Training in progress - step 1000
Browse files- .gitattributes +1 -0
- asr_modeling.py +7 -3
- projectors.py +161 -140
.gitattributes
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
|
|
|
|
|
| 1 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 2 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 3 |
tokenizer_config.json -filter -diff -merge text
|
| 4 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
asr_modeling.py
CHANGED
|
@@ -145,10 +145,12 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 145 |
self.generation_config.length_penalty = config.length_penalty
|
| 146 |
self.generation_config.repetition_penalty = config.repetition_penalty
|
| 147 |
self.generation_config.no_repeat_ngram_size = config.no_repeat_ngram_size
|
| 148 |
-
|
|
|
|
| 149 |
self.tokenizer.convert_tokens_to_ids("<|im_end|>"),
|
| 150 |
self.tokenizer.convert_tokens_to_ids("<|endoftext|>"),
|
| 151 |
]
|
|
|
|
| 152 |
self.generation_config.pad_token_id = self.tokenizer.pad_token_id
|
| 153 |
|
| 154 |
# Feature extractor for audio preprocessing
|
|
@@ -233,7 +235,6 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 233 |
decoder_kwargs = {
|
| 234 |
"attn_implementation": config.attn_implementation,
|
| 235 |
"trust_remote_code": True,
|
| 236 |
-
"tie_word_embeddings": False,
|
| 237 |
"low_cpu_mem_usage": True,
|
| 238 |
"dtype": dtype,
|
| 239 |
}
|
|
@@ -419,7 +420,10 @@ class ASRModel(PreTrainedModel, GenerationMixin):
|
|
| 419 |
# Compute per-sample encoder output lengths using conv formulas
|
| 420 |
encoder_lengths = self._compute_encoder_output_lengths(audio_attention_mask)
|
| 421 |
token_counts = torch.tensor(
|
| 422 |
-
[
|
|
|
|
|
|
|
|
|
|
| 423 |
device=audio_embeds.device,
|
| 424 |
)
|
| 425 |
|
|
|
|
| 145 |
self.generation_config.length_penalty = config.length_penalty
|
| 146 |
self.generation_config.repetition_penalty = config.repetition_penalty
|
| 147 |
self.generation_config.no_repeat_ngram_size = config.no_repeat_ngram_size
|
| 148 |
+
# Set EOS tokens, filtering out any that don't exist in the tokenizer
|
| 149 |
+
eos_candidates = [
|
| 150 |
self.tokenizer.convert_tokens_to_ids("<|im_end|>"),
|
| 151 |
self.tokenizer.convert_tokens_to_ids("<|endoftext|>"),
|
| 152 |
]
|
| 153 |
+
self.generation_config.eos_token_id = [t for t in eos_candidates if t is not None]
|
| 154 |
self.generation_config.pad_token_id = self.tokenizer.pad_token_id
|
| 155 |
|
| 156 |
# Feature extractor for audio preprocessing
|
|
|
|
| 235 |
decoder_kwargs = {
|
| 236 |
"attn_implementation": config.attn_implementation,
|
| 237 |
"trust_remote_code": True,
|
|
|
|
| 238 |
"low_cpu_mem_usage": True,
|
| 239 |
"dtype": dtype,
|
| 240 |
}
|
|
|
|
| 420 |
# Compute per-sample encoder output lengths using conv formulas
|
| 421 |
encoder_lengths = self._compute_encoder_output_lengths(audio_attention_mask)
|
| 422 |
token_counts = torch.tensor(
|
| 423 |
+
[
|
| 424 |
+
self.projector.get_output_length(int(length.item()))
|
| 425 |
+
for length in encoder_lengths
|
| 426 |
+
],
|
| 427 |
device=audio_embeds.device,
|
| 428 |
)
|
| 429 |
|
projectors.py
CHANGED
|
@@ -36,12 +36,13 @@ class MLPAudioProjector(nn.Module):
|
|
| 36 |
self.k = getattr(config, "projector_pool_stride", 4)
|
| 37 |
|
| 38 |
# Frame stacking: concat k adjacent frames then project
|
| 39 |
-
# Hidden dim uses 2x expansion like GLM-ASR's GlmAsrMultiModalProjector
|
| 40 |
in_dim = encoder_dim * self.k
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
self.act = nn.GELU()
|
| 44 |
-
self.linear_2 = nn.Linear(hidden_dim, llm_dim)
|
| 45 |
|
| 46 |
def get_output_length(self, input_length: int) -> int:
|
| 47 |
"""Calculate output sequence length given input length (matches GLM-ASR)."""
