new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks

We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.

  • 3 authors
·
Apr 2, 2024

UMD: Unsupervised Model Detection for X2X Backdoor Attacks

Backdoor (Trojan) attack is a common threat to deep neural networks, where samples from one or more source classes embedded with a backdoor trigger will be misclassified to adversarial target classes. Existing methods for detecting whether a classifier is backdoor attacked are mostly designed for attacks with a single adversarial target (e.g., all-to-one attack). To the best of our knowledge, without supervision, no existing methods can effectively address the more general X2X attack with an arbitrary number of source classes, each paired with an arbitrary target class. In this paper, we propose UMD, the first Unsupervised Model Detection method that effectively detects X2X backdoor attacks via a joint inference of the adversarial (source, target) class pairs. In particular, we first define a novel transferability statistic to measure and select a subset of putative backdoor class pairs based on a proposed clustering approach. Then, these selected class pairs are jointly assessed based on an aggregation of their reverse-engineered trigger size for detection inference, using a robust and unsupervised anomaly detector we proposed. We conduct comprehensive evaluations on CIFAR-10, GTSRB, and Imagenette dataset, and show that our unsupervised UMD outperforms SOTA detectors (even with supervision) by 17%, 4%, and 8%, respectively, in terms of the detection accuracy against diverse X2X attacks. We also show the strong detection performance of UMD against several strong adaptive attacks.

  • 3 authors
·
May 29, 2023

TopoReformer: Mitigating Adversarial Attacks Using Topological Purification in OCR Models

Adversarially perturbed images of text can cause sophisticated OCR systems to produce misleading or incorrect transcriptions from seemingly invisible changes to humans. Some of these perturbations even survive physical capture, posing security risks to high-stakes applications such as document processing, license plate recognition, and automated compliance systems. Existing defenses, such as adversarial training, input preprocessing, or post-recognition correction, are often model-specific, computationally expensive, and affect performance on unperturbed inputs while remaining vulnerable to unseen or adaptive attacks. To address these challenges, TopoReformer is introduced, a model-agnostic reformation pipeline that mitigates adversarial perturbations while preserving the structural integrity of text images. Topology studies properties of shapes and spaces that remain unchanged under continuous deformations, focusing on global structures such as connectivity, holes, and loops rather than exact distance. Leveraging these topological features, TopoReformer employs a topological autoencoder to enforce manifold-level consistency in latent space and improve robustness without explicit gradient regularization. The proposed method is benchmarked on EMNIST, MNIST, against standard adversarial attacks (FGSM, PGD, Carlini-Wagner), adaptive attacks (EOT, BDPA), and an OCR-specific watermark attack (FAWA).

  • 5 authors
·
Nov 19

Decamouflage: A Framework to Detect Image-Scaling Attacks on Convolutional Neural Networks

As an essential processing step in computer vision applications, image resizing or scaling, more specifically downsampling, has to be applied before feeding a normally large image into a convolutional neural network (CNN) model because CNN models typically take small fixed-size images as inputs. However, image scaling functions could be adversarially abused to perform a newly revealed attack called image-scaling attack, which can affect a wide range of computer vision applications building upon image-scaling functions. This work presents an image-scaling attack detection framework, termed as Decamouflage. Decamouflage consists of three independent detection methods: (1) rescaling, (2) filtering/pooling, and (3) steganalysis. While each of these three methods is efficient standalone, they can work in an ensemble manner not only to improve the detection accuracy but also to harden potential adaptive attacks. Decamouflage has a pre-determined detection threshold that is generic. More precisely, as we have validated, the threshold determined from one dataset is also applicable to other different datasets. Extensive experiments show that Decamouflage achieves detection accuracy of 99.9\% and 99.8\% in the white-box (with the knowledge of attack algorithms) and the black-box (without the knowledge of attack algorithms) settings, respectively. To corroborate the efficiency of Decamouflage, we have also measured its run-time overhead on a personal PC with an i5 CPU and found that Decamouflage can detect image-scaling attacks in milliseconds. Overall, Decamouflage can accurately detect image scaling attacks in both white-box and black-box settings with acceptable run-time overhead.

  • 7 authors
·
Oct 7, 2020

An Automated Framework for Strategy Discovery, Retrieval, and Evolution in LLM Jailbreak Attacks

The widespread deployment of Large Language Models (LLMs) as public-facing web services and APIs has made their security a core concern for the web ecosystem. Jailbreak attacks, as one of the significant threats to LLMs, have recently attracted extensive research. In this paper, we reveal a jailbreak strategy which can effectively evade current defense strategies. It can extract valuable information from failed or partially successful attack attempts and contains self-evolution from attack interactions, resulting in sufficient strategy diversity and adaptability. Inspired by continuous learning and modular design principles, we propose ASTRA, a jailbreak framework that autonomously discovers, retrieves, and evolves attack strategies to achieve more efficient and adaptive attacks. To enable this autonomous evolution, we design a closed-loop "attack-evaluate-distill-reuse" core mechanism that not only generates attack prompts but also automatically distills and generalizes reusable attack strategies from every interaction. To systematically accumulate and apply this attack knowledge, we introduce a three-tier strategy library that categorizes strategies into Effective, Promising, and Ineffective based on their performance scores. The strategy library not only provides precise guidance for attack generation but also possesses exceptional extensibility and transferability. We conduct extensive experiments under a black-box setting, and the results show that ASTRA achieves an average Attack Success Rate (ASR) of 82.7%, significantly outperforming baselines.

  • 7 authors
·
Nov 4

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

  • 3 authors
·
Aug 25

Be Your Own Neighborhood: Detecting Adversarial Example by the Neighborhood Relations Built on Self-Supervised Learning

Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs' vulnerability to Adversarial Examples (AE) hinders their deployments to safety-critical applications. This paper presents a novel AE detection framework, named BEYOND, for trustworthy predictions. BEYOND performs the detection by distinguishing the AE's abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label for its highly informative representation capacity compared to supervised learning models. For clean samples, their representations and predictions are closely consistent with their neighbors, whereas those of AEs differ greatly. Furthermore, we explain this observation and show that by leveraging this discrepancy BEYOND can effectively detect AEs. We develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving the state-of-the-art (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under adaptive attacks. Empowered by the robust relation net built on SSL, we found that BEYOND outperforms baselines in terms of both detection ability and speed. Our code will be publicly available.

