new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

Solar System Experiments in the Search for Dark Energy and Dark Matter

We reassess the realistic discovery reach of Solar-System experiments for dark energy (DE) and dark matter (DM), making explicit the bridge from cosmology-level linear responses to local, screened residuals. In scalar-tensor frameworks with a universal conformal coupling A(phi) and chameleon/Vainshtein screening, we map cosmological responses {mu(z,k),Sigma(z,k)} inferred by DESI and Euclid to thin-shell or Vainshtein residuals in deep Solar potentials Phi_N. We emphasize a two-branch strategy. In a detection-first branch, a verified local anomaly -- an Einstein equivalence principle (EEP) violation, a Shapiro-delay signal with |gamma-1|simfewtimes 10^{-6}, an AU-scale Yukawa tail, or a ultralight DM (ULDM) line in clocks/atom interferometers in space (AIS) -- triggers a joint refit of cosmology and Solar-System data under a common microphysical parameterization {V(phi),A(phi)}. In a guardrail branch, Solar-System tests enforce constraints (EEP; PPN parameters gamma,beta; and dot G/G) and close unscreened or weakly screened corners indicated by cosmology. We forecast, per conjunction, |gamma-1|lesssim (2-5)times 10^{-6} (Ka-/X-band or optical Shapiro), eta_{EEP}sim (1--10)times 10^{-17} (drag-free AIS), |dot G/G|sim(3-5)times10^{-15},yr^{-1} (sub-mm-class LLR), a uniform ~2x tightening of AU-scale Yukawa/DM-density bounds, and (3-10)times improved ULDM-coupling reach from clocks. For a conformal benchmark, mu_{ lin,0}=0.10 implies chisimeq mu_{lin,0/2} and a Sun thin shell Delta R/Rlesssim (1/3chi)|gamma-1|/2=2.4times 10^{-3} at |gamma-1|=5times 10^{-6}; Vainshtein screening at 1 AU yields |gamma-1|lesssim 10^{-11}, naturally below near-term reach. We recommend a cost-effective guardrail+discovery portfolio with explicit triggers for escalation to dedicated missions.

  • 1 authors
·
Sep 6, 2025

Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings

Spiking Neural Networks (SNNs) are a promising research direction for building power-efficient information processing systems, especially for temporal tasks such as speech recognition. In SNNs, delays refer to the time needed for one spike to travel from one neuron to another. These delays matter because they influence the spike arrival times, and it is well-known that spiking neurons respond more strongly to coincident input spikes. More formally, it has been shown theoretically that plastic delays greatly increase the expressivity in SNNs. Yet, efficient algorithms to learn these delays have been lacking. Here, we propose a new discrete-time algorithm that addresses this issue in deep feedforward SNNs using backpropagation, in an offline manner. To simulate delays between consecutive layers, we use 1D convolutions across time. The kernels contain only a few non-zero weights - one per synapse - whose positions correspond to the delays. These positions are learned together with the weights using the recently proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC) and its non-spiking version Google Speech Commands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We used feedforward SNNs with two or three hidden fully connected layers, and vanilla leaky integrate-and-fire neurons. We showed that fixed random delays help and that learning them helps even more. Furthermore, our method outperformed the state-of-the-art in the three datasets without using recurrent connections and with substantially fewer parameters. Our work demonstrates the potential of delay learning in developing accurate and precise models for temporal data processing. Our code is based on PyTorch / SpikingJelly and available at: https://github.com/Thvnvtos/SNN-delays

  • 3 authors
·
Jun 30, 2023

Separating source-intrinsic and Lorentz invariance violation induced delays in the very high energy emission of blazar flares

Aims: The aim of the present study is to explore how to disentangle energy-dependent time delays due to a possible Lorentz invariance violation (LIV) at Planck scale from intrinsic delays expected in standard blazar flares. Methods: We first characterise intrinsic time delays in BL Lacs and Flat Spectrum Radio Quasars in standard one-zone time-dependent synchrotron self-Compton or external Compton models, during flares produced by particle acceleration and cooling processes. We simulate families of flares with both intrinsic and external LIV-induced energy-dependent delays. Discrimination between intrinsic and LIV delays is then investigated in two different ways. A technique based on Euclidean distance calculation between delays obtained in the synchrotron and in the inverse-Compton spectral bumps is used to assess their degree of correlation. A complementary study is performed using spectral hardness versus intensity diagrams in both energy ranges. Results: We show that the presence of non-negligible LIV effects, which essentially act only at very high energies (VHE), can drastically reduce the strong correlation expected between the X-ray and the VHE gamma-ray emission in leptonic scenarios. The LIV phenomenon can then be hinted at measuring the Euclidean distance d_{E} from simultaneous X-ray and gamma-ray flare monitoring. Large values of minimal distance d_{E,min} would directly indicate the influence of non-intrinsic time delays possibly due to LIV in SSC flares. LIV effects can also significantly modify the VHE hysteresis patterns in hardness-intensity diagrams and even change their direction of rotation as compared to the X-ray behaviour. Both observables could be used to discriminate between LIV and intrinsic delays, provided high quality flare observations are available.

