|
|
import json |
|
|
from pathlib import Path |
|
|
from typing import Optional, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from transformers import ( |
|
|
AutoConfig, |
|
|
AutoModel, |
|
|
AutoModelForCausalLM, |
|
|
AutoTokenizer, |
|
|
PreTrainedModel, |
|
|
) |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
try: |
|
|
from .asr_config import ASRConfig |
|
|
from .projectors import PROJECTOR_CLASSES |
|
|
except ImportError: |
|
|
from asr_config import ASRConfig |
|
|
from projectors import PROJECTOR_CLASSES |
|
|
|
|
|
|
|
|
class ASRModel(PreTrainedModel, GenerationMixin): |
|
|
"""Audio-to-text model combining an audio encoder, projector, and language model.""" |
|
|
|
|
|
config_class = ASRConfig |
|
|
base_model_prefix = "model" |
|
|
main_input_name = "input_features" |
|
|
_supports_flash_attn_2 = True |
|
|
supports_gradient_checkpointing = True |
|
|
_is_loading_from_pretrained: bool = False |
|
|
_pretrained_model_path: Optional[str] = None |
|
|
|
|
|
TRANSCRIBE_PROMPT = "Transcribe: " |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs): |
|
|
"""Load model from pretrained, handling device placement correctly.""" |
|
|
from safetensors.torch import load_file |
|
|
from transformers.utils.hub import cached_file |
|
|
|
|
|
config = kwargs.pop("config", None) |
|
|
if config is None: |
|
|
config = ASRConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
|
|
|
cls._is_loading_from_pretrained = True |
|
|
cls._pretrained_model_path = pretrained_model_name_or_path |
|
|
|
|
|
try: |
|
|
model = cls(config, **kwargs) |
|
|
|
|
|
|
|
|
subfolder = kwargs.get("subfolder") |
|
|
revision = kwargs.get("revision") |
|
|
cache_kwargs = {} |
|
|
if subfolder: |
|
|
cache_kwargs["subfolder"] = subfolder |
|
|
if revision: |
|
|
cache_kwargs["revision"] = revision |
|
|
|
|
|
model_file = cached_file( |
|
|
pretrained_model_name_or_path, |
|
|
"model.safetensors", |
|
|
_raise_exceptions_for_missing_entries=False, |
|
|
**cache_kwargs, |
|
|
) |
|
|
|
|
|
if model_file is not None: |
|
|
state_dict = load_file(model_file) |
|
|
model.load_state_dict(state_dict, strict=False) |
|
|
|
|
|
|
|
|
adapter_config = cached_file( |
|
|
pretrained_model_name_or_path, |
|
|
"adapter_config.json", |
|
|
_raise_exceptions_for_missing_entries=False, |
|
|
**cache_kwargs, |
|
|
) |
|
|
if adapter_config is not None: |
|
|
from peft import PeftModel |
|
|
|
|
|
|
|
|
model.language_model = PeftModel.from_pretrained( |
|
|
model.language_model, pretrained_model_name_or_path, is_trainable=False |
|
|
) |
|
|
|
|
|
return model |
|
|
finally: |
|
|
cls._is_loading_from_pretrained = False |
|
|
cls._pretrained_model_path = None |
|
|
|
|
|
def __init__(self, config: ASRConfig, **kwargs): |
|
|
super().__init__(config) |
|
|
|
|
|
self.system_prompt = config.system_prompt |
|
|
target_dtype = getattr(torch, config.model_dtype) |
|
|
|
|
|
|
|
|
self.audio_tower = self._load_audio_encoder(config, target_dtype) |
|
|
|
|
|
|
|
|
self.language_model = self._load_language_model(config, target_dtype) |
|
|
|
|
|
|
|
|
self._init_tokenizer(config) |
|
|
|
|
|
|
|
|
self.generation_config = self.language_model.generation_config |
|
|
self.generation_config.max_new_tokens = config.max_new_tokens |
|
|
self.generation_config.num_beams = config.num_beams |
|
|
self.generation_config.do_sample = False |
|
|
|
|
|
self.generation_config.temperature = None |
|
|
self.generation_config.top_p = None |
|
|
self.generation_config.top_k = None |
|
|
self.generation_config.use_cache = config.use_cache |
|
|
self.generation_config.length_penalty = config.length_penalty |
|
|
self.generation_config.repetition_penalty = config.repetition_penalty |
|
|
self.generation_config.no_repeat_ngram_size = config.no_repeat_ngram_size |