  • 5 authors
·
Aug 31, 2022

Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs

The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit

  • 4 authors
·
Apr 6 2

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15 2

Assimilation Matters: Model-level Backdoor Detection in Vision-Language Pretrained Models

Vision-language pretrained models (VLPs) such as CLIP have achieved remarkable success, but are also highly vulnerable to backdoor attacks. Given a model fine-tuned by an untrusted third party, determining whether the model has been injected with a backdoor is a critical and challenging problem. Existing detection methods usually rely on prior knowledge of training dataset, backdoor triggers and targets, or downstream classifiers, which may be impractical for real-world applications. To address this, To address this challenge, we introduce Assimilation Matters in DETection (AMDET), a novel model-level detection framework that operates without any such prior knowledge. Specifically, we first reveal the feature assimilation property in backdoored text encoders: the representations of all tokens within a backdoor sample exhibit a high similarity. Further analysis attributes this effect to the concentration of attention weights on the trigger token. Leveraging this insight, AMDET scans a model by performing gradient-based inversion on token embeddings to recover implicit features that capable of activating backdoor behaviors. Furthermore, we identify the natural backdoor feature in the OpenAI's official CLIP model, which are not intentionally injected but still exhibit backdoor-like behaviors. We then filter them out from real injected backdoor by analyzing their loss landscapes. Extensive experiments on 3,600 backdoored and benign-finetuned models with two attack paradigms and three VLP model structures show that AMDET detects backdoors with an F1 score of 89.90%. Besides, it achieves one complete detection in approximately 5 minutes on a RTX 4090 GPU and exhibits strong robustness against adaptive attacks. Code is available at: https://github.com/Robin-WZQ/AMDET

  • 4 authors
·
Nov 29

EigenShield: Causal Subspace Filtering via Random Matrix Theory for Adversarially Robust Vision-Language Models

Vision-Language Models (VLMs) inherit adversarial vulnerabilities of Large Language Models (LLMs), which are further exacerbated by their multimodal nature. Existing defenses, including adversarial training, input transformations, and heuristic detection, are computationally expensive, architecture-dependent, and fragile against adaptive attacks. We introduce EigenShield, an inference-time defense leveraging Random Matrix Theory to quantify adversarial disruptions in high-dimensional VLM representations. Unlike prior methods that rely on empirical heuristics, EigenShield employs the spiked covariance model to detect structured spectral deviations. Using a Robustness-based Nonconformity Score (RbNS) and quantile-based thresholding, it separates causal eigenvectors, which encode semantic information, from correlational eigenvectors that are susceptible to adversarial artifacts. By projecting embeddings onto the causal subspace, EigenShield filters adversarial noise without modifying model parameters or requiring adversarial training. This architecture-independent, attack-agnostic approach significantly reduces the attack success rate, establishing spectral analysis as a principled alternative to conventional defenses. Our results demonstrate that EigenShield consistently outperforms all existing defenses, including adversarial training, UNIGUARD, and CIDER.

  • 6 authors
·
Feb 20 1

Reverse Engineering of Imperceptible Adversarial Image Perturbations

It has been well recognized that neural network based image classifiers are easily fooled by images with tiny perturbations crafted by an adversary. There has been a vast volume of research to generate and defend such adversarial attacks. However, the following problem is left unexplored: How to reverse-engineer adversarial perturbations from an adversarial image? This leads to a new adversarial learning paradigm--Reverse Engineering of Deceptions (RED). If successful, RED allows us to estimate adversarial perturbations and recover the original images. However, carefully crafted, tiny adversarial perturbations are difficult to recover by optimizing a unilateral RED objective. For example, the pure image denoising method may overfit to minimizing the reconstruction error but hardly preserve the classification properties of the true adversarial perturbations. To tackle this challenge, we formalize the RED problem and identify a set of principles crucial to the RED approach design. Particularly, we find that prediction alignment and proper data augmentation (in terms of spatial transformations) are two criteria to achieve a generalizable RED approach. By integrating these RED principles with image denoising, we propose a new Class-Discriminative Denoising based RED framework, termed CDD-RED. Extensive experiments demonstrate the effectiveness of CDD-RED under different evaluation metrics (ranging from the pixel-level, prediction-level to the attribution-level alignment) and a variety of attack generation methods (e.g., FGSM, PGD, CW, AutoAttack, and adaptive attacks).

  • 7 authors
·
Mar 26, 2022

ARMOR: Aligning Secure and Safe Large Language Models via Meticulous Reasoning

Large Language Models (LLMs) have demonstrated remarkable generative capabilities. However, their susceptibility to misuse has raised significant safety concerns. While post-training safety alignment methods have been widely adopted, LLMs remain vulnerable to malicious instructions that can bypass safety constraints. Recent efforts have introduced inference-time safety reasoning (system-2 alignment), where LLMs conduct a reasoning process to perform safety verification before final response. We show, however, that these checks are driven by ad-hoc reasoning that diverges from the structured human process, where they first discern a user's true intent, then evaluate the associated risk based on the true intent. Consequently, these defenses remain vulnerable to sophisticated jailbreak prompts that cloak harmful goals in seemingly benign language. To build secure and safe LLMs, we propose a reasoning-based safety alignment framework, ARMOR, that replaces the ad-hoc chains of thought reasoning process with human-aligned, structured one. At inference, ARMOR (1) detects likely jailbreak strategies, (2) extracts the user's core intent while discarding deceptive instructions, and (3) applies a policy-grounded safety analysis to the purified request. ARMOR is evaluated on adaptive jailbreak attacks and multiple safety benchmarks, and a test-time scaling is conducted to further improve its performance. Results demonstrate that ARMOR significantly enhances the robustness against state-of-the-art adaptive jailbreak attacks and outperforms recent reasoning-based aligned models across various safety benchmarks.