  • 3 authors
·
Jun 3, 2024

Learning heterogeneous delays in a layer of spiking neurons for fast motion detection

The precise timing of spikes emitted by neurons plays a crucial role in shaping the response of efferent biological neurons. This temporal dimension of neural activity holds significant importance in understanding information processing in neurobiology, especially for the performance of neuromorphic hardware, such as event-based cameras. Nonetheless, many artificial neural models disregard this critical temporal dimension of neural activity. In this study, we present a model designed to efficiently detect temporal spiking motifs using a layer of spiking neurons equipped with heterogeneous synaptic delays. Our model capitalizes on the diverse synaptic delays present on the dendritic tree, enabling specific arrangements of temporally precise synaptic inputs to synchronize upon reaching the basal dendritic tree. We formalize this process as a time-invariant logistic regression, which can be trained using labeled data. To demonstrate its practical efficacy, we apply the model to naturalistic videos transformed into event streams, simulating the output of the biological retina or event-based cameras. To evaluate the robustness of the model in detecting visual motion, we conduct experiments by selectively pruning weights and demonstrate that the model remains efficient even under significantly reduced workloads. In conclusion, by providing a comprehensive, event-driven computational building block, the incorporation of heterogeneous delays has the potential to greatly improve the performance of future spiking neural network algorithms, particularly in the context of neuromorphic chips.

  • 2 authors
·
Jul 26, 2023

Analyzing black-hole ringdowns II: data conditioning

Time series data from observations of black hole ringdown gravitational waves are often analyzed in the time domain by using damped sinusoid models with acyclic boundary conditions. Data conditioning operations, including downsampling, filtering, and the choice of data segment duration, reduce the computational cost of such analyses and can improve numerical stability. Here we analyze simulated damped sinsuoid signals to illustrate how data conditioning operations, if not carefully applied, can undesirably alter the analysis' posterior distributions. We discuss how currently implemented downsampling and filtering methods, if applied too aggressively, can introduce systematic errors and skew tests of general relativity. These issues arise because current downsampling and filtering methods do not operate identically on the data and model. Alternative downsampling and filtering methods which identically operate on the data and model may be achievable, but we argue that the current operations can still be implemented safely. We also show that our preferred anti-alias filtering technique, which has an instantaneous frequency-domain response at its roll-off frequency, preserves the structure of posterior distributions better than other commonly used filters with transient frequency-domain responses. Lastly, we highlight that exceptionally long data segments may need to be analyzed in cases where thin lines in the noise power spectral density overlap with central signal frequencies. Our findings may be broadly applicable to any analysis of truncated time domain data with acyclic boundary conditions.

  • 3 authors
·
Oct 3, 2024

GW-YOLO: Multi-transient segmentation in LIGO using computer vision

Time series data and their time-frequency representation from gravitational-wave interferometers present multiple opportunities for the use of artificial intelligence methods associated with signal and image processing. Closely connected with this is the real-time aspect associated with gravitational-wave interferometers and the astrophysical observations they perform; the discovery potential of these instruments can be significantly enhanced when data processing can be achieved in O(1s) timescales. In this work, we introduce a novel signal and noise identification tool based on the YOLO (You Only Look Once) object detection framework. For its application into gravitational waves, we will refer to it as GW-YOLO. This tool can provide scene identification capabilities and essential information regarding whether an observed transient is any combination of noise and signal. Additionally, it supplies detailed time-frequency coordinates of the detected objects in the form of pixel masks, an essential property that can be used to understand and characterize astrophysical sources, as well as instrumental noise. The simultaneous identification of noise and signal, combined with precise pixel-level localization, represents a significant advancement in gravitational-wave data analysis. Our approach yields a 50\% detection efficiency for binary black hole signals at a signal-to-noise ratio (SNR) of 15 when such signals overlap with transient noise artifacts. When noise artifacts overlap with binary neutron star signals, our algorithm attains 50\% detection efficiency at an SNR of 30. This presents the first quantitative assessment of the ability to detect astrophysical events overlapping with realistic, instrument noise present in gravitational-wave interferometers.