|
|
self.generation_config.eos_token_id = [ |
|
|
self.tokenizer.convert_tokens_to_ids("<|im_end|>"), |
|
|
self.tokenizer.convert_tokens_to_ids("<|endoftext|>"), |
|
|
] |
|
|
self.generation_config.pad_token_id = self.tokenizer.pad_token_id |
|
|
|
|
|
|
|
|
self.feature_extractor = self._create_feature_extractor(config) |
|
|
|
|
|
|
|
|
self.projector = self._create_projector(config, target_dtype) |
|
|
|
|
|
|
|
|
self._no_split_modules = getattr(self.language_model, "_no_split_modules", []) |
|
|
|
|
|
def _create_feature_extractor(self, config: ASRConfig): |
|
|
"""Create the appropriate feature extractor for the audio encoder.""" |
|
|
from transformers import AutoFeatureExtractor |
|
|
|
|
|
return AutoFeatureExtractor.from_pretrained(config.audio_model_id) |
|
|
|
|
|
@classmethod |
|
|
def _load_audio_encoder(cls, config: ASRConfig, dtype: torch.dtype) -> nn.Module: |
|
|
"""Load and freeze the audio encoder.""" |
|
|
encoder_kwargs = { |
|
|
"attn_implementation": config.attn_implementation, |
|
|
"low_cpu_mem_usage": True, |
|
|
"dtype": dtype, |
|
|
} |
|
|
|
|
|
if "whisper" in config.audio_model_id.lower(): |
|
|
from transformers import WhisperModel |
|
|
|
|
|
full_model = WhisperModel.from_pretrained(config.audio_model_id, **encoder_kwargs) |
|
|
encoder = full_model.encoder |
|
|
del full_model |
|
|
elif "glm" in config.audio_model_id.lower(): |
|
|
|
|
|
|
|
|
from transformers import AutoModelForSeq2SeqLM |
|
|
|
|
|
full_model = AutoModelForSeq2SeqLM.from_pretrained( |
|
|
config.audio_model_id, trust_remote_code=True, **encoder_kwargs |
|
|
) |
|
|
|
|
|
encoder = full_model.audio_tower |
|
|
|
|
|
full_model.language_model = None |
|
|
full_model.multi_modal_projector = None |
|
|
del full_model |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
else: |
|
|
encoder = AutoModel.from_pretrained(config.audio_model_id, **encoder_kwargs) |
|
|
|
|
|
encoder.requires_grad_(False) |
|
|
encoder.eval() |
|
|
return encoder |
|
|
|
|
|
@classmethod |
|
|
def _load_language_model(cls, config: ASRConfig, dtype: torch.dtype) -> PreTrainedModel: |
|
|
"""Load and freeze the language model.""" |
|
|
decoder_kwargs = { |
|
|
"attn_implementation": config.attn_implementation, |
|
|
"trust_remote_code": True, |
|
|
"tie_word_embeddings": False, |
|
|
"low_cpu_mem_usage": True, |
|
|
"dtype": dtype, |
|
|
} |
|
|
|
|
|
decoder = AutoModelForCausalLM.from_pretrained(config.text_model_id, **decoder_kwargs) |
|
|
decoder.config.use_cache = getattr(config, "use_cache", True) |
|
|
decoder.requires_grad_(False) |
|
|
decoder.eval() |
|
|
return decoder |
|
|
|
|
|
def _create_projector(self, config: ASRConfig, dtype: torch.dtype) -> nn.Module: |
|
|
"""Create the trainable audio projector.""" |
|
|
|
|
|
if config.encoder_dim is None: |
|
|
enc_cfg = self.audio_tower.config |
|
|
config.encoder_dim = getattr(enc_cfg, "hidden_size", None) or getattr( |
|
|
enc_cfg, "d_model", None |
|
|
) |
|
|
if config.encoder_dim is None: |
|
|
raise ValueError("Could not auto-detect encoder_dim. Please specify in config.") |
|
|
|
|
|
if config.llm_dim is None: |
|
|
dec_cfg = self.language_model.config |
|
|
config.llm_dim = getattr(dec_cfg, "hidden_size", None) or getattr( |
|
|
dec_cfg, "d_model", None |
|
|
) |
|
|
if config.llm_dim is None: |
|
|
raise ValueError("Could not auto-detect llm_dim. Please specify in config.") |
|
|
|
|
|
|
|
|
projector_type = getattr(config, "projector_type", "mlp") |
|
|
projector_class = PROJECTOR_CLASSES.get(projector_type) |
|
|
if projector_class is None: |
|
|
raise ValueError( |
|
|
f"Unknown projector_type: {projector_type}. " |
|
|
f"Valid options: {list(PROJECTOR_CLASSES.keys())}" |
|
|
) |
|
|
projector = projector_class(config) |
|
|
|
|
|
|
|
|
