1 Statements: Universal Information Extraction from Tables with Large Language Models for ESG KPIs Environment, Social, and Governance (ESG) KPIs assess an organization's performance on issues such as climate change, greenhouse gas emissions, water consumption, waste management, human rights, diversity, and policies. ESG reports convey this valuable quantitative information through tables. Unfortunately, extracting this information is difficult due to high variability in the table structure as well as content. We propose Statements, a novel domain agnostic data structure for extracting quantitative facts and related information. We propose translating tables to statements as a new supervised deep-learning universal information extraction task. We introduce SemTabNet - a dataset of over 100K annotated tables. Investigating a family of T5-based Statement Extraction Models, our best model generates statements which are 82% similar to the ground-truth (compared to baseline of 21%). We demonstrate the advantages of statements by applying our model to over 2700 tables from ESG reports. The homogeneous nature of statements permits exploratory data analysis on expansive information found in large collections of ESG reports. 7 authors · Jun 27, 2024
- Investigating Counterclaims in Causality Extraction from Text Research on causality extraction from text has so far almost entirely neglected counterclaims. Existing causality extraction datasets focus solely on "procausal" claims, i.e., statements that support a relationship. "Concausal" claims, i.e., statements that refute a relationship, are entirely ignored or even accidentally annotated as procausal. We address this shortcoming by developing a new dataset that integrates concausality. Based on an extensive literature review, we first show that concausality is an integral part of causal reasoning on incomplete knowledge. We operationalize this theory in the form of a rigorous guideline for annotation and then augment the Causal News Corpus with concausal statements, obtaining a substantial inter-annotator agreement of Cohen's κ=0.74. To demonstrate the importance of integrating concausal statements, we show that models trained without concausal relationships tend to misclassify these as procausal instead. Based on our new dataset, this mistake can be mitigated, enabling transformers to effectively distinguish pro- and concausality. 5 authors · Oct 9