  • 3 authors
·
Aug 24, 2025

Model-agnostic search for the quasinormal modes of gravitational wave echoes

Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".

  • 4 authors
·
Aug 2, 2023

A Low-complexity Structured Neural Network to Realize States of Dynamical Systems

Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.

  • 4 authors
·
Mar 30, 2025

Are we certain it's anomalous?

The progress in modelling time series and, more generally, sequences of structured data has recently revamped research in anomaly detection. The task stands for identifying abnormal behaviors in financial series, IT systems, aerospace measurements, and the medical domain, where anomaly detection may aid in isolating cases of depression and attend the elderly. Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations and since the definition of anomalous is sometimes subjective. Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD). HypAD learns self-supervisedly to reconstruct the input signal. We adopt best practices from the state-of-the-art to encode the sequence by an LSTM, jointly learned with a decoder to reconstruct the signal, with the aid of GAN critics. Uncertainty is estimated end-to-end by means of a hyperbolic neural network. By using uncertainty, HypAD may assess whether it is certain about the input signal but it fails to reconstruct it because this is anomalous; or whether the reconstruction error does not necessarily imply anomaly, as the model is uncertain, e.g. a complex but regular input signal. The novel key idea is that a detectable anomaly is one where the model is certain but it predicts wrongly. HypAD outperforms the current state-of-the-art for univariate anomaly detection on established benchmarks based on data from NASA, Yahoo, Numenta, Amazon, and Twitter. It also yields state-of-the-art performance on a multivariate dataset of anomaly activities in elderly home residences, and it outperforms the baseline on SWaT. Overall, HypAD yields the lowest false alarms at the best performance rate, thanks to successfully identifying detectable anomalies.

  • 7 authors
·
Nov 16, 2022

Analytical sensitivity curves of the second-generation time-delay interferometry

Forthcoming space-based gravitational-wave (GW) detectors will employ second-generation time-delay interferometry (TDI) to suppress laser frequency noise and achieve the sensitivity required for GW detection. We introduce an inverse light-path operator P_{i_{1}i_{2}i_{3}ldots i_{n-1}i_{n}}, which enables simple representation of second-generation TDI combinations and a concise description of light propagation. Analytical expressions and high-accuracy approximate formulas are derived for the sky- and polarization-averaged response functions, noise power spectral densities (PSDs), and sensitivity curves of TDI Michelson, (alpha,beta,gamma), Monitor, Beacon, Relay, and Sagnac combinations, as well as their orthogonal A, E, T channels. Our results show that: (i) second-generation TDIs have the same sensitivities as their first-generation counterparts; (ii) the A, E, T sensitivities and the optimal sensitivity are independent of the TDI generation and specific combination; (iii) the A and E channels have equal averaged responses, noise PSDs, and sensitivities, while the T channel has much weaker response and sensitivity at low frequencies (2pi fL/clesssim3); (iv) except for the (alpha,beta,gamma) and zeta combinations and the T channel, all sensitivity curves exhibit a flat section in the range f_{n}<flesssim 1.5/(2pi L/c), where the noise-balance frequency f_{n} separates the proof-mass- and optical-path-dominated regimes, while the response-transition frequency sim 1.5/(2pi L/c) separates the response function's low- and high-frequency behaviors; (v) the averaged response, noise PSD, and sensitivity of zeta scales with those of the T channel. These analytical and approximate formulations provide useful benchmarks for instrument optimization and data-analysis studies for future space-based GW detectors.

  • 1 authors
·
Nov 3, 2025

Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network that explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet comprises a Transformer-embedded encoder-decoder architecture. The encoder aims to encode the input distorted magnitude and phase spectra into time-frequency representations, which are further fed into time-frequency Transformers for alternatively capturing time and frequency dependencies. The decoder comprises a magnitude mask decoder and a phase decoder, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude masking architecture and a phase parallel estimation architecture, respectively. Multi-level loss functions explicitly defined on the magnitude spectra, wrapped phase spectra, and short-time complex spectra are adopted to jointly train the MP-SENet model. A metric discriminator is further employed to compensate for the incomplete correlation between these losses and human auditory perception. Experimental results demonstrate that our proposed MP-SENet achieves state-of-the-art performance across multiple speech enhancement tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it further mitigates the compensation effect between the magnitude and phase by explicit phase estimation, elevating the perceptual quality of enhanced speech.