  • 5 authors
·
Jul 14

Embodied Active Defense: Leveraging Recurrent Feedback to Counter Adversarial Patches

The vulnerability of deep neural networks to adversarial patches has motivated numerous defense strategies for boosting model robustness. However, the prevailing defenses depend on single observation or pre-established adversary information to counter adversarial patches, often failing to be confronted with unseen or adaptive adversarial attacks and easily exhibiting unsatisfying performance in dynamic 3D environments. Inspired by active human perception and recurrent feedback mechanisms, we develop Embodied Active Defense (EAD), a proactive defensive strategy that actively contextualizes environmental information to address misaligned adversarial patches in 3D real-world settings. To achieve this, EAD develops two central recurrent sub-modules, i.e., a perception module and a policy module, to implement two critical functions of active vision. These models recurrently process a series of beliefs and observations, facilitating progressive refinement of their comprehension of the target object and enabling the development of strategic actions to counter adversarial patches in 3D environments. To optimize learning efficiency, we incorporate a differentiable approximation of environmental dynamics and deploy patches that are agnostic to the adversary strategies. Extensive experiments demonstrate that EAD substantially enhances robustness against a variety of patches within just a few steps through its action policy in safety-critical tasks (e.g., face recognition and object detection), without compromising standard accuracy. Furthermore, due to the attack-agnostic characteristic, EAD facilitates excellent generalization to unseen attacks, diminishing the averaged attack success rate by 95 percent across a range of unseen adversarial attacks.

  • 6 authors
·
Mar 30, 2024

Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets.

  • 6 authors
·
Mar 10, 2023

ARMs: Adaptive Red-Teaming Agent against Multimodal Models with Plug-and-Play Attacks

As vision-language models (VLMs) gain prominence, their multimodal interfaces also introduce new safety vulnerabilities, making the safety evaluation challenging and critical. Existing red-teaming efforts are either restricted to a narrow set of adversarial patterns or depend heavily on manual engineering, lacking scalable exploration of emerging real-world VLM vulnerabilities. To bridge this gap, we propose ARMs, an adaptive red-teaming agent that systematically conducts comprehensive risk assessments for VLMs. Given a target harmful behavior or risk definition, ARMs automatically optimizes diverse red-teaming strategies with reasoning-enhanced multi-step orchestration, to effectively elicit harmful outputs from target VLMs. We propose 11 novel multimodal attack strategies, covering diverse adversarial patterns of VLMs (e.g., reasoning hijacking, contextual cloaking), and integrate 17 red-teaming algorithms into ARMs via model context protocol (MCP). To balance the diversity and effectiveness of the attack, we design a layered memory with an epsilon-greedy attack exploration algorithm. Extensive experiments on instance- and policy-based benchmarks show that ARMs achieves SOTA attack success rates, exceeding baselines by an average of 52.1% and surpassing 90% on Claude-4-Sonnet. We show that the diversity of red-teaming instances generated by ARMs is significantly higher, revealing emerging vulnerabilities in VLMs. Leveraging ARMs, we construct ARMs-Bench, a large-scale multimodal safety dataset comprising over 30K red-teaming instances spanning 51 diverse risk categories, grounded in both real-world multimodal threats and regulatory risks. Safety fine-tuning with ARMs-Bench substantially improves the robustness of VLMs while preserving their general utility, providing actionable guidance to improve multimodal safety alignment against emerging threats.

  • 7 authors
·
Oct 2

Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies

In light of the burgeoning success of reinforcement learning (RL) in diverse real-world applications, considerable focus has been directed towards ensuring RL policies are robust to adversarial attacks during test time. Current approaches largely revolve around solving a minimax problem to prepare for potential worst-case scenarios. While effective against strong attacks, these methods often compromise performance in the absence of attacks or the presence of only weak attacks. To address this, we study policy robustness under the well-accepted state-adversarial attack model, extending our focus beyond only worst-case attacks. We first formalize this task at test time as a regret minimization problem and establish its intrinsic hardness in achieving sublinear regret when the baseline policy is from a general continuous policy class, Pi. This finding prompts us to refine the baseline policy class Pi prior to test time, aiming for efficient adaptation within a finite policy class Pi, which can resort to an adversarial bandit subroutine. In light of the importance of a small, finite Pi, we propose a novel training-time algorithm to iteratively discover non-dominated policies, forming a near-optimal and minimal Pi, thereby ensuring both robustness and test-time efficiency. Empirical validation on the Mujoco corroborates the superiority of our approach in terms of natural and robust performance, as well as adaptability to various attack scenarios.

  • 5 authors
·
Feb 19, 2024

Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing

While prior research has proposed a plethora of methods that build neural classifiers robust against adversarial robustness, practitioners are still reluctant to adopt them due to their unacceptably severe clean accuracy penalties. This paper significantly alleviates this accuracy-robustness trade-off by mixing the output probabilities of a standard classifier and a robust classifier, where the standard network is optimized for clean accuracy and is not robust in general. We show that the robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement. In addition to providing intuitions and empirical evidence, we theoretically certify the robustness of the mixed classifier under realistic assumptions. Furthermore, we adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models, further reducing the accuracy penalty of achieving robustness. The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection. Our empirical evaluation considers strong attack methods, including AutoAttack and adaptive attack. On the CIFAR-100 dataset, our method achieves an 85.21% clean accuracy while maintaining a 38.72% ell_infty-AutoAttacked (epsilon = 8/255) accuracy, becoming the second most robust method on the RobustBench CIFAR-100 benchmark as of submission, while improving the clean accuracy by ten percentage points compared with all listed models. The code that implements our method is available at https://github.com/Bai-YT/AdaptiveSmoothing.

