new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

ECO: Quantized Training without Full-Precision Master Weights

Quantization has significantly improved the compute and memory efficiency of Large Language Model (LLM) training. However, existing approaches still rely on accumulating their updates in high-precision: concretely, gradient updates must be applied to a high-precision weight buffer, known as master weights. This buffer introduces substantial memory overhead, particularly for Sparse Mixture of Experts (SMoE) models, where model parameters and optimizer states dominate memory usage. To address this, we introduce the Error-Compensating Optimizer (ECO), which eliminates master weights by applying updates directly to quantized parameters. ECO quantizes weights after each step and carefully injects the resulting quantization error into the optimizer momentum, forming an error-feedback loop with no additional memory. We prove that, under standard assumptions and a decaying learning rate, ECO converges to a constant-radius neighborhood of the optimum, while naive master-weight removal can incur an error that is inversely proportional to the learning rate. We show empirical results for pretraining small Transformers (30-800M), a Gemma-3 1B model, and a 2.1B parameter Sparse MoE model with FP8 quantization, and fine-tuning DeepSeek-MoE-16B in INT4 precision. Throughout, ECO matches baselines with master weights up to near-lossless accuracy, significantly shifting the static memory vs validation loss Pareto frontier.

google Google
·
Jan 29 1

The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs

Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed "emergent misalignment" (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o's 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model's 'degrees of freedom' to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.

  • 1 authors
·
Nov 25, 2025

Benchmarking Small Language Models and Small Reasoning Language Models on System Log Severity Classification

System logs are crucial for monitoring and diagnosing modern computing infrastructure, but their scale and complexity require reliable and efficient automated interpretation. Since severity levels are predefined metadata in system log messages, having a model merely classify them offers limited standalone practical value, revealing little about its underlying ability to interpret system logs. We argue that severity classification is more informative when treated as a benchmark for probing runtime log comprehension rather than as an end task. Using real-world journalctl data from Linux production servers, we evaluate nine small language models (SLMs) and small reasoning language models (SRLMs) under zero-shot, few-shot, and retrieval-augmented generation (RAG) prompting. The results reveal strong stratification. Qwen3-4B achieves the highest accuracy at 95.64% with RAG, while Gemma3-1B improves from 20.25% under few-shot prompting to 85.28% with RAG. Notably, the tiny Qwen3-0.6B reaches 88.12% accuracy despite weak performance without retrieval. In contrast, several SRLMs, including Qwen3-1.7B and DeepSeek-R1-Distill-Qwen-1.5B, degrade substantially when paired with RAG. Efficiency measurements further separate models: most Gemma and Llama variants complete inference in under 1.2 seconds per log, whereas Phi-4-Mini-Reasoning exceeds 228 seconds per log while achieving <10% accuracy. These findings suggest that (1) architectural design, (2) training objectives, and (3) the ability to integrate retrieved context under strict output constraints jointly determine performance. By emphasizing small, deployable models, this benchmark aligns with real-time requirements of digital twin (DT) systems and shows that severity classification serves as a lens for evaluating model competence and real-time deployability, with implications for root cause analysis (RCA) and broader DT integration.

  • 5 authors
·
Jan 12 2

PustakAI: Curriculum-Aligned and Interactive Textbooks Using Large Language Models

Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like content. This has revolutionized various sectors such as healthcare, software development, and education. In education, LLMs offer potential for personalized and interactive learning experiences, especially in regions with limited teaching resources. However, adapting these models effectively to curriculum-specific content, such as the National Council of Educational Research and Training (NCERT) syllabus in India, presents unique challenges in terms of accuracy, alignment, and pedagogical relevance. In this paper, we present the framework "PustakAI"Pustak means `book' in many Indian languages. for the design and evaluation of a novel question-answering dataset "NCERT-QA" aligned with the NCERT curriculum for English and Science subjects of grades 6 to 8. We classify the curated QA pairs as Factoid, Inferential, and Others (evaluative and reasoning). We evaluate the dataset with various prompting techniques, such as meta-prompt, few-shot, and CoT-style prompting, using diverse evaluation metrics to understand which approach aligns more efficiently with the structure and demands of the curriculum. Along with the usability of the dataset, we analyze the strengths and limitations of current open-source LLMs (Gemma3:1b, Llama3.2:3b, and Nemotron-mini:4b) and high-end LLMs (Llama-4-Scout-17B and Deepseek-r1-70B) as AI-based learning tools in formal education systems.

