new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 17

Better Neural PDE Solvers Through Data-Free Mesh Movers

Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Amp\`ere equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems. The code can be found at: https://github.com/Peiyannn/MM-PDE.git.

  • 3 authors
·
Dec 9, 2023

An Efficient Graph-Transformer Operator for Learning Physical Dynamics with Manifolds Embedding

Accurate and efficient physical simulations are essential in science and engineering, yet traditional numerical solvers face significant challenges in computational cost when handling simulations across dynamic scenarios involving complex geometries, varying boundary/initial conditions, and diverse physical parameters. While deep learning offers promising alternatives, existing methods often struggle with flexibility and generalization, particularly on unstructured meshes, which significantly limits their practical applicability. To address these challenges, we propose PhysGTO, an efficient Graph-Transformer Operator for learning physical dynamics through explicit manifold embeddings in both physical and latent spaces. In the physical space, the proposed Unified Graph Embedding module aligns node-level conditions and constructs sparse yet structure-preserving graph connectivity to process heterogeneous inputs. In the latent space, PhysGTO integrates a lightweight flux-oriented message-passing scheme with projection-inspired attention to capture local and global dependencies, facilitating multilevel interactions among complex physical correlations. This design ensures linear complexity relative to the number of mesh points, reducing both the number of trainable parameters and computational costs in terms of floating-point operations (FLOPs), and thereby allowing efficient inference in real-time applications. We introduce a comprehensive benchmark spanning eleven datasets, covering problems with unstructured meshes, transient flow dynamics, and large-scale 3D geometries. PhysGTO consistently achieves state-of-the-art accuracy while significantly reducing computational costs, demonstrating superior flexibility, scalability, and generalization in a wide range of simulation tasks.

  • 9 authors
·
Dec 10 1