  • 4 authors
·
Jan 29, 2023

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

  • 3 authors
·
Oct 29, 2020

JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model

Multimodal large language models (MLLMs) excel in vision-language tasks but also pose significant risks of generating harmful content, particularly through jailbreak attacks. Jailbreak attacks refer to intentional manipulations that bypass safety mechanisms in models, leading to the generation of inappropriate or unsafe content. Detecting such attacks is critical to ensuring the responsible deployment of MLLMs. Existing jailbreak detection methods face three primary challenges: (1) Many rely on model hidden states or gradients, limiting their applicability to white-box models, where the internal workings of the model are accessible; (2) They involve high computational overhead from uncertainty-based analysis, which limits real-time detection, and (3) They require fully labeled harmful datasets, which are often scarce in real-world settings. To address these issues, we introduce a test-time adaptive framework called JAILDAM. Our method leverages a memory-based approach guided by policy-driven unsafe knowledge representations, eliminating the need for explicit exposure to harmful data. By dynamically updating unsafe knowledge during test-time, our framework improves generalization to unseen jailbreak strategies while maintaining efficiency. Experiments on multiple VLM jailbreak benchmarks demonstrate that JAILDAM delivers state-of-the-art performance in harmful content detection, improving both accuracy and speed.

  • 7 authors
·
Apr 3 2

PLAGUE: Plug-and-play framework for Lifelong Adaptive Generation of Multi-turn Exploits

Large Language Models (LLMs) are improving at an exceptional rate. With the advent of agentic workflows, multi-turn dialogue has become the de facto mode of interaction with LLMs for completing long and complex tasks. While LLM capabilities continue to improve, they remain increasingly susceptible to jailbreaking, especially in multi-turn scenarios where harmful intent can be subtly injected across the conversation to produce nefarious outcomes. While single-turn attacks have been extensively explored, adaptability, efficiency and effectiveness continue to remain key challenges for their multi-turn counterparts. To address these gaps, we present PLAGUE, a novel plug-and-play framework for designing multi-turn attacks inspired by lifelong-learning agents. PLAGUE dissects the lifetime of a multi-turn attack into three carefully designed phases (Primer, Planner and Finisher) that enable a systematic and information-rich exploration of the multi-turn attack family. Evaluations show that red-teaming agents designed using PLAGUE achieve state-of-the-art jailbreaking results, improving attack success rates (ASR) by more than 30% across leading models in a lesser or comparable query budget. Particularly, PLAGUE enables an ASR (based on StrongReject) of 81.4% on OpenAI's o3 and 67.3% on Claude's Opus 4.1, two models that are considered highly resistant to jailbreaks in safety literature. Our work offers tools and insights to understand the importance of plan initialization, context optimization and lifelong learning in crafting multi-turn attacks for a comprehensive model vulnerability evaluation.

  • 3 authors
·
Oct 20

An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial Transferability

While the transferability property of adversarial examples allows the adversary to perform black-box attacks (i.e., the attacker has no knowledge about the target model), the transfer-based adversarial attacks have gained great attention. Previous works mostly study gradient variation or image transformations to amplify the distortion on critical parts of inputs. These methods can work on transferring across models with limited differences, i.e., from CNNs to CNNs, but always fail in transferring across models with wide differences, such as from CNNs to ViTs. Alternatively, model ensemble adversarial attacks are proposed to fuse outputs from surrogate models with diverse architectures to get an ensemble loss, making the generated adversarial example more likely to transfer to other models as it can fool multiple models concurrently. However, existing ensemble attacks simply fuse the outputs of the surrogate models evenly, thus are not efficacious to capture and amplify the intrinsic transfer information of adversarial examples. In this paper, we propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model, via monitoring the discrepancy ratio of their contributions towards the adversarial objective. Furthermore, an extra disparity-reduced filter is introduced to further synchronize the update direction. As a result, we achieve considerable improvement over the existing ensemble attacks on various datasets, and the proposed AdaEA can also boost existing transfer-based attacks, which further demonstrates its efficacy and versatility.

  • 5 authors
·
Aug 5, 2023

AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs

While recently Large Language Models (LLMs) have achieved remarkable successes, they are vulnerable to certain jailbreaking attacks that lead to generation of inappropriate or harmful content. Manual red-teaming requires finding adversarial prompts that cause such jailbreaking, e.g. by appending a suffix to a given instruction, which is inefficient and time-consuming. On the other hand, automatic adversarial prompt generation often leads to semantically meaningless attacks that can easily be detected by perplexity-based filters, may require gradient information from the TargetLLM, or do not scale well due to time-consuming discrete optimization processes over the token space. In this paper, we present a novel method that uses another LLM, called the AdvPrompter, to generate human-readable adversarial prompts in seconds, sim800times faster than existing optimization-based approaches. We train the AdvPrompter using a novel algorithm that does not require access to the gradients of the TargetLLM. This process alternates between two steps: (1) generating high-quality target adversarial suffixes by optimizing the AdvPrompter predictions, and (2) low-rank fine-tuning of the AdvPrompter with the generated adversarial suffixes. The trained AdvPrompter generates suffixes that veil the input instruction without changing its meaning, such that the TargetLLM is lured to give a harmful response. Experimental results on popular open source TargetLLMs show state-of-the-art results on the AdvBench dataset, that also transfer to closed-source black-box LLM APIs. Further, we demonstrate that by fine-tuning on a synthetic dataset generated by AdvPrompter, LLMs can be made more robust against jailbreaking attacks while maintaining performance, i.e. high MMLU scores.

  • 5 authors
·
Apr 21, 2024 1

S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models

Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.

  • 10 authors
·
May 23, 2024

Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems

Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.

  • 7 authors
·
Jun 6

T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification

Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.

  • 8 authors
·
Mar 6, 2021

EDoG: Adversarial Edge Detection For Graph Neural Networks

Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.

  • 6 authors
·
Dec 27, 2022

Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats

As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.