  • 5 authors
·
Nov 13, 2025

Thinking vs. Doing: Agents that Reason by Scaling Test-Time Interaction

The current paradigm of test-time scaling relies on generating long reasoning traces ("thinking" more) before producing a response. In agent problems that require interaction, this can be done by generating thinking traces before acting in the world. However, this process does not allow agents to acquire new information from the environment or adapt their behavior over time. In this work, we propose to scale test-time interaction, an untapped dimension of test-time scaling that increases the agent's interaction horizon to enable running rich behaviors such as exploration, backtracking, and dynamic re-planning within a single rollout. To demonstrate the promise of this scaling dimension, we study the domain of web agents. We first show that even prompting-based interaction scaling without any training can improve task success on web benchmarks non-trivially. Building on this, we introduce TTI (Test-Time Interaction), a curriculum-based online reinforcement learning (RL) approach that trains agents by adaptively adjusting their rollout lengths. Using a Gemma 3 12B model, TTI produces state-of-the-art open-source, open-data web agents on WebVoyager and WebArena benchmarks. We further show that TTI enables agents to balance exploration and exploitation adaptively. Our results establish interaction scaling as a powerful, complementary axis to scaling per-step compute, offering new avenues for training adaptive agents.

  • 11 authors
·
Jun 9, 2025 2

AutoPK: Leveraging LLMs and a Hybrid Similarity Metric for Advanced Retrieval of Pharmacokinetic Data from Complex Tables and Documents

Pharmacokinetics (PK) plays a critical role in drug development and regulatory decision-making for human and veterinary medicine, directly affecting public health through drug safety and efficacy assessments. However, PK data are often embedded in complex, heterogeneous tables with variable structures and inconsistent terminologies, posing significant challenges for automated PK data retrieval and standardization. AutoPK, a novel two-stage framework for accurate and scalable extraction of PK data from complex scientific tables. In the first stage, AutoPK identifies and extracts PK parameter variants using large language models (LLMs), a hybrid similarity metric, and LLM-based validation. The second stage filters relevant rows, converts the table into a key-value text format, and uses an LLM to reconstruct a standardized table. Evaluated on a real-world dataset of 605 PK tables, including captions and footnotes, AutoPK shows significant improvements in precision and recall over direct LLM baselines. For instance, AutoPK with LLaMA 3.1-70B achieved an F1-score of 0.92 on half-life and 0.91 on clearance parameters, outperforming direct use of LLaMA 3.1-70B by margins of 0.10 and 0.21, respectively. Smaller models such as Gemma 3-27B and Phi 3-12B with AutoPK achieved 2-7 fold F1 gains over their direct use, with Gemma's hallucination rates reduced from 60-95% down to 8-14%. Notably, AutoPK enabled open-source models like Gemma 3-27B to outperform commercial systems such as GPT-4o Mini on several PK parameters. AutoPK enables scalable and high-confidence PK data extraction, making it well-suited for critical applications in veterinary pharmacology, drug safety monitoring, and public health decision-making, while addressing heterogeneous table structures and terminology and demonstrating generalizability across key PK parameters. Code and data: https://github.com/hosseinsholehrasa/AutoPK

  • 6 authors
·
Sep 26, 2025

Pushing on Multilingual Reasoning Models with Language-Mixed Chain-of-Thought

Recent frontier models employ long chain-of-thought reasoning to explore solution spaces in context and achieve stonger performance. While many works study distillation to build smaller yet capable models, most focus on English and little is known about language-specific reasoning. To bridge this gap, we first introduct **Language-Mixed CoT**, a reasoning schema that switches between English and a target language, using English as an anchor to excel in reasoning while minimizing translation artificats. As a Korean case study, we curate **Yi-Sang**: 5.79M native-Korean prompts from web Q&A, exams, STEM, and code; 3.7M long reasoning traces generated from Qwen3-32B; and a targeted 260k high-yield subset. We train ninve models (4B-35B) across six families (Qwen2.5, Llama-3.1, Gemma-3, etc). Our best model, **KO-REAson-35B**, achieves state-of-the-art performance, with the highest overall average score (64.0 \pm 25), ranking first on 5/9 benchmarks and second on the remainder. Samller and mid-sized models also benefit substantially, with an average improvement of +18.6 points across teh evaluated nine benchmarks. Ablations show **Language-Mixed CoT** is more effective than monolingual CoT, also resulting in cross-lingual and mult-modal performance gains. We release our data-curation pipeline, evaluation system, datasets, and models to advance research on language-specific reasoning. Data and model collection: https://huggingface.co/KOREAson.