|
|
@@ -65,6 +66,7 @@ class MLPAudioProjector(nn.Module):
|
|
| 65 |
x = x.reshape(batch, out_len, dim * self.k)
|
| 66 |
|
| 67 |
x = self.linear_1(x)
|
|
|
|
| 68 |
x = self.act(x)
|
| 69 |
return self.linear_2(x)
|
| 70 |
|
|
@@ -87,6 +89,34 @@ class SimpleAdapter(nn.Module):
|
|
| 87 |
return self.fc2(self.act(self.fc1(x)))
|
| 88 |
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
class MOSAProjector(nn.Module):
|
| 91 |
"""MOSA-Base projector: simple 2-layer ReLU router with 4 simple adapters.
|
| 92 |
|
|
@@ -166,109 +196,18 @@ class MOSAProjector(nn.Module):
|
|
| 166 |
|
| 167 |
|
| 168 |
# =============================================================================
|
| 169 |
-
# MoE Projector (
|
| 170 |
# =============================================================================
|
| 171 |
|
| 172 |
|
| 173 |
-
class
|
| 174 |
-
"""MoE
|
| 175 |
-
|
| 176 |
-
def __init__(
|
| 177 |
-
self,
|
| 178 |
-
input_dim: int,
|
| 179 |
-
hidden_dim: int,
|
| 180 |
-
output_dim: int,
|
| 181 |
-
num_experts: int = 4,
|
| 182 |
-
top_k: int = 2,
|
| 183 |
-
):
|
| 184 |
-
super().__init__()
|
| 185 |
-
self.num_experts = num_experts
|
| 186 |
-
self.top_k = top_k
|
| 187 |
-
self.output_dim = output_dim
|
| 188 |
-
|
| 189 |
-
# RMSNorm before routing
|
| 190 |
-
self.norm = LlamaRMSNorm(input_dim, eps=1e-8)
|
| 191 |
-
|
| 192 |
-
self.router = nn.Linear(input_dim, num_experts, bias=False)
|
| 193 |
-
nn.init.normal_(self.router.weight, mean=0.0, std=0.02)
|
| 194 |
-
|
| 195 |
-
self.shared_expert = SimpleAdapter(input_dim, hidden_dim, output_dim)
|
| 196 |
-
self.experts = nn.ModuleList(
|
| 197 |
-
[SimpleAdapter(input_dim, hidden_dim, output_dim) for _ in range(num_experts)]
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
self.last_router_logits = None
|
| 201 |
-
self.last_router_probs = None
|
| 202 |
-
|
| 203 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 204 |
-
batch_size, seq_len, dim = hidden_states.shape
|
| 205 |
-
|
| 206 |
-
# 1. Apply Shared Expert
|
| 207 |
-
normed_states = self.norm(hidden_states)
|
| 208 |
-
shared_out = self.shared_expert(normed_states)
|
| 209 |
-
|
| 210 |
-
# 2. Router Logic (Sigmoid Style)
|
| 211 |
-
flat_hidden = normed_states.view(-1, dim)
|
| 212 |
-
router_logits = self.router(flat_hidden)
|
| 213 |
-
|
| 214 |
-
# Sigmoid routing
|
| 215 |
-
router_probs = torch.sigmoid(router_logits)
|
| 216 |
-
|
| 217 |
-
self.last_router_logits = router_logits
|
| 218 |
-
self.last_router_probs = router_probs
|
| 219 |
-
|
| 220 |
-
# 3. Top-K Selection
|
| 221 |
-
top_k_scores, top_k_indices = torch.topk(router_probs, self.top_k, dim=-1)
|
| 222 |
-
|
| 223 |
-
# Normalize weights
|
| 224 |
-
top_k_weights = top_k_scores / (top_k_scores.sum(dim=-1, keepdim=True) + 1e-6)
|
| 225 |
-
top_k_weights = top_k_weights.to(hidden_states.dtype)
|
| 226 |
-
|
| 227 |
-
# 4. Dispatch
|
| 228 |
-
routed_out = self._dispatch_experts(flat_hidden, top_k_indices, top_k_weights)
|
| 229 |
-
routed_out = routed_out.view(batch_size, seq_len, -1)
|
| 230 |
-
|
| 231 |
-
return shared_out + routed_out
|
| 232 |
-
|
| 233 |
-
def _dispatch_experts(
|
| 234 |
-
self,
|
| 235 |
-
hidden_states: torch.Tensor,
|