  • 12 authors
·
Nov 26, 2024

Searching for Privacy Risks in LLM Agents via Simulation

The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.

  • 2 authors
·
Aug 14

Policy Smoothing for Provably Robust Reinforcement Learning

The study of provable adversarial robustness for deep neural networks (DNNs) has mainly focused on static supervised learning tasks such as image classification. However, DNNs have been used extensively in real-world adaptive tasks such as reinforcement learning (RL), making such systems vulnerable to adversarial attacks as well. Prior works in provable robustness in RL seek to certify the behaviour of the victim policy at every time-step against a non-adaptive adversary using methods developed for the static setting. But in the real world, an RL adversary can infer the defense strategy used by the victim agent by observing the states, actions, etc., from previous time-steps and adapt itself to produce stronger attacks in future steps. We present an efficient procedure, designed specifically to defend against an adaptive RL adversary, that can directly certify the total reward without requiring the policy to be robust at each time-step. Our main theoretical contribution is to prove an adaptive version of the Neyman-Pearson Lemma -- a key lemma for smoothing-based certificates -- where the adversarial perturbation at a particular time can be a stochastic function of current and previous observations and states as well as previous actions. Building on this result, we propose policy smoothing where the agent adds a Gaussian noise to its observation at each time-step before passing it through the policy function. Our robustness certificates guarantee that the final total reward obtained by policy smoothing remains above a certain threshold, even though the actions at intermediate time-steps may change under the attack. Our experiments on various environments like Cartpole, Pong, Freeway and Mountain Car show that our method can yield meaningful robustness guarantees in practice.

  • 3 authors
·
Jun 21, 2021

Multi-metrics adaptively identifies backdoors in Federated learning

The decentralized and privacy-preserving nature of federated learning (FL) makes it vulnerable to backdoor attacks aiming to manipulate the behavior of the resulting model on specific adversary-chosen inputs. However, most existing defenses based on statistical differences take effect only against specific attacks, especially when the malicious gradients are similar to benign ones or the data are highly non-independent and identically distributed (non-IID). In this paper, we revisit the distance-based defense methods and discover that i) Euclidean distance becomes meaningless in high dimensions and ii) malicious gradients with diverse characteristics cannot be identified by a single metric. To this end, we present a simple yet effective defense strategy with multi-metrics and dynamic weighting to identify backdoors adaptively. Furthermore, our novel defense has no reliance on predefined assumptions over attack settings or data distributions and little impact on benign performance. To evaluate the effectiveness of our approach, we conduct comprehensive experiments on different datasets under various attack settings, where our method achieves the best defensive performance. For instance, we achieve the lowest backdoor accuracy of 3.06% under the difficult Edge-case PGD, showing significant superiority over previous defenses. The results also demonstrate that our method can be well-adapted to a wide range of non-IID degrees without sacrificing the benign performance.

  • 5 authors
·
Mar 12, 2023

Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks

Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems

  • 1 authors
·
Jun 2

Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification

Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.

  • 7 authors
·
Jul 30, 2024

Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System

Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users into the system's training data to skew the exposure of certain items, known as poisoning attacks. Adversarial training has emerged as a notable defense mechanism against such poisoning attacks within recommender systems. Existing adversarial training methods apply perturbations of the same magnitude across all users to enhance system robustness against attacks. Yet, in reality, we find that attacks often affect only a subset of users who are vulnerable. These perturbations of indiscriminate magnitude make it difficult to balance effective protection for vulnerable users without degrading recommendation quality for those who are not affected. To address this issue, our research delves into understanding user vulnerability. Considering that poisoning attacks pollute the training data, we note that the higher degree to which a recommender system fits users' training data correlates with an increased likelihood of users incorporating attack information, indicating their vulnerability. Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems. VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them. Guided by this estimation, VAT applies perturbations of adaptive magnitude to each user, not only reducing the success ratio of attacks but also preserving, and potentially enhancing, the quality of recommendations. Comprehensive experiments confirm VAT's superior defensive capabilities across different recommendation models and against various types of attacks.

  • 6 authors
·
Sep 25, 2024

LoRec: Large Language Model for Robust Sequential Recommendation against Poisoning Attacks

Sequential recommender systems stand out for their ability to capture users' dynamic interests and the patterns of item-to-item transitions. However, the inherent openness of sequential recommender systems renders them vulnerable to poisoning attacks, where fraudulent users are injected into the training data to manipulate learned patterns. Traditional defense strategies predominantly depend on predefined assumptions or rules extracted from specific known attacks, limiting their generalizability to unknown attack types. To solve the above problems, considering the rich open-world knowledge encapsulated in Large Language Models (LLMs), our research initially focuses on the capabilities of LLMs in the detection of unknown fraudulent activities within recommender systems, a strategy we denote as LLM4Dec. Empirical evaluations demonstrate the substantial capability of LLMs in identifying unknown fraudsters, leveraging their expansive, open-world knowledge. Building upon this, we propose the integration of LLMs into defense strategies to extend their effectiveness beyond the confines of known attacks. We propose LoRec, an advanced framework that employs LLM-Enhanced Calibration to strengthen the robustness of sequential recommender systems against poisoning attacks. LoRec integrates an LLM-enhanced CalibraTor (LCT) that refines the training process of sequential recommender systems with knowledge derived from LLMs, applying a user-wise reweighting to diminish the impact of fraudsters injected by attacks. By incorporating LLMs' open-world knowledge, the LCT effectively converts the limited, specific priors or rules into a more general pattern of fraudsters, offering improved defenses against poisoning attacks. Our comprehensive experiments validate that LoRec, as a general framework, significantly strengthens the robustness of sequential recommender systems.

