ext='.png', cut_frame=10000000):
cap = cv2.VideoCapture(vid_path)
count = 0
while True:
if count > cut_frame:
break
ret, frame = cap.read()
if ret:
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
count += 1
else:
break
def osmakedirs(path_list):
for path in path_list:
os.makedirs(path) if not os.path.exists(path) else None
@torch.no_grad()
class Avatar:
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
self.avatar_id = avatar_id
self.video_path = video_path
self.bbox_shift = bbox_shift
# 根据版本设置不同的基础路径
if args.version == "v15":
self.base_path = f"./results/{args.version}/avatars/{avatar_id}"
else: # v1
self.base_path = f"./results/avatars/{avatar_id}"
self.avatar_path = self.base_path
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
self.coords_path = f"{self.avatar_path}/coords.pkl"
self.latents_out_path = f"{self.avatar_path}/latents.pt"
self.video_out_path = f"{self.avatar_path}/vid_output/"
self.mask_out_path = f"{self.avatar_path}/mask"
self.mask_coords_path = f"{self.avatar_path}/mask_coords.pkl"
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
self.avatar_info = {
"avatar_id": avatar_id,
"video_path": video_path,
"bbox_shift": bbox_shift,
"version": args.version
}
self.preparation = preparation
self.batch_size = batch_size
self.idx = 0
self.init()
def init(self):
if self.preparation:
if os.path.exists(self.avatar_path):
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
if response.lower() == "y":
shutil.rmtree(self.avatar_path)
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
else:
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
if not os.path.exists(self.avatar_path):
print(f"{self.avatar_id} does not exist, you should set preparation to True")
sys.exit()
with open(self.avatar_info_path, "r") as f:
avatar_info = json.load(f)
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
if response.lower() == "c":
shutil.rmtree(self.avatar_path)
print("*********************************")
print(f" creating avator: {self.avatar_id}")
print("*********************************")
osmakedirs([self.avatar_path, self.full_imgs_path, self.video_out_path, self.mask_out_path])
self.prepare_material()
else:
sys.exit()
else:
self.input_latent_list_cycle = torch.load(self.latents_out_path)
with open(self.coords_path, 'rb') as f:
self.coord_list_cycle = pickle.load(f)
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.frame_list_cycle = read_imgs(input_img_list)
with open(self.mask_coords_path, 'rb') as f:
self.mask_coords_list_cycle = pickle.load(f)
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
self.mask_list_cycle = read_imgs(input_mask_list)
def prepare_material(self):
print("preparing data materials ... ...")
with open(self.avatar_info_path, "w") as f:
json.dump(self.avatar_info, f)
if os.path.isfile(self.video_path):
video2imgs(self.video_path, self.full_imgs_path, ext='png')
else:
print(f"copy files in {self.video_path}")
files = os.listdir(self.video_path)
files.sort()
files = [file for file in files if file.split(".")[-1] == "png"]
for filename in files:
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
print("extracting landmarks...")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
input_latent_list = []
idx = -1
# maker if the bbox is not sufficient
coord_placeholder = (0.0, 0.0, 0.0, 0.0)
for bbox, frame in zip(coord_list, frame_list):
idx = idx + 1
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
if args.version == "v15":
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
coord_list[idx] = [x1, y1, x2, y2] # 更新coord_list中的bbox
crop_frame = frame[y1:y2, x1:x2]
resized_crop_frame = cv2.resize(crop_frame, (256, 256), interpolation=cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(resized_crop_frame)
input_latent_list.append(latents)
self.frame_list_cycle = frame_list + frame_list[::-1]
self.coord_list_cycle = coord_list + coord_list[::-1]
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
self.mask_coords_list_cycle = []
self.mask_list_cycle = []
for i, frame in enumerate(tqdm(self.frame_list_cycle)):
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png", frame)
x1, y1, x2, y2 = self.coord_list_cycle[i]
if args.version == "v15":
mode = args.parsing_mode
else:
mode = "raw"
mask, crop_box = get_image_prepare_material(frame, [x1, y1, x2, y2], fp=fp, mode=mode)
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png", mask)
self.mask_coords_list_cycle += [crop_box]
self.mask_list_cycle.append(mask)
with open(self.mask_coords_path, 'wb') as f:
pickle.dump(self.mask_coords_list_cycle, f)
with open(self.coords_path, 'wb') as f:
pickle.dump(self.coord_list_cycle, f)
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
def process_frames(self, res_frame_queue, video_len, skip_save_images):
print(video_len)
while True:
if self.idx >= video_len - 1:
break
try:
start = time.time()
res_frame = res_frame_queue.get(block=True, timeout=1)
except queue.Empty:
continue
bbox = self.coord_list_cycle[self.idx % (len(self.coord_list_cycle))]
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx % (len(self.frame_list_cycle))])
x1, y1, x2, y2 = bbox
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2 - x1, y2 - y1))
except:
continue
mask = self.mask_list_cycle[self.idx % (len(self.mask_list_cycle))]
mask_crop_box = self.mask_coords_list_cycle[self.idx % (len(self.mask_coords_list_cycle))]
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
if skip_save_images is False:
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png", combine_frame)