| 236 |
-
top_k_indices: torch.Tensor,
|
| 237 |
-
top_k_weights: torch.Tensor,
|
| 238 |
-
) -> torch.Tensor:
|
| 239 |
-
num_tokens = hidden_states.shape[0]
|
| 240 |
-
output = torch.zeros(
|
| 241 |
-
num_tokens, self.output_dim, device=hidden_states.device, dtype=hidden_states.dtype
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
for expert_idx, expert in enumerate(self.experts):
|
| 245 |
-
expert_mask = top_k_indices == expert_idx
|
| 246 |
-
if not expert_mask.any():
|
| 247 |
-
continue
|
| 248 |
-
|
| 249 |
-
token_indices, slot_indices = torch.where(expert_mask)
|
| 250 |
-
expert_input = hidden_states[token_indices]
|
| 251 |
-
expert_output = expert(expert_input).to(output.dtype)
|
| 252 |
-
weights = top_k_weights[token_indices, slot_indices].unsqueeze(-1)
|
| 253 |
-
output.index_add_(0, token_indices, expert_output * weights)
|
| 254 |
-
|
| 255 |
-
return output
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
def load_balancing_loss(router_probs: torch.Tensor, num_experts: int, top_k: int) -> torch.Tensor:
|
| 259 |
-
"""Auxiliary loss to encourage balanced expert usage."""
|
| 260 |
-
prob_per_expert = router_probs.mean(dim=0)
|
| 261 |
-
target_mean = prob_per_expert.mean()
|
| 262 |
-
return (prob_per_expert - target_mean).square().sum() * num_experts
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def z_loss(router_logits: torch.Tensor) -> torch.Tensor:
|
| 266 |
-
"""Z-loss to prevent router logits from growing too large."""
|
| 267 |
-
return torch.logsumexp(router_logits.float(), dim=-1).square().mean()
|
| 268 |
|
|
|
|
|
|
|
| 269 |
|
| 270 |
-
|
| 271 |
-
"""
|
| 272 |
|
| 273 |
def __init__(self, config):
|
| 274 |
"""Initialize MoE projector.
|
|
@@ -279,40 +218,59 @@ class MoEAudioProjector(nn.Module):
|
|
| 279 |
super().__init__()
|
| 280 |
|
| 281 |
self.k = getattr(config, "projector_pool_stride", 4)
|
| 282 |
-
|
| 283 |
|
| 284 |
-
#
|
| 285 |
-
self.
|
| 286 |
-
|
| 287 |
-
)
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
in_dim = encoder_dim * self.k
|
| 290 |
out_dim = config.llm_dim
|
| 291 |
-
hidden_dim = getattr(config, "projector_hidden_dim", None) or in_dim
|
| 292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
self.num_experts = getattr(config, "num_experts", 4)
|
| 294 |
self.top_k = getattr(config, "num_experts_per_tok", 2)
|
| 295 |
-
self.aux_loss_coef = getattr(config, "router_aux_loss_coef", 0.02)
|
| 296 |
-
self.z_loss_coef = getattr(config, "router_z_loss_coef", 0.001)
|
| 297 |
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
self._init_weights()
|
| 300 |
|
|
|
|
|
|
|
| 301 |
def _init_weights(self):
|
|
|
|
| 302 |
with torch.no_grad():
|
| 303 |
-
|
| 304 |
-
nn.init.
|
| 305 |
|
| 306 |
-
for
|
| 307 |
-
|
| 308 |
-
nn.init.
|
|
|
|
| 309 |
|
| 310 |
def get_output_length(self, input_length: int) -> int:
|
| 311 |
-
"""Calculate output sequence length given input length."""
|
| 312 |
-
|
| 313 |
-
if input_length % self.k:
|
| 314 |
-
input_length += self.k - input_length % self.k
|
| 315 |
-
return input_length // self.k
|
| 316 |
|
| 317 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 318 |
"""Project audio features using shared + sparse MoE.