  • 6 authors
·
Jan 31, 2024

AEGIS: Automated Error Generation and Identification for Multi-Agent Systems

As Multi-Agent Systems (MAS) become increasingly autonomous and complex, understanding their error modes is critical for ensuring their reliability and safety. However, research in this area has been severely hampered by the lack of large-scale, diverse datasets with precise, ground-truth error labels. To address this bottleneck, we introduce AEGIS, a novel framework for Automated Error Generation and Identification for Multi-Agent Systems. By systematically injecting controllable and traceable errors into initially successful trajectories, we create a rich dataset of realistic failures. This is achieved using a context-aware, LLM-based adaptive manipulator that performs sophisticated attacks like prompt injection and response corruption to induce specific, predefined error modes. We demonstrate the value of our dataset by exploring three distinct learning paradigms for the error identification task: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. Our comprehensive experiments show that models trained on AEGIS data achieve substantial improvements across all three learning paradigms. Notably, several of our fine-tuned models demonstrate performance competitive with or superior to proprietary systems an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems. Our project website is available at https://kfq20.github.io/AEGIS-Website.

  • 10 authors
·
Sep 16

Defeating Proactive Jammers Using Deep Reinforcement Learning for Resource-Constrained IoT Networks

Traditional anti-jamming techniques like spread spectrum, adaptive power/rate control, and cognitive radio, have demonstrated effectiveness in mitigating jamming attacks. However, their robustness against the growing complexity of internet-of-thing (IoT) networks and diverse jamming attacks is still limited. To address these challenges, machine learning (ML)-based techniques have emerged as promising solutions. By offering adaptive and intelligent anti-jamming capabilities, ML-based approaches can effectively adapt to dynamic attack scenarios and overcome the limitations of traditional methods. In this paper, we propose a deep reinforcement learning (DRL)-based approach that utilizes state input from realistic wireless network interface cards. We train five different variants of deep Q-network (DQN) agents to mitigate the effects of jamming with the aim of identifying the most sample-efficient, lightweight, robust, and least complex agent that is tailored for power-constrained devices. The simulation results demonstrate the effectiveness of the proposed DRL-based anti-jamming approach against proactive jammers, regardless of their jamming strategy which eliminates the need for a pattern recognition or jamming strategy detection step. Our findings present a promising solution for securing IoT networks against jamming attacks and highlights substantial opportunities for continued investigation and advancement within this field.

  • 3 authors
·
Jul 13, 2023

Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL

Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.

  • 4 authors
·
May 26, 2023

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks

Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution? In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: (1) high-performing, achieving superior results on MMLU with accuracy at 84.50% and on HumanEval with pass@1 at 89.90%; (2) task-adaptive, architecting communication protocols tailored to task difficulty, reducing token consumption by up to 95.33% on HumanEval; and (3) adversarially robust, defending against agent adversarial attacks with merely 0.3% accuracy drop.

  • 9 authors
·
Oct 15, 2024

A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System

Components of cyber physical systems, which affect real-world processes, are often exposed to the internet. Replacing conventional control methods with Deep Reinforcement Learning (DRL) in energy systems is an active area of research, as these systems become increasingly complex with the advent of renewable energy sources and the desire to improve their efficiency. Artificial Neural Networks (ANN) are vulnerable to specific perturbations of their inputs or features, called adversarial examples. These perturbations are difficult to detect when properly regularized, but have significant effects on the ANN's output. Because DRL uses ANN to map optimal actions to observations, they are similarly vulnerable to adversarial examples. This work proposes a novel attack technique for continuous control using Group Difference Logits loss with a bifurcation layer. By combining aspects of targeted and untargeted attacks, the attack significantly increases the impact compared to an untargeted attack, with drastically smaller distortions than an optimally targeted attack. We demonstrate the impacts of powerful gradient-based attacks in a realistic smart energy environment, show how the impacts change with different DRL agents and training procedures, and use statistical and time-series analysis to evaluate attacks' stealth. The results show that adversarial attacks can have significant impacts on DRL controllers, and constraining an attack's perturbations makes it difficult to detect. However, certain DRL architectures are far more robust, and robust training methods can further reduce the impact.

  • 3 authors
·
Jul 6, 2024

Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment

To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.

  • 2 authors
·
Nov 15, 2023

Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates

This paper tackles optimization problems whose objective and constraints involve a trained Neural Network (NN), where the goal is to maximize f(Phi(x)) subject to c(Phi(x)) leq 0, with f smooth, c general and non-stringent, and Phi an already trained and possibly nonwhite-box NN. We address two challenges regarding this problem: identifying ascent directions for local search, and ensuring reliable convergence towards relevant local solutions. To this end, we re-purpose the notion of directional NN attacks as efficient optimization subroutines, since directional NN attacks use the neural structure of Phi to compute perturbations of x that steer Phi(x) in prescribed directions. Precisely, we develop an attack operator that computes attacks of Phi at any x along the direction nabla f(Phi(x)). Then, we propose a hybrid algorithm combining the attack operator with derivative-free optimization (DFO) techniques, designed for numerical reliability by remaining oblivious to the structure of the problem. We consider the cDSM algorithm, which offers asymptotic guarantees to converge to a local solution under mild assumptions on the problem. The resulting method alternates between attack-based steps for heuristic yet fast local intensification and cDSM steps for certified convergence and numerical reliability. Experiments on three problems show that this hybrid approach consistently outperforms standard DFO baselines.

  • 2 authors
·
Oct 1

BadRAG: Identifying Vulnerabilities in Retrieval Augmented Generation of Large Language Models

Large Language Models (LLMs) are constrained by outdated information and a tendency to generate incorrect data, commonly referred to as "hallucinations." Retrieval-Augmented Generation (RAG) addresses these limitations by combining the strengths of retrieval-based methods and generative models. This approach involves retrieving relevant information from a large, up-to-date dataset and using it to enhance the generation process, leading to more accurate and contextually appropriate responses. Despite its benefits, RAG introduces a new attack surface for LLMs, particularly because RAG databases are often sourced from public data, such as the web. In this paper, we propose to identify the vulnerabilities and attacks on retrieval parts (RAG database) and their indirect attacks on generative parts (LLMs). Specifically, we identify that poisoning several customized content passages could achieve a retrieval backdoor, where the retrieval works well for clean queries but always returns customized poisoned adversarial queries. Triggers and poisoned passages can be highly customized to implement various attacks. For example, a trigger could be a semantic group like "The Republican Party, Donald Trump, etc." Adversarial passages can be tailored to different contents, not only linked to the triggers but also used to indirectly attack generative LLMs without modifying them. These attacks can include denial-of-service attacks on RAG and semantic steering attacks on LLM generations conditioned by the triggers. Our experiments demonstrate that by just poisoning 10 adversarial passages can induce 98.2\% success rate to retrieve the adversarial passages. Then, these passages can increase the reject ratio of RAG-based GPT-4 from 0.01\% to 74.6\% or increase the rate of negative responses from 0.22\% to 72\% for targeted queries.