device = next(self.language_model.parameters()).device |
|
|
return projector.to(device=device, dtype=dtype) |
|
|
|
|
|
def _init_tokenizer(self, config: ASRConfig): |
|
|
"""Initialize tokenizer with audio token.""" |
|
|
self.tokenizer = AutoTokenizer.from_pretrained(config.text_model_id, trust_remote_code=True) |
|
|
|
|
|
|
|
|
if ( |
|
|
self.tokenizer.pad_token is None |
|
|
or self.tokenizer.pad_token_id == self.tokenizer.eos_token_id |
|
|
) and "<|finetune_right_pad_id|>" in self.tokenizer.get_vocab(): |
|
|
self.tokenizer.pad_token = "<|finetune_right_pad_id|>" |
|
|
|
|
|
|
|
|
existing_special = getattr(self.tokenizer, "additional_special_tokens", None) or [] |
|
|
if "<audio>" not in existing_special: |
|
|
self.tokenizer.add_special_tokens( |
|
|
{"additional_special_tokens": existing_special + ["<audio>"]} |
|
|
) |
|
|
self.language_model.resize_token_embeddings(len(self.tokenizer), mean_resizing=False) |
|
|
|
|
|
self.audio_token_id = self.tokenizer.convert_tokens_to_ids("<audio>") |
|
|
self.tokenizer.padding_side = "right" |
|
|
|
|
|
|
|
|
for cfg in [self.config.text_config, self.language_model.config, self.generation_config]: |
|
|
if cfg is not None: |
|
|
cfg.pad_token_id = self.tokenizer.pad_token_id |
|
|
cfg.eos_token_id = self.tokenizer.eos_token_id |
|
|
cfg.bos_token_id = self.tokenizer.bos_token_id |
|
|
|
|
|
def _init_weights(self, module): |
|
|
"""Weight initialization (projector weights are initialized in MoEAudioProjector).""" |
|
|
pass |
|
|
|
|
|
def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func=None): |
|
|
"""Enable/disable gradient checkpointing for the language model.""" |
|
|
|
|
|
|
|
|
if hasattr(self.language_model, "_set_gradient_checkpointing"): |
|
|
self.language_model._set_gradient_checkpointing(enable, gradient_checkpointing_func) |
|
|
elif hasattr(self.language_model, "gradient_checkpointing_enable") and enable: |
|
|
self.language_model.gradient_checkpointing_enable( |
|
|
gradient_checkpointing_kwargs={"use_reentrant": False} |
|
|
) |
|
|
elif hasattr(self.language_model, "gradient_checkpointing_disable") and not enable: |
|
|
self.language_model.gradient_checkpointing_disable() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, value): |
|
|
self.language_model.set_output_embeddings(value) |
|
|
|
|
|
def get_processor(self): |
|
|
"""Get the processor for this model.""" |
|
|
try: |
|
|
from .asr_processing import ASRProcessor |
|
|
except ImportError: |
|
|
from asr_processing import ASRProcessor |
|
|
|
|
|
return ASRProcessor( |
|
|
feature_extractor=self.feature_extractor, |
|
|
tokenizer=self.tokenizer, |
|
|
projector=self.projector, |
|
|
encoder_conv_layers=self.config.encoder_conv_layers, |
|
|
) |
|
|
|
|
|
def state_dict(self, *args, **kwargs): |
|
|
"""Only save trainable projector weights.""" |
|
|
return {f"projector.{k}": v for k, v in self.projector.state_dict().items()} |
|
|
|
|
|
def _compute_encoder_output_lengths( |
|
|
self, |
|
|
audio_attention_mask: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
"""Compute per-sample encoder output lengths using conv layer formulas. |
|
|
|
|
|
Args: |
|
|
audio_attention_mask: Mask indicating real vs padded mel frames (batch, mel_len) |
|
|
|
|
|
Returns: |
|
|
Tensor of encoder output lengths per sample (batch,) |
|
|
""" |
|
|
|
|
|
lengths = audio_attention_mask.sum(dim=-1) |
|
|
|
|
|
|
|
|
for padding, kernel_size, stride in self.config.encoder_conv_layers: |
|
|
lengths = (lengths + 2 * padding - (kernel_size - 1) - 1) // stride + 1 |
|
|
|
|
|
return lengths |
|
|
|
|
|
def _encode_audio( |
|
|
self, |
|
|
audio_features: torch.Tensor, |
|
|
audio_attention_mask: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
"""Encode audio and project to LLM embedding space. |
|
|
|
