new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 21

Parallel CPU-GPU Execution for LLM Inference on Constrained GPUs

Deploying large language models (LLMs) for online inference is often constrained by limited GPU memory, particularly due to the growing KV cache during auto-regressive decoding. Hybrid GPU-CPU execution has emerged as a promising solution by offloading KV cache management and parts of attention computation to the CPU. However, a key bottleneck remains: existing schedulers fail to effectively overlap CPU-offloaded tasks with GPU execution during the latency-critical, bandwidth-bound decode phase. This particularly penalizes real-time, decode-heavy applications (e.g., chat, Chain-of-Thought reasoning) which are currently underserved by existing systems, especially under memory pressure typical of edge or low-cost deployments. We present APEX, a novel, profiling-informed scheduling strategy that maximizes CPU-GPU parallelism during hybrid LLM inference. Unlike systems relying on static rules or purely heuristic approaches, APEX dynamically dispatches compute across heterogeneous resources by predicting execution times of CPU and GPU subtasks to maximize overlap while avoiding scheduling overheads. We evaluate APEX on diverse workloads and GPU architectures (NVIDIA T4, A10), using LLaMa-2-7B and LLaMa-3.1-8B models. Compared to GPU-only schedulers like VLLM, APEX improves throughput by 84% - 96% on T4 and 11% - 89% on A10 GPUs, while preserving latency. Against the best existing hybrid schedulers, it delivers up to 49% (T4) and 37% (A10) higher throughput in long-output settings. APEX significantly advances hybrid LLM inference efficiency on such memory-constrained hardware and provides a blueprint for scheduling in heterogeneous AI systems, filling a critical gap for efficient real-time LLM applications.

  • 4 authors
·
Jun 3, 2025

Introducing v0.5 of the AI Safety Benchmark from MLCommons

This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.

  • 97 authors
·
Apr 18, 2024 1