KOREAson KO-REAson
·
Oct 5, 2025 2

MedGemma Technical Report

Artificial intelligence (AI) has significant potential in healthcare applications, but its training and deployment faces challenges due to healthcare's diverse data, complex tasks, and the need to preserve privacy. Foundation models that perform well on medical tasks and require less task-specific tuning data are critical to accelerate the development of healthcare AI applications. We introduce MedGemma, a collection of medical vision-language foundation models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and reasoning on images and text, significantly exceeding the performance of similar-sized generative models and approaching the performance of task-specific models, while maintaining the general capabilities of the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvement on medical multimodal question answering, 15.5-18.1% improvement on chest X-ray finding classification, and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma further improves performance in subdomains, reducing errors in electronic health record information retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods for pneumothorax classification and histopathology patch classification. We additionally introduce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual understanding capabilities of MedGemma and as an encoder achieves comparable or better performance than specialized medical image encoders. Taken together, the MedGemma collection provides a strong foundation of medical image and text capabilities, with potential to significantly accelerate medical research and development of downstream applications. The MedGemma collection, including tutorials and model weights, can be found at https://goo.gle/medgemma.

  • 80 authors
·
Jul 7, 2025 2

Kimi-VL Technical Report

We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.

moonshotai Moonshot AI
·
Apr 10, 2025 5

70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float

Large Language Models (LLMs) have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) decomposition of memory-intensive lookup tables (LUTs) into compact LUTs that fit in GPU SRAM, (ii) a two-phase kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on recent models, including Llama-3.1, Qwen-2.5, and Gemma-3, validates our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit exact outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 1.9-38.8x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.3-13.17x longer context lengths than uncompressed models. Notably, our method enables lossless inference of Llama-3.1-405B, an 810GB model, on a single node equipped with 8x80GB GPUs. Our code and models are available at https://github.com/LeanModels/DFloat11.

  • 6 authors
·
Apr 15, 2025 5

AfriqueLLM: How Data Mixing and Model Architecture Impact Continued Pre-training for African Languages

Large language models (LLMs) are increasingly multilingual, yet open models continue to underperform relative to proprietary systems, with the gap most pronounced for African languages. Continued pre-training (CPT) offers a practical route to language adaptation, but improvements on demanding capabilities such as mathematical reasoning often remain limited. This limitation is driven in part by the uneven domain coverage and missing task-relevant knowledge that characterize many low-resource language corpora. We present AfriqueLLM, a suite of open LLMs adapted to 20 African languages through CPT on 26B tokens. We perform a comprehensive empirical study across five base models spanning sizes and architectures, including Llama 3.1, Gemma 3, and Qwen 3, and systematically analyze how CPT data composition shapes downstream performance. In particular, we vary mixtures that include math, code, and synthetic translated data, and evaluate the resulting models on a range of multilingual benchmarks. Our results identify data composition as the primary driver of CPT gains. Adding math, code, and synthetic translated data yields consistent improvements, including on reasoning-oriented evaluations. Within a fixed architecture, larger models typically improve performance, but architectural choices dominate scale when comparing across model families. Moreover, strong multilingual performance in the base model does not reliably predict post-CPT outcomes; robust architectures coupled with task-aligned data provide a more dependable recipe. Finally, our best models improve long-context performance, including document-level translation. Models have been released on [Huggingface](https://huggingface.co/collections/McGill-NLP/afriquellm).

  • 6 authors
·
Jan 9

SWEnergy: An Empirical Study on Energy Efficiency in Agentic Issue Resolution Frameworks with SLMs