|
|
Args: |
|
|
audio_features: Mel spectrogram features (batch, n_mels, mel_len) |
|
|
audio_attention_mask: Mask indicating real vs padded mel frames (batch, mel_len) |
|
|
|
|
|
Returns: |
|
|
Flattened audio embeddings of shape (total_audio_tokens, hidden_dim). |
|
|
""" |
|
|
with torch.no_grad(): |
|
|
encoder_out = self.audio_tower(input_features=audio_features) |
|
|
hidden_states = encoder_out.last_hidden_state |
|
|
|
|
|
|
|
|
encoder_lengths = self._compute_encoder_output_lengths(audio_attention_mask) |
|
|
|
|
|
|
|
|
audio_embeds = self.projector(hidden_states) |
|
|
|
|
|
|
|
|
projector_lengths = torch.tensor( |
|
|
[self.projector.get_output_length(int(length.item())) for length in encoder_lengths], |
|
|
device=audio_embeds.device, |
|
|
) |
|
|
|
|
|
|
|
|
max_len = audio_embeds.shape[1] |
|
|
valid_mask = ( |
|
|
torch.arange(max_len, device=audio_embeds.device)[None, :] < projector_lengths[:, None] |
|
|
) |
|
|
return audio_embeds[valid_mask] |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
input_features: Optional[torch.Tensor] = None, |
|
|
audio_attention_mask: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
labels: Optional[torch.Tensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.Tensor] = None, |
|
|
**kwargs, |
|
|
) -> CausalLMOutputWithPast: |
|
|
"""Forward pass for training and inference.""" |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
|
|
if input_features is not None and input_ids is not None: |
|
|
|
|
|
audio_embeds = self._encode_audio(input_features, audio_attention_mask) |
|
|
|
|
|
|
|
|
audio_token_mask = (input_ids == self.audio_token_id).unsqueeze(-1) |
|
|
inputs_embeds = inputs_embeds.masked_scatter( |
|
|
audio_token_mask.to(inputs_embeds.device), |
|
|
audio_embeds.to(inputs_embeds.device, dtype=inputs_embeds.dtype), |
|
|
) |
|
|
|
|
|
|
|
|
outputs = self.language_model( |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
labels=labels, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if outputs.loss is not None and hasattr(self.projector, "get_aux_loss"): |
|
|
aux_loss = self.projector.get_aux_loss() |
|
|
if aux_loss is not None and aux_loss.numel() > 0: |
|
|
outputs.loss = outputs.loss + aux_loss.to(outputs.loss.device) |
|
|
|
|
|
return outputs |
|
|
|
|
|
def prepare_inputs_for_generation(self, *args, **kwargs): |
|
|
"""Prepare inputs for generation, handling audio features for cached decoding.""" |
|
|
input_features = kwargs.pop("input_features", None) |
|
|
cache_position = kwargs.get("cache_position") |
|
|
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation(*args, **kwargs) |
|
|
|
|
|
|
|
|
if cache_position is not None and cache_position[0] == 0 and input_features is not None: |
|
|
model_inputs["input_features"] = input_features |
|
|
|
|
|
return model_inputs |
|
|
|
|
|
def _get_num_audio_tokens( |
|
|
self, |
|
|
audio_attention_mask: torch.Tensor, |
|
|
) -> int: |
|
|
"""Calculate number of audio tokens based on actual audio length. |
|
|
|
|
|
Uses attention mask to get real audio length, then computes: |
|
|
mel_frames -> encoder_frames (via conv formulas) -> projector output tokens |
|
|
""" |
|
|
encoder_lengths = self._compute_encoder_output_lengths(audio_attention_mask) |
|
|
|
|
|
encoder_output_len = int(encoder_lengths.max().item()) |
|
|
return int(self.projector.get_output_length(encoder_output_len)) |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
input_features: Optional[torch.Tensor] = None, |
|
|
audio_attention_mask: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
system_prompt: Optional[str] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.Tensor: |
|
|
"""Generate transcription from audio input. |
|
|
|
|
|
Can be called in two ways: |
|
|