|
|
@@ -323,32 +281,95 @@ class MoEAudioProjector(nn.Module):
|
|
| 323 |
Returns:
|
| 324 |
Projected features of shape [batch, out_len, llm_dim]
|
| 325 |
"""
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
|
| 332 |
-
#
|
| 333 |
-
|
| 334 |
-
x_ctx = self.temporal_conv(x_ctx)
|
| 335 |
-
x = x + x_ctx.transpose(1, 2)
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
|
| 340 |
-
|
|
|
|
| 341 |
|
| 342 |
-
|
|
|
|
| 343 |
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
|
|
|
| 350 |
|
| 351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
|
| 354 |
# =============================================================================
|
|
|
|
| 36 |
self.k = getattr(config, "projector_pool_stride", 4)
|
| 37 |
|
| 38 |
# Frame stacking: concat k adjacent frames then project
|
|
|
|
| 39 |
in_dim = encoder_dim * self.k
|
| 40 |
+
# Hidden dim defaults to llm_dim, can be overridden via config
|
| 41 |
+
hidden_dim = getattr(config, "projector_hidden_dim", None) or llm_dim
|
| 42 |
+
self.linear_1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
| 43 |
+
self.norm = LlamaRMSNorm(hidden_dim, eps=1e-6)
|
| 44 |
self.act = nn.GELU()
|
| 45 |
+
self.linear_2 = nn.Linear(hidden_dim, llm_dim, bias=False)
|
| 46 |
|
| 47 |
def get_output_length(self, input_length: int) -> int:
|
| 48 |
"""Calculate output sequence length given input length (matches GLM-ASR)."""
|
|
|
|
| 66 |
x = x.reshape(batch, out_len, dim * self.k)
|
| 67 |
|
| 68 |
x = self.linear_1(x)
|
| 69 |
+
x = self.norm(x)
|
| 70 |
x = self.act(x)
|
| 71 |
return self.linear_2(x)
|
| 72 |
|
|
|
|
| 89 |
return self.fc2(self.act(self.fc1(x)))
|
| 90 |
|
| 91 |
|
| 92 |
+
class SwiGLU(nn.Module):
|
| 93 |
+
"""SwiGLU activation with gated linear units (used in LLaMA, Mistral, etc.)."""
|
| 94 |
+
|
| 95 |
+
def __init__(self, dim: int, hidden_dim: int, bias: bool = False):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=bias) # Gate
|
| 98 |
+
self.w2 = nn.Linear(dim, hidden_dim, bias=bias) # Value
|
| 99 |
+
self.w3 = nn.Linear(hidden_dim, dim, bias=bias) # Output
|
| 100 |
+
|
| 101 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 102 |
+
return self.w3(F.silu(self.w1(x)) * self.w2(x))
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
class AsymmetricSwiGLU(nn.Module):
|
| 106 |
+
"""SwiGLU that handles different input and output dimensions."""
|
| 107 |
+
|
| 108 |
+
def __init__(
|
| 109 |
+
self, in_features: int, hidden_features: int, out_features: int, bias: bool = False
|
| 110 |
+
):
|
| 111 |
+
super().__init__()
|
| 112 |
+
self.w1 = nn.Linear(in_features, hidden_features, bias=bias) # Gate
|
| 113 |
+
self.w2 = nn.Linear(in_features, hidden_features, bias=bias) # Value
|
| 114 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias) # Output
|
| 115 |
+
|
| 116 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 117 |
+
return self.w3(F.silu(self.w1(x)) * self.w2(x))
|
| 118 |
+
|
| 119 |
+
|
| 120 |
class MOSAProjector(nn.Module):
|
| 121 |
"""MOSA-Base projector: simple 2-layer ReLU router with 4 simple adapters.
|
| 122 |
|
|
|
|
| 196 |
|
| 197 |
|
| 198 |
# =============================================================================
|
| 199 |
+
# MoE Projector (Pure PyTorch with Shared Expert)
|
| 200 |
# =============================================================================
|
| 201 |
|
| 202 |
|
| 203 |
+
class MoEAudioProjector(nn.Module):
|
| 204 |
+
"""MoE projector with shared expert (DeepSeek-style), pure PyTorch implementation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
Uses 4 sparse experts with top-2 routing plus a shared expert that processes all tokens.
|
| 207 |
+
No external dependencies (megablocks removed).
|
| 208 |
|
| 209 |
+
Architecture matches main branch: norm → experts(in_dim → hidden → out_dim)
|
| 210 |
+
"""
|
| 211 |
|
| 212 |
def __init__(self, config):
|
| 213 |
"""Initialize MoE projector.