  • 3 authors
·
Aug 17, 2023

BiPer: Binary Neural Networks using a Periodic Function

Quantized neural networks employ reduced precision representations for both weights and activations. This quantization process significantly reduces the memory requirements and computational complexity of the network. Binary Neural Networks (BNNs) are the extreme quantization case, representing values with just one bit. Since the sign function is typically used to map real values to binary values, smooth approximations are introduced to mimic the gradients during error backpropagation. Thus, the mismatch between the forward and backward models corrupts the direction of the gradient, causing training inconsistency problems and performance degradation. In contrast to current BNN approaches, we propose to employ a binary periodic (BiPer) function during binarization. Specifically, we use a square wave for the forward pass to obtain the binary values and employ the trigonometric sine function with the same period of the square wave as a differentiable surrogate during the backward pass. We demonstrate that this approach can control the quantization error by using the frequency of the periodic function and improves network performance. Extensive experiments validate the effectiveness of BiPer in benchmark datasets and network architectures, with improvements of up to 1% and 0.69% with respect to state-of-the-art methods in the classification task over CIFAR-10 and ImageNet, respectively. Our code is publicly available at https://github.com/edmav4/BiPer.

  • 4 authors
·
Apr 1, 2024

Mapping gravitational-wave backgrounds in modified theories of gravity using pulsar timing arrays

We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse ("breathing") and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.

  • 3 authors
·
Jun 29, 2015

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

  • 5 authors
·
Jul 1, 2021

End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression

Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.

  • 5 authors
·
Oct 2, 2021

Spark Transformer: Reactivating Sparsity in FFN and Attention

The discovery of the lazy neuron phenomenon in trained Transformers, where the vast majority of neurons in their feed-forward networks (FFN) are inactive for each token, has spurred tremendous interests in activation sparsity for enhancing large model efficiency. While notable progress has been made in translating such sparsity to wall-time benefits, modern Transformers have moved away from the ReLU activation function crucial to this phenomenon. Existing efforts on re-introducing activation sparsity often degrade model quality, increase parameter count, complicate or slow down training. Sparse attention, the application of sparse activation to the attention mechanism, often faces similar challenges. This paper introduces the Spark Transformer, a novel architecture that achieves a high level of activation sparsity in both FFN and the attention mechanism while maintaining model quality, parameter count, and standard training procedures. Our method realizes sparsity via top-k masking for explicit control over sparsity level. Crucially, we introduce statistical top-k, a hardware-accelerator-friendly, linear-time approximate algorithm that avoids costly sorting and mitigates significant training slowdown from standard top-k operators. Furthermore, Spark Transformer reallocates existing FFN parameters and attention key embeddings to form a low-cost predictor for identifying activated entries. This design not only mitigates quality loss from enforced sparsity, but also enhances wall-time benefit. Pretrained with the Gemma-2 recipe, Spark Transformer demonstrates competitive performance on standard benchmarks while exhibiting significant sparsity: only 8% of FFN neurons are activated, and each token attends to a maximum of 256 tokens. This sparsity translates to a 2.5x reduction in FLOPs, leading to decoding wall-time speedups of up to 1.79x on CPU and 1.40x on GPU.

  • 19 authors
·
Jun 6, 2025

Deep Neuromorphic Networks with Superconducting Single Flux Quanta

Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.

  • 4 authors
·
Sep 21, 2023

Dilated Convolution with Learnable Spacings

This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method. Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques. The research is organized into several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. DCLS is shown to be particularly effective in tasks such as classification, semantic segmentation, and object detection. Initially using bilinear interpolation, the study also explores other interpolation methods, finding that Gaussian interpolation slightly improves performance. The DCLS method is further applied to spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results.

  • 1 authors
·
Aug 10, 2024

Differentially Private Sequential Learning

In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.

  • 2 authors
·
Feb 26, 2025

ConvNets for Counting: Object Detection of Transient Phenomena in Steelpan Drums

We train an object detector built from convolutional neural networks to count interference fringes in elliptical antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums illuminated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contribute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of the annotation task, we also evaluate the model on a large corpus of synthetic images whose properties have been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes. One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This paper primarily concerns the development of the predictive model; further exploration of the steelpan images and deeper physical insights await its further application.

  • 2 authors
·
Jan 31, 2021