llava
tnaumann bsnelling commited on
Commit
2a3e11e
·
verified ·
1 Parent(s): 6584c63

Upload data_summary_card.md (#3)

Browse files

- Upload data_summary_card.md (da29576d8239896bea6bbec1cf214d30e9cef677)


Co-authored-by: Blake S <[email protected]>

Files changed (1) hide show
  1. data_summary_card.md +161 -0
data_summary_card.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ Data Summary for microsoft_llava-rad
4
+
5
+
6
+
7
+
8
+
9
+ ## 1. General information
10
+
11
+ **1.0.1 Version of the Summary:** 1.0
12
+
13
+
14
+
15
+ **1.0.2 Last update:** 24-Nov-2025
16
+
17
+
18
+
19
+ ## 1.1 Model Developer Identification
20
+
21
+ **1.1.1 Model Developer name and contact details:** Microsoft Corporation at One Microsoft Way, Redmond, WA 98052. Tel: 425-882-8080.
22
+
23
+
24
+
25
+ ## 1.2 Model Identification
26
+
27
+ **1.2.1 Versioned model name(s):** LLaVA-Rad (7B)
28
+
29
+
30
+
31
+ **1.2.2 Model release date:** 20-Mar-2025
32
+
33
+
34
+
35
+ ##1.3 Overall training data size and characteristics
36
+
37
+ ### 1.3.1 Size of dataset and characteristics
38
+
39
+ **1.3.1.A Text training data size:** Less than 1 billion tokens
40
+
41
+
42
+
43
+ **1.3.1.B Text training data content:** 400K image-text pairs
44
+
45
+
46
+
47
+ **1.3.1.C Image training data size:** Less than 1 billion tokens
48
+
49
+
50
+
51
+ **1.3.1.D Image training data content: GPT-4 and rule-based pre-processed MIMIC-CXR reports are publicly available: [LLaVA-Rad MIMIC-CXR Annotations (PhysioNet)](https://physionet.org/content/llava-rad-mimic-cxr-annotation/1.0.0/)
52
+
53
+ Open-I dataset is publicly accessible at [doi.org/10.93/jamia/ocv080](https://doi.org/10.1093/jamia/ocv080)
54
+
55
+ CheXpert CXR images and reports are publicly accessible at [doi.org/10.71718/6nvz-pm34](https://doi.org/10.71718/6nvz-pm34 )
56
+
57
+ US-CXR dataset is a private collection of images and reports and cannot be made publicly available due to privacy restrictions. Interested parties should contact Segmed, Inc (https://segmed.ai) to inquire about access to the dataset, subject to Segmed’s applicable ethical and legal requirements.
58
+
59
+
60
+
61
+
62
+
63
+ **1.3.1.E Audio training data size:** Not applicable
64
+
65
+
66
+
67
+ **1.3.1.F Audio training data content:** Not applicable
68
+
69
+
70
+
71
+ **1.3.1.G Video training data size:** Not applicable
72
+
73
+
74
+
75
+ **1.3.1.H Video training data content:** Not applicable
76
+
77
+
78
+
79
+ **1.3.1.I Other training data size:** Not applicable
80
+
81
+
82
+
83
+ **1.3.1.J Other training data content:** Not applicable
84
+
85
+
86
+
87
+ **1.3.2 Latest date of data acquisition/collection for model training:** 01-Mar-2025
88
+
89
+
90
+
91
+ **1.3.3 Is data collection ongoing to update the model with new data collection after deployment?** No
92
+
93
+
94
+
95
+ **1.3.4 Date the training dataset was first used to train the model:** 05-Jan-2024
96
+
97
+
98
+
99
+ **1.3.5 Rationale or purpose of data selection:** Datasets of chest X-rays with associated reports or labels were selected to train a specialized radiology multimodal model for generating accurate CXR findings. The collection spans 697K image-text pairs from diverse sources and geographies to improve robustness and factual correctness, with GPT-4 used to translate, structure, and synthesize reports where needed to enhance data quality
100
+
101
+
102
+
103
+ ## 2. List of data sources
104
+
105
+ ### 2.1 Publicly available datasets
106
+
107
+ **2.1.1 Have you used publicly available datasets to train the model?** Yes
108
+
109
+
110
+
111
+ ## 2.2 Private non-publicly available datasets obtained from third parties
112
+
113
+ ### 2.2.1 Datasets commercially licensed by rights holders or their representatives
114
+
115
+ **2.2.1.A Have you concluded transactional commercial licensing agreement(s) with rights holder(s) or with their representatives?**
116
+
117
+ This information cannot be provided due to confidentiality restrictions
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+ ### 2.2.2 Private datasets obtained from other third-parties
126
+
127
+ **2.2.2.A Have you obtained private datasets from third parties that are not licensed as described in Section 2.2.1, such as data obtained from providers of private databases, or data intermediaries?** This information cannot be provided due to unavailability of the underlying data (e.g., loss, corruption, or other access limitations)
128
+
129
+
130
+
131
+ ## 2.3 Personal Information
132
+
133
+ **2.3.1 Was personal data used to train the model?** Microsoft follows all relevant laws and regulations pertaining to personal information
134
+
135
+
136
+
137
+ ## 2.4 Synthetic data
138
+
139
+ **2.4.1 Was any synthetic AI-generated data used to train the model?** Yes
140
+
141
+
142
+
143
+ ## 3. Data processing aspects
144
+
145
+ ### 3.1 Respect of reservation of rights from text and data mining exception or limitation
146
+
147
+ **3.1.1 Does this dataset include any data protected by copyright, trademark, or patent?** Microsoft follows all required regulations and laws for processing data protected by copyright, trademark, or patent
148
+
149
+
150
+
151
+ ## 3.2 Other information
152
+
153
+ **3.2.1 Does the dataset include information about consumer groups without revealing individual consumer identities?** Microsoft follows all required regulations and laws for protecting consumer identities
154
+
155
+
156
+
157
+ **3.2.2 Was the dataset cleaned or modified before model training?** Yes
158
+
159
+
160
+
161
+