|
|
|
|
| 218 |
super().__init__()
|
| 219 |
|
| 220 |
self.k = getattr(config, "projector_pool_stride", 4)
|
| 221 |
+
self.aux_coef = getattr(config, "router_aux_loss_coef", 0.01)
|
| 222 |
|
| 223 |
+
# Stability coefficients
|
| 224 |
+
self.router_z_loss_coef = getattr(
|
| 225 |
+
config, "router_z_loss_coef", 1e-4
|
| 226 |
+
) # Prevents logit explosion
|
| 227 |
+
self.router_jitter_noise = getattr(
|
| 228 |
+
config, "router_jitter_noise", 0.01
|
| 229 |
+
) # Prevents expert collapse
|
| 230 |
|
| 231 |
+
in_dim = config.encoder_dim * self.k
|
| 232 |
out_dim = config.llm_dim
|
|
|
|
| 233 |
|
| 234 |
+
# Expert hidden dim (default = output dim)
|
| 235 |
+
hidden_dim = getattr(config, "projector_hidden_dim", None) or out_dim
|
| 236 |
+
|
| 237 |
+
# Number of experts and top-k selection
|
| 238 |
self.num_experts = getattr(config, "num_experts", 4)
|
| 239 |
self.top_k = getattr(config, "num_experts_per_tok", 2)
|
|
|
|
|
|
|
| 240 |
|
| 241 |
+
# A. Normalize stacked input (like main branch SharedMoEBlock)
|
| 242 |
+
self.norm = LlamaRMSNorm(in_dim, eps=1e-6)
|
| 243 |
+
|
| 244 |
+
# B. Router (operates on stacked input)
|
| 245 |
+
self.router = nn.Linear(in_dim, self.num_experts, bias=False)
|
| 246 |
+
|
| 247 |
+
# C. Experts: simple 2-layer MLP (same as MLPAudioProjector)
|
| 248 |
+
self.experts = nn.ModuleList(
|
| 249 |
+
[SimpleAdapter(in_dim, hidden_dim, out_dim) for _ in range(self.num_experts)]
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# D. Shared Expert (same architecture)
|
| 253 |
+
self.shared_expert = SimpleAdapter(in_dim, hidden_dim, out_dim)
|
| 254 |
+
|
| 255 |
+
# E. Initialize weights for stable training
|
| 256 |
self._init_weights()
|
| 257 |
|
| 258 |
+
self.last_aux_loss = torch.tensor(0.0)
|
| 259 |
+
|
| 260 |
def _init_weights(self):
|
| 261 |
+
"""Initialize weights for stable training start."""
|
| 262 |
with torch.no_grad():
|
| 263 |
+
# Router: small weights -> uniform probability
|
| 264 |
+
nn.init.normal_(self.router.weight, mean=0.0, std=0.02)
|
| 265 |
|
| 266 |
+
# Experts: xavier for fc1, small for fc2 (output)
|
| 267 |
+
for expert in [self.shared_expert, *self.experts]:
|
| 268 |
+
nn.init.xavier_uniform_(expert.fc1.weight)
|
| 269 |
+
nn.init.normal_(expert.fc2.weight, mean=0.0, std=0.01) # Small init
|
| 270 |
|
| 271 |
def get_output_length(self, input_length: int) -> int:
|
| 272 |
+
"""Calculate output sequence length given input length (matches MLP projector)."""
|
| 273 |
+
return (input_length - self.k) // self.k + 1
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 276 |
"""Project audio features using shared + sparse MoE.
|
|
|
|
| 281 |
Returns:
|
| 282 |
Projected features of shape [batch, out_len, llm_dim]
|
| 283 |
"""
|
| 284 |
+
# 1. Frame Stacking
|
| 285 |
+
batch, seq, dim = x.shape
|
| 286 |
+
out_len = (seq - self.k) // self.k + 1
|
| 287 |
+
x = x[:, : out_len * self.k, :]
|
| 288 |
+
x = x.reshape(batch, out_len, dim * self.k)
|
| 289 |
+
|
| 290 |
+
# 2. Normalize stacked input (like main branch SharedMoEBlock)
|
| 291 |
+
x = self.norm(x)
|
| 292 |
+
flat_x = x.view(-1, x.size(-1)) # [tokens, in_dim]
|
| 293 |
+
|
| 294 |
+
# 3. Shared Expert (compute first, creates output tensor)
|
| 295 |
+
output = self.shared_expert(flat_x)
|
| 296 |
+
|
| 297 |
+
# 4. Sparse Experts (in-place add to shared output)
|
| 298 |
+
self.last_aux_loss = self._forward_sparse(flat_x, output)
|
| 299 |
+
|
| 300 |
+
return output.view(batch, out_len, -1)
|
| 301 |
+
|
| 302 |
+
def _forward_sparse(self, x: torch.Tensor, output: torch.Tensor) -> torch.Tensor:
|
| 303 |
+
"""Stability-hardened sparse expert dispatch (in-place add to output).