Context. LLM-based autonomous agents in software engineering rely on large, proprietary models, limiting local deployment. This has spurred interest in Small Language Models (SLMs), but their practical effectiveness and efficiency within complex agentic frameworks for automated issue resolution remain poorly understood. Goal. We investigate the performance, energy efficiency, and resource consumption of four leading agentic issue resolution frameworks when deliberately constrained to using SLMs. We aim to assess the viability of these systems for this task in resource-limited settings and characterize the resulting trade-offs. Method. We conduct a controlled evaluation of four leading agentic frameworks (SWE-Agent, OpenHands, Mini SWE Agent, AutoCodeRover) using two SLMs (Gemma-3 4B, Qwen-3 1.7B) on the SWE-bench Verified Mini benchmark. On fixed hardware, we measure energy, duration, token usage, and memory over 150 runs per configuration. Results. We find that framework architecture is the primary driver of energy consumption. The most energy-intensive framework, AutoCodeRover (Gemma), consumed 9.4x more energy on average than the least energy-intensive, OpenHands (Gemma). However, this energy is largely wasted. Task resolution rates were near-zero, demonstrating that current frameworks, when paired with SLMs, consume significant energy on unproductive reasoning loops. The SLM's limited reasoning was the bottleneck for success, but the framework's design was the bottleneck for efficiency. Conclusions. Current agentic frameworks, designed for powerful LLMs, fail to operate efficiently with SLMs. We find that framework architecture is the primary driver of energy consumption, but this energy is largely wasted due to the SLMs' limited reasoning. Viable low-energy solutions require shifting from passive orchestration to architectures that actively manage SLM weaknesses.

  • 3 authors
·
Dec 10, 2025

ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization

Document Visual Question Answering (VQA) requires models to not only extract accurate textual answers but also precisely localize them within document images, a capability critical for interpretability in high-stakes applications. However, existing systems achieve strong textual accuracy while producing unreliable spatial grounding, or sacrifice performance for interpretability. We present ARIAL (Agentic Reasoning for Interpretable Answer Localization), a modular framework that orchestrates specialized tools through an LLM-based planning agent to achieve both precise answer extraction and reliable spatial grounding. ARIAL decomposes Document VQA into structured subtasks: OCR-based text extraction with TrOCR, retrieval-augmented context selection using semantic search, answer generation via a fine-tuned Gemma 3-27B model, and explicit bounding-box localization through text-to-region alignment. This modular architecture produces transparent reasoning traces, enabling tool-level auditability and independent component optimization. We evaluate ARIAL on four benchmarks (DocVQA, FUNSD, CORD, and SROIE) using both textual accuracy (ANLS) and spatial precision (mAP at IoU 0.50 to 0.95). ARIAL achieves state-of-the-art results across all datasets: 88.7 ANLS and 50.1 mAP on DocVQA, 90.0 ANLS and 50.3 mAP on FUNSD, 85.5 ANLS and 60.2 mAP on CORD, and 93.1 ANLS on SROIE, surpassing the previous best method (DLaVA) by +2.8 ANLS and +3.9 mAP on DocVQA. Our work demonstrates how agentic orchestration of specialized tools can simultaneously improve performance and interpretability, providing a pathway toward trustworthy, explainable document AI systems.

  • 4 authors
·
Nov 22, 2025

Token-Level LLM Collaboration via FusionRoute

Large language models (LLMs) exhibit strengths across diverse domains. However, achieving strong performance across these domains with a single general-purpose model typically requires scaling to sizes that are prohibitively expensive to train and deploy. On the other hand, while smaller domain-specialized models are much more efficient, they struggle to generalize beyond their training distributions. To address this dilemma, we propose FusionRoute, a robust and effective token-level multi-LLM collaboration framework in which a lightweight router simultaneously (i) selects the most suitable expert at each decoding step and (ii) contributes a complementary logit that refines or corrects the selected expert's next-token distribution via logit addition. Unlike existing token-level collaboration methods that rely solely on fixed expert outputs, we provide a theoretical analysis showing that pure expert-only routing is fundamentally limited: unless strong global coverage assumptions hold, it cannot in general realize the optimal decoding policy. By augmenting expert selection with a trainable complementary generator, FusionRoute expands the effective policy class and enables recovery of optimal value functions under mild conditions. Empirically, across both Llama-3 and Gemma-2 families and diverse benchmarks spanning mathematical reasoning, code generation, and instruction following, FusionRoute outperforms both sequence- and token-level collaboration, model merging, and direct fine-tuning, while remaining competitive with domain experts on their respective tasks.

OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!

Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models -- Qwen-3 (235B) with 77.77\% and Mistral (24B) with 79.96\% -- fall far short of reliable operational safety, while GPT models plateau in the 62--73\% range, Phi achieves only mid-level scores (48--70\%), and Gemma and Llama-3 collapse to 39.53\% and 23.84\%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23\%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41\% and Qwen-3 (30B) by 27\%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.