  • 6 authors
·
Jun 2, 2024

Character-Level Perturbations Disrupt LLM Watermarks

Large Language Model (LLM) watermarking embeds detectable signals into generated text for copyright protection, misuse prevention, and content detection. While prior studies evaluate robustness using watermark removal attacks, these methods are often suboptimal, creating the misconception that effective removal requires large perturbations or powerful adversaries. To bridge the gap, we first formalize the system model for LLM watermark, and characterize two realistic threat models constrained on limited access to the watermark detector. We then analyze how different types of perturbation vary in their attack range, i.e., the number of tokens they can affect with a single edit. We observe that character-level perturbations (e.g., typos, swaps, deletions, homoglyphs) can influence multiple tokens simultaneously by disrupting the tokenization process. We demonstrate that character-level perturbations are significantly more effective for watermark removal under the most restrictive threat model. We further propose guided removal attacks based on the Genetic Algorithm (GA) that uses a reference detector for optimization. Under a practical threat model with limited black-box queries to the watermark detector, our method demonstrates strong removal performance. Experiments confirm the superiority of character-level perturbations and the effectiveness of the GA in removing watermarks under realistic constraints. Additionally, we argue there is an adversarial dilemma when considering potential defenses: any fixed defense can be bypassed by a suitable perturbation strategy. Motivated by this principle, we propose an adaptive compound character-level attack. Experimental results show that this approach can effectively defeat the defenses. Our findings highlight significant vulnerabilities in existing LLM watermark schemes and underline the urgency for the development of new robust mechanisms.

MultiPhishGuard: An LLM-based Multi-Agent System for Phishing Email Detection

Phishing email detection faces critical challenges from evolving adversarial tactics and heterogeneous attack patterns. Traditional detection methods, such as rule-based filters and denylists, often struggle to keep pace with these evolving tactics, leading to false negatives and compromised security. While machine learning approaches have improved detection accuracy, they still face challenges adapting to novel phishing strategies. We present MultiPhishGuard, a dynamic LLM-based multi-agent detection system that synergizes specialized expertise with adversarial-aware reinforcement learning. Our framework employs five cooperative agents (text, URL, metadata, explanation simplifier, and adversarial agents) with automatically adjusted decision weights powered by a Proximal Policy Optimization reinforcement learning algorithm. To address emerging threats, we introduce an adversarial training loop featuring an adversarial agent that generates subtle context-aware email variants, creating a self-improving defense ecosystem and enhancing system robustness. Experimental evaluations on public datasets demonstrate that MultiPhishGuard significantly outperforms Chain-of-Thoughts, single-agent baselines and state-of-the-art detectors, as validated by ablation studies and comparative analyses. Experiments demonstrate that MultiPhishGuard achieves high accuracy (97.89\%) with low false positive (2.73\%) and false negative rates (0.20\%). Additionally, we incorporate an explanation simplifier agent, which provides users with clear and easily understandable explanations for why an email is classified as phishing or legitimate. This work advances phishing defense through dynamic multi-agent collaboration and generative adversarial resilience.

  • 4 authors
·
May 26

Topic-oriented Adversarial Attacks against Black-box Neural Ranking Models

Neural ranking models (NRMs) have attracted considerable attention in information retrieval. Unfortunately, NRMs may inherit the adversarial vulnerabilities of general neural networks, which might be leveraged by black-hat search engine optimization practitioners. Recently, adversarial attacks against NRMs have been explored in the paired attack setting, generating an adversarial perturbation to a target document for a specific query. In this paper, we focus on a more general type of perturbation and introduce the topic-oriented adversarial ranking attack task against NRMs, which aims to find an imperceptible perturbation that can promote a target document in ranking for a group of queries with the same topic. We define both static and dynamic settings for the task and focus on decision-based black-box attacks. We propose a novel framework to improve topic-oriented attack performance based on a surrogate ranking model. The attack problem is formalized as a Markov decision process (MDP) and addressed using reinforcement learning. Specifically, a topic-oriented reward function guides the policy to find a successful adversarial example that can be promoted in rankings to as many queries as possible in a group. Experimental results demonstrate that the proposed framework can significantly outperform existing attack strategies, and we conclude by re-iterating that there exist potential risks for applying NRMs in the real world.

  • 7 authors
·
Apr 28, 2023

BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation

Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.

  • 7 authors
·
Apr 23

One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image

Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.

  • 6 authors
·
Apr 2

Guardians of the Agentic System: Preventing Many Shots Jailbreak with Agentic System

The autonomous AI agents using large language models can create undeniable values in all span of the society but they face security threats from adversaries that warrants immediate protective solutions because trust and safety issues arise. Considering the many-shot jailbreaking and deceptive alignment as some of the main advanced attacks, that cannot be mitigated by the static guardrails used during the supervised training, points out a crucial research priority for real world robustness. The combination of static guardrails in dynamic multi-agent system fails to defend against those attacks. We intend to enhance security for LLM-based agents through the development of new evaluation frameworks which identify and counter threats for safe operational deployment. Our work uses three examination methods to detect rogue agents through a Reverse Turing Test and analyze deceptive alignment through multi-agent simulations and develops an anti-jailbreaking system by testing it with GEMINI 1.5 pro and llama-3.3-70B, deepseek r1 models using tool-mediated adversarial scenarios. The detection capabilities are strong such as 94\% accuracy for GEMINI 1.5 pro yet the system suffers persistent vulnerabilities when under long attacks as prompt length increases attack success rates (ASR) and diversity metrics become ineffective in prediction while revealing multiple complex system faults. The findings demonstrate the necessity of adopting flexible security systems based on active monitoring that can be performed by the agents themselves together with adaptable interventions by system admin as the current models can create vulnerabilities that can lead to the unreliable and vulnerable system. So, in our work, we try to address such situations and propose a comprehensive framework to counteract the security issues.