self.idx = self.idx + 1
@torch.no_grad()
def inference(self, audio_path, out_vid_name, fps, skip_save_images):
os.makedirs(self.avatar_path + '/tmp', exist_ok=True)
print("start inference")
############################################## extract audio feature ##############################################
start_time = time.time()
# Extract audio features
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path, weight_dtype=weight_dtype)
whisper_chunks = audio_processor.get_whisper_chunk(
whisper_input_features,
device,
weight_dtype,
whisper,
librosa_length,
fps=fps,
audio_padding_length_left=args.audio_padding_length_left,
audio_padding_length_right=args.audio_padding_length_right,
)
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
############################################## inference batch by batch ##############################################
video_num = len(whisper_chunks)
res_frame_queue = queue.Queue()
self.idx = 0
# Create a sub-thread and start it
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num, skip_save_images))
process_thread.start()
gen = datagen(whisper_chunks,
self.input_latent_list_cycle,
self.batch_size)
start_time = time.time()
res_frame_list = []
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=int(np.ceil(float(video_num) / self.batch_size)))):
audio_feature_batch = pe(whisper_batch.to(device))
latent_batch = latent_batch.to(device=device, dtype=unet.model.dtype)
pred_latents = unet.model(latent_batch,
timesteps,
encoder_hidden_states=audio_feature_batch).sample
pred_latents = pred_latents.to(device=device, dtype=vae.vae.dtype)
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_queue.put(res_frame)
# Close the queue and sub-thread after all tasks are completed
process_thread.join()
if args.skip_save_images is True:
print('Total process time of {} frames without saving images = {}s'.format(
video_num,
time.time() - start_time))
else:
print('Total process time of {} frames including saving images = {}s'.format(
video_num,
time.time() - start_time))
if out_vid_name is not None and args.skip_save_images is False:
# optional
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
print(cmd_img2video)
os.system(cmd_img2video)
output_vid = os.path.join(self.video_out_path, out_vid_name + ".mp4") # on
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
print(cmd_combine_audio)
os.system(cmd_combine_audio)
os.remove(f"{self.avatar_path}/temp.mp4")
shutil.rmtree(f"{self.avatar_path}/tmp")
print(f"result is save to {output_vid}")
print("\n")
if __name__ == "__main__":
'''
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
'''
parser = argparse.ArgumentParser()
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Version of MuseTalk: v1 or v15")
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
parser.add_argument("--unet_config", type=str, default="./models/musetalk/musetalk.json", help="Path to UNet configuration file")
parser.add_argument("--unet_model_path", type=str, default="./models/musetalk/pytorch_model.bin", help="Path to UNet model weights")
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
parser.add_argument("--result_dir", default='./results', help="Directory for output results")
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
parser.add_argument("--batch_size", type=int, default=20, help="Batch size for inference")
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
parser.add_argument("--skip_save_images",
action="store_true",
help="Whether skip saving images for better generation speed calculation",
)
args = parser.parse_args()
# Configure ffmpeg path
if not fast_check_ffmpeg():
print("Adding ffmpeg to PATH")
# Choose path separator based on operating system
path_separator = ';' if sys.platform == 'win32' else ':'
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
if not fast_check_ffmpeg():
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
# Set computing device
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
# Load model weights
vae, unet, pe = load_all_model(
unet_model_path=args.unet_model_path,
vae_type=args.vae_type,
unet_config=args.unet_config,
device=device
)
timesteps = torch.tensor([0], device=device)
pe = pe.half().to(device)
vae.vae = vae.vae.half().to(device)
unet.model = unet.model.half().to(device)
# Initialize audio processor and Whisper model
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
weight_dtype = unet.model.dtype
whisper = WhisperModel.from_pretrained(args.whisper_dir)
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
whisper.requires_grad_(False)
# Initialize face parser with configurable parameters based on version
if args.version == "v15":
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
else: # v1
fp = FaceParsing()
inference_config = OmegaConf.load(args.inference_config)
print(inference_config)
for avatar_id in inference_config:
data_preparation = inference_config[avatar_id]["preparation"]
video_path = inference_config[avatar_id]["video_path"]
if args.version == "v15":
bbox_shift = 0
else:
bbox_shift = inference_config[avatar_id]["bbox_shift"]
avatar = Avatar(
avatar_id=avatar_id,
video_path=video_path,
bbox_shift=bbox_shift,
batch_size=args.batch_size,
preparation=data_preparation)
audio_clips = inference_config[avatar_id]["audio_clips"]
for audio_num, audio_path in audio_clips.items():
print("Inferring using:", audio_path)
avatar.inference(audio_path,
audio_num,
args.fps,
args.skip_save_images)
|