Upload 3 files
Browse files- config.json +5 -4
- modeling_llama_rm.py +44 -0
config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "
|
| 3 |
"architectures": [
|
| 4 |
-
"
|
| 5 |
],
|
| 6 |
"bos_token_id": 1,
|
| 7 |
"eos_token_id": 2,
|
|
@@ -19,9 +19,10 @@
|
|
| 19 |
"pretraining_tp": 1,
|
| 20 |
"rms_norm_eps": 1e-05,
|
| 21 |
"rope_scaling": null,
|
|
|
|
| 22 |
"tie_word_embeddings": false,
|
| 23 |
-
"torch_dtype": "
|
| 24 |
-
"transformers_version": "4.
|
| 25 |
"use_cache": true,
|
| 26 |
"vocab_size": 32000
|
| 27 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "UltraRM-13b-32",
|
| 3 |
"architectures": [
|
| 4 |
+
"LlamaRewardModel"
|
| 5 |
],
|
| 6 |
"bos_token_id": 1,
|
| 7 |
"eos_token_id": 2,
|
|
|
|
| 19 |
"pretraining_tp": 1,
|
| 20 |
"rms_norm_eps": 1e-05,
|
| 21 |
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 10000.0,
|
| 23 |
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "float16",
|
| 25 |
+
"transformers_version": "4.33.2",
|
| 26 |
"use_cache": true,
|
| 27 |
"vocab_size": 32000
|
| 28 |
}
|
modeling_llama_rm.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel, LlamaConfig, LlamaModel
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch
|
| 4 |
+
from typing import Optional, List
|
| 5 |
+
|
| 6 |
+
class LlamaRewardModel(PreTrainedModel):
|
| 7 |
+
config_class = LlamaConfig
|
| 8 |
+
def __init__(self, config):
|
| 9 |
+
super().__init__(config)
|
| 10 |
+
self.model = LlamaModel(config)
|
| 11 |
+
self.regression_head = nn.Linear(self.config.hidden_size, 1, bias=False)
|
| 12 |
+
|
| 13 |
+
def forward( # args are the same as LlamaForCausalLM
|
| 14 |
+
self,
|
| 15 |
+
input_ids: torch.LongTensor = None,
|
| 16 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 17 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 18 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 19 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 20 |
+
labels: Optional[torch.LongTensor] = None,
|
| 21 |
+
use_cache: Optional[bool] = None,
|
| 22 |
+
output_attentions: Optional[bool] = None,
|
| 23 |
+
output_hidden_states: Optional[bool] = None,
|
| 24 |
+
return_dict: Optional[bool] = None,
|
| 25 |
+
):
|
| 26 |
+
|
| 27 |
+
transformer_outputs = self.model.model(
|
| 28 |
+
input_ids,
|
| 29 |
+
attention_mask=attention_mask,
|
| 30 |
+
position_ids=position_ids,
|
| 31 |
+
past_key_values=past_key_values,
|
| 32 |
+
inputs_embeds=inputs_embeds,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
hidden_states = transformer_outputs[0]
|
| 36 |
+
rewards = self.regression_head(hidden_states).squeeze(-1)
|
| 37 |
+
|
| 38 |
+
ends = attention_mask.cumsum(dim=1).argmax(dim=1).view(-1,1)
|
| 39 |
+
rewards = torch.gather(rewards, 1, ends)
|
| 40 |
+
|
| 41 |
+
return reward_models
|
| 42 |
+
|
| 43 |
+
model = LlamaRewardModel.from_pretrained("UltraRM-13b-32").half()
|
| 44 |
+
model.save_pretrained("UltraRM-13b")
|