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
x: Flattened input of shape [tokens, dim]
|
| 307 |
+
output: Output tensor to add sparse expert results into (in-place)
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
Auxiliary loss tensor
|
| 311 |
+
"""
|
| 312 |
+
# A. Router Logic with Jitter
|
| 313 |
+
logits = self.router(x)
|
| 314 |
|
| 315 |
+
if self.training and self.router_jitter_noise > 0:
|
| 316 |
+
# Jitter: multiply by uniform noise (1-eps, 1+eps) to shake decision boundary
|
| 317 |
+
# Prevents router from getting stuck on one expert early in training
|
| 318 |
+
noise = torch.empty_like(logits).uniform_(
|
| 319 |
+
1.0 - self.router_jitter_noise, 1.0 + self.router_jitter_noise
|
| 320 |
+
)
|
| 321 |
+
logits = logits * noise
|
| 322 |
|
| 323 |
+
# Force float32 for softmax (bf16/fp16 exponentials can overflow)
|
| 324 |
+
probs = torch.softmax(logits, dim=-1, dtype=torch.float32).type_as(x)
|
|
|
|
|
|
|
| 325 |
|
| 326 |
+
# B. Top-K Selection
|
| 327 |
+
top_k_weights, top_k_indices = torch.topk(probs, self.top_k, dim=-1)
|
| 328 |
|
| 329 |
+
# Normalize weights so they sum to 1.0
|
| 330 |
+
top_k_weights = top_k_weights / (top_k_weights.sum(dim=-1, keepdim=True) + 1e-6)
|
| 331 |
|
| 332 |
+
# C. Aux Loss + Z-Loss
|
| 333 |
+
aux_loss = torch.tensor(0.0, device=x.device)
|
| 334 |
|
| 335 |
+
if self.training:
|
| 336 |
+
# Load balancing loss (batch-size invariant)
|
| 337 |
+
prob_per_expert = probs.mean(0) # [num_experts]
|
| 338 |
+
target = 1.0 / self.num_experts
|
| 339 |
+
balance_loss = (
|
| 340 |
+
self.aux_coef * ((prob_per_expert - target) ** 2).mean() * self.num_experts
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# Z-loss: penalty on large logits to prevent softmax saturation
|
| 344 |
+
z_loss = self.router_z_loss_coef * torch.logsumexp(logits, dim=-1).pow(2).mean()
|
| 345 |
+
|
| 346 |
+
aux_loss = balance_loss + z_loss
|
| 347 |
+
|
| 348 |
+
# D. Dispatch Loop (in-place add to output)
|
| 349 |
+
for i, expert in enumerate(self.experts):
|
| 350 |
+
# Create boolean mask for tokens that selected Expert 'i'
|
| 351 |
+
mask = top_k_indices == i
|
| 352 |
|
| 353 |
+
if mask.any():
|
| 354 |
+
# token_idx = which tokens, k_idx = 1st or 2nd choice
|
| 355 |
+
token_idx, k_idx = torch.where(mask)
|
| 356 |
|
| 357 |
+
# Gather inputs and compute
|
| 358 |
+
expert_input = x[token_idx]
|
| 359 |
+
expert_output = expert(expert_input)
|
| 360 |
+
|
| 361 |
+
# Apply routing weight
|
| 362 |
+
weight = top_k_weights[token_idx, k_idx].unsqueeze(-1)
|
| 363 |
+
weighted_output = (expert_output * weight).type_as(output)
|
| 364 |
+
|
| 365 |
+
# Scatter back in-place (index_add_ is atomic and deterministic)
|
| 366 |
+
output.index_add_(0, token_idx, weighted_output)
|
| 367 |
+
|
| 368 |
+
return aux_loss
|
| 369 |
+
|
| 370 |
+
def get_aux_loss(self) -> torch.Tensor:
|
| 371 |
+
"""Return auxiliary load balancing loss."""
|
| 372 |
+
return self.last_aux_loss
|
| 373 |
|
| 374 |
|
| 375 |
# =============================================================================
|