Papers
arxiv:2512.23714

PharmaShip: An Entity-Centric, Reading-Order-Supervised Benchmark for Chinese Pharmaceutical Shipping Documents

Published on Nov 29, 2025
Authors:
,
,

Abstract

We present PharmaShip, a real-world Chinese dataset of scanned pharmaceutical shipping documents designed to stress-test pre-trained text-layout models under noisy OCR and heterogeneous templates. PharmaShip covers three complementary tasks-sequence entity recognition (SER), relation extraction (RE), and reading order prediction (ROP)-and adopts an entity-centric evaluation protocol to minimize confounds across architectures. We benchmark five representative baselines spanning pixel-aware and geometry-aware families (LiLT, LayoutLMv3-base, GeoLayoutLM and their available RORE-enhanced variants), and standardize preprocessing, splits, and optimization. Experiments show that pixels and explicit geometry provide complementary inductive biases, yet neither alone is sufficient: injecting reading-order-oriented regularization consistently improves SER and EL and yields the most robust configuration, while longer positional coverage stabilizes late-page predictions and reduces truncation artifacts. ROP is accurate at the word level but challenging at the segment level, reflecting boundary ambiguity and long-range crossings. PharmaShip thus establishes a controlled, reproducible benchmark for safety-critical document understanding in the pharmaceutical domain and highlights sequence-aware constraints as a transferable bias for structure modeling. We release the dataset at https://github.com/KevinYuLei/PharmaShip.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2512.23714 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2512.23714 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.