  • 6 authors
·
Feb 23 2

MADation: Face Morphing Attack Detection with Foundation Models

Despite the considerable performance improvements of face recognition algorithms in recent years, the same scientific advances responsible for this progress can also be used to create efficient ways to attack them, posing a threat to their secure deployment. Morphing attack detection (MAD) systems aim to detect a specific type of threat, morphing attacks, at an early stage, preventing them from being considered for verification in critical processes. Foundation models (FM) learn from extensive amounts of unlabeled data, achieving remarkable zero-shot generalization to unseen domains. Although this generalization capacity might be weak when dealing with domain-specific downstream tasks such as MAD, FMs can easily adapt to these settings while retaining the built-in knowledge acquired during pre-training. In this work, we recognize the potential of FMs to perform well in the MAD task when properly adapted to its specificities. To this end, we adapt FM CLIP architectures with LoRA weights while simultaneously training a classification header. The proposed framework, MADation surpasses our alternative FM and transformer-based frameworks and constitutes the first adaption of FMs to the MAD task. MADation presents competitive results with current MAD solutions in the literature and even surpasses them in several evaluation scenarios. To encourage reproducibility and facilitate further research in MAD, we publicly release the implementation of MADation at https: //github.com/gurayozgur/MADation

  • 7 authors
·
Jan 7

Think Twice, Generate Once: Safeguarding by Progressive Self-Reflection

Large language models (LLMs) have revolutionized natural language processing with their ability to generate coherent and contextually relevant text. However, their deployment raises significant concerns about the potential for generating harmful or inappropriate content. In this paper, we introduce Progressive Self-Reflection (PSR), a novel inference-time technique that empowers LLMs to self-monitor and correct their outputs dynamically. Experimental results demonstrate that applying our proposed method to Llama-3.1-8B-Instruct reduces the attack success rate from 77.5\% to 5.9\%, to Llama-3.1-8B base from 89.7\% to 5.6\%, and to Qwen2.5-7B-Instruct from 44.4\% to 3.8\%, without additional training, while maintaining their original performance on benign tasks. Our approach acts as a test-time scaling method, where additional self-reflection rounds enhance safety at the cost of inference overhead. To balance safety with computational efficiency, we introduce a lightweight self-reflection predictor that estimates the optimal number of reflection rounds based on input complexity. This adaptive mechanism prevents unnecessary self-assessment on benign inputs while ensuring thorough evaluation when encountering potentially harmful content. Our findings suggest that Progressive Self-Reflection serves as a scalable test-time approach, enhancing LLM safety by dynamically allocating computational resources in proportion to the input's risk profile.

  • 3 authors
·
Sep 29

Your Attack Is Too DUMB: Formalizing Attacker Scenarios for Adversarial Transferability

Evasion attacks are a threat to machine learning models, where adversaries attempt to affect classifiers by injecting malicious samples. An alarming side-effect of evasion attacks is their ability to transfer among different models: this property is called transferability. Therefore, an attacker can produce adversarial samples on a custom model (surrogate) to conduct the attack on a victim's organization later. Although literature widely discusses how adversaries can transfer their attacks, their experimental settings are limited and far from reality. For instance, many experiments consider both attacker and defender sharing the same dataset, balance level (i.e., how the ground truth is distributed), and model architecture. In this work, we propose the DUMB attacker model. This framework allows analyzing if evasion attacks fail to transfer when the training conditions of surrogate and victim models differ. DUMB considers the following conditions: Dataset soUrces, Model architecture, and the Balance of the ground truth. We then propose a novel testbed to evaluate many state-of-the-art evasion attacks with DUMB; the testbed consists of three computer vision tasks with two distinct datasets each, four types of balance levels, and three model architectures. Our analysis, which generated 13K tests over 14 distinct attacks, led to numerous novel findings in the scope of transferable attacks with surrogate models. In particular, mismatches between attackers and victims in terms of dataset source, balance levels, and model architecture lead to non-negligible loss of attack performance.

  • 5 authors
·
Jun 27, 2023

No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data

Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.

  • 6 authors
·
Feb 26

DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness

Machine Learning (ML) models have been utilized for malware detection for over two decades. Consequently, this ignited an ongoing arms race between malware authors and antivirus systems, compelling researchers to propose defenses for malware-detection models against evasion attacks. However, most if not all existing defenses against evasion attacks suffer from sizable performance degradation and/or can defend against only specific attacks, which makes them less practical in real-world settings. In this work, we develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection. Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables. After showing how DRSM is theoretically robust against attacks with contiguous adversarial bytes, we verify its performance and certified robustness experimentally, where we observe only marginal accuracy drops as the cost of robustness. To our knowledge, we are the first to offer certified robustness in the realm of static detection of malware executables. More surprisingly, through evaluating DRSM against 9 empirical attacks of different types, we observe that the proposed defense is empirically robust to some extent against a diverse set of attacks, some of which even fall out of the scope of its original threat model. In addition, we collected 15.5K recent benign raw executables from diverse sources, which will be made public as a dataset called PACE (Publicly Accessible Collection(s) of Executables) to alleviate the scarcity of publicly available benign datasets for studying malware detection and provide future research with more representative data of the time.

  • 5 authors
·
Mar 20, 2023

Intriguing Properties of Adversarial Examples

It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.

  • 4 authors
·
Nov 8, 2017