1. With input_ids containing <audio> tokens (from processor) |
|
|
2. With just audio, and we build the prompt internally |
|
|
""" |
|
|
if input_features is None: |
|
|
raise ValueError("input_features required for generation") |
|
|
if audio_attention_mask is None: |
|
|
raise ValueError("audio_attention_mask required for generation") |
|
|
|
|
|
device = input_features.device |
|
|
batch_size = input_features.shape[0] |
|
|
|
|
|
|
|
|
audio_embeds = self._encode_audio(input_features, audio_attention_mask) |
|
|
|
|
|
|
|
|
if input_ids is None: |
|
|
num_audio_tokens = self._get_num_audio_tokens(audio_attention_mask) |
|
|
audio_placeholder = "<audio>" * num_audio_tokens |
|
|
|
|
|
system_prompt = system_prompt or self.system_prompt |
|
|
|
|
|
messages: list[dict[str, str]] = [] |
|
|
if system_prompt: |
|
|
messages.append({"role": "system", "content": system_prompt}) |
|
|
messages.append({"role": "user", "content": self.TRANSCRIBE_PROMPT + audio_placeholder}) |
|
|
|
|
|
chat_result = self.tokenizer.apply_chat_template( |
|
|
messages, |
|
|
tokenize=True, |
|
|
add_generation_prompt=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
input_ids = chat_result.input_ids.to(device) |
|
|
|
|
|
if input_ids.dim() == 1: |
|
|
input_ids = input_ids.unsqueeze(0) |
|
|
if input_ids.shape[0] == 1 and batch_size > 1: |
|
|
input_ids = input_ids.expand(batch_size, -1) |
|
|
|
|
|
attention_mask = torch.ones_like(input_ids) |
|
|
|
|
|
|
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
audio_token_mask = (input_ids == self.audio_token_id).unsqueeze(-1) |
|
|
inputs_embeds = inputs_embeds.masked_scatter( |
|
|
audio_token_mask.to(inputs_embeds.device), |
|
|
audio_embeds.to(inputs_embeds.device, dtype=inputs_embeds.dtype), |
|
|
) |
|
|
|
|
|
|
|
|
output = self.language_model.generate( |
|
|
inputs_embeds=inputs_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=self.generation_config, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if isinstance(output, torch.Tensor): |
|
|
return output |
|
|
return output.sequences |
|
|
|
|
|
def save_pretrained(self, save_directory: Union[str, Path], **kwargs): |
|
|
"""Save model, tokenizer, and processor.""" |
|
|
import shutil |
|
|
from pathlib import Path as PathlibPath |
|
|
|
|
|
save_dir = PathlibPath(save_directory) |
|
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
self.config.vocab_size = self.language_model.config.vocab_size |
|
|
self.config.text_config.vocab_size = self.language_model.config.vocab_size |
|
|
|
|
|
if hasattr(self.audio_tower.config, "num_mel_bins"): |
|
|
self.config.audio_config.num_mel_bins = self.audio_tower.config.num_mel_bins |
|
|
|
|
|
|
|
|
tokenizer = self.tokenizer |
|
|
del self.tokenizer |
|
|
|
|
|
try: |
|
|
super().save_pretrained(save_dir, **kwargs) |
|
|
finally: |
|
|
self.tokenizer = tokenizer |
|
|
|
|
|
|
|
|
self.tokenizer.save_pretrained(save_dir) |
|
|
self.feature_extractor.save_pretrained(save_dir) |
|
|
|
|
|
|
|
|
config_path = save_dir / "preprocessor_config.json" |
|
|
if config_path.exists(): |
|
|
with config_path.open() as f: |
|
|
processor_config = json.load(f) |
|
|
else: |
|
|
processor_config = {} |
|
|
|
|
|
processor_config.update( |
|
|
{ |
|
|
"processor_class": "ASRProcessor", |
|
|
"auto_map": {"AutoProcessor": "asr_processing.ASRProcessor"}, |
|
|
} |
|
|
) |
|
|
|
|
|
with config_path.open("w") as f: |
|
|
json.dump(processor_config, f, indent=2) |
|
|
|
|
|
|
|
|
src_dir = PathlibPath(__file__).parent |
|
|
for asr_file in src_dir.glob("asr_*.py"): |
|
|
shutil.copy(asr_file, save_dir / asr_file.name) |
|
|
|
|
|
shutil.copy(src_dir / "projectors.py", save_dir / "projectors.py") |
|
|
|
|
|
|
|
|
|
|
|
AutoConfig.register("asr_model", ASRConfig) |
|
|
AutoModel.register(ASRConfig, ASRModel) |
|
|
|