Update README.md
Browse files
README.md
CHANGED
|
@@ -7,26 +7,35 @@ base_model: monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi
|
|
| 7 |
model-index:
|
| 8 |
- name: tinyllama-mixpretrain-uniprottune
|
| 9 |
results: []
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
-
|
| 15 |
# tinyllama-mixpretrain-uniprottune
|
| 16 |
|
| 17 |
-
This
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
|
| 29 |
-
More information needed
|
| 30 |
|
| 31 |
## Training procedure
|
| 32 |
|
|
@@ -42,8 +51,6 @@ The following hyperparameters were used during training:
|
|
| 42 |
- lr_scheduler_warmup_steps: 10
|
| 43 |
- num_epochs: 1
|
| 44 |
|
| 45 |
-
### Training results
|
| 46 |
-
|
| 47 |
|
| 48 |
|
| 49 |
### Framework versions
|
|
|
|
| 7 |
model-index:
|
| 8 |
- name: tinyllama-mixpretrain-uniprottune
|
| 9 |
results: []
|
| 10 |
+
datasets:
|
| 11 |
+
- monsoon-nlp/greenbeing-proteins
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
# tinyllama-mixpretrain-uniprottune
|
| 15 |
|
| 16 |
+
This is an adapter of the [monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi](https://huggingface.co/monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi)
|
| 17 |
+
model on the GreenBeing dataset finetuning split (minus maize/corn/*Zea*, which I left for evaluation).
|
| 18 |
+
|
| 19 |
+
## Usage
|
| 20 |
|
| 21 |
+
```
|
| 22 |
+
from peft import AutoPeftModelForCausalLM
|
| 23 |
+
from transformers import AutoTokenizer
|
| 24 |
|
| 25 |
+
# this model
|
| 26 |
+
model = AutoPeftModelForCausalLM.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-uniprottune").to("cuda")
|
| 27 |
+
# base model for the tokenizer
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi")
|
| 29 |
|
| 30 |
+
inputs = tokenizer("<sequence> Subcellular locations:", return_tensors="pt")
|
| 31 |
+
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
|
| 32 |
+
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
| 33 |
+
```
|
| 34 |
|
| 35 |
+
Inference Notebook: https://colab.research.google.com/drive/1UTavcVpqWkp4C_GkkS_HxDQ0Orpw43iu?usp=sharing
|
| 36 |
|
| 37 |
+
It seems unreliable on the *Zea* proteins. Getting a lot of the same answers for Subcellular locations.
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
## Training procedure
|
| 41 |
|
|
|
|
| 51 |
- lr_scheduler_warmup_steps: 10
|
| 52 |
- num_epochs: 1
|
| 53 |
|
|
|
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
### Framework versions
|