new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting

We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.

  • 3 authors
·
Aug 14, 2024

Entanglement Purification in Quantum Networks: Guaranteed Improvement and Optimal Time

While the concept of entanglement purification protocols (EPPs) is straightforward, the integration of EPPs in network architectures requires careful performance evaluations and optimizations that take into account realistic conditions and imperfections, especially probabilistic entanglement generation and quantum memory decoherence. It is important to understand what is guaranteed to be improved from successful EPP with arbitrary non-identical input, which determines whether we want to perform the EPP at all. When successful EPP can offer improvement, the time to perform the EPP should also be optimized to maximize the improvement. In this work, we study the guaranteed improvement and optimal time for the CNOT-based recurrence EPP, previously shown to be optimal in various scenarios. We firstly prove guaranteed improvement for multiple figures of merit, including fidelity and several entanglement measures when compared to practical baselines as functions of input states. However, it is noteworthy that the guaranteed improvement we prove does not imply the universality of the EPP as introduced in arXiv:2407.21760. Then we prove robust, parameter-independent optimal time for typical error models and figures of merit. We further explore memory decoherence described by continuous-time Pauli channels, and demonstrate the phenomenon of optimal time transition when the memory decoherence error pattern changes. Our work deepens the understanding of EPP performance in realistic scenarios and offers insights into optimizing quantum networks that integrate EPPs.

  • 5 authors
·
May 4