- HateBR: A Large Expert Annotated Corpus of Brazilian Instagram Comments for Offensive Language and Hate Speech Detection Due to the severity of the social media offensive and hateful comments in Brazil, and the lack of research in Portuguese, this paper provides the first large-scale expert annotated corpus of Brazilian Instagram comments for hate speech and offensive language detection. The HateBR corpus was collected from the comment section of Brazilian politicians' accounts on Instagram and manually annotated by specialists, reaching a high inter-annotator agreement. The corpus consists of 7,000 documents annotated according to three different layers: a binary classification (offensive versus non-offensive comments), offensiveness-level classification (highly, moderately, and slightly offensive), and nine hate speech groups (xenophobia, racism, homophobia, sexism, religious intolerance, partyism, apology for the dictatorship, antisemitism, and fatphobia). We also implemented baseline experiments for offensive language and hate speech detection and compared them with a literature baseline. Results show that the baseline experiments on our corpus outperform the current state-of-the-art for the Portuguese language. 5 authors · Mar 27, 2021
- A Large Self-Annotated Corpus for Sarcasm We introduce the Self-Annotated Reddit Corpus (SARC), a large corpus for sarcasm research and for training and evaluating systems for sarcasm detection. The corpus has 1.3 million sarcastic statements -- 10 times more than any previous dataset -- and many times more instances of non-sarcastic statements, allowing for learning in both balanced and unbalanced label regimes. Each statement is furthermore self-annotated -- sarcasm is labeled by the author, not an independent annotator -- and provided with user, topic, and conversation context. We evaluate the corpus for accuracy, construct benchmarks for sarcasm detection, and evaluate baseline methods. 3 authors · Apr 18, 2017
2 The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc. 5 authors · May 28, 2024
- Health Text Simplification: An Annotated Corpus for Digestive Cancer Education and Novel Strategies for Reinforcement Learning Objective: The reading level of health educational materials significantly influences the understandability and accessibility of the information, particularly for minoritized populations. Many patient educational resources surpass the reading level and complexity of widely accepted standards. There is a critical need for high-performing text simplification models in health information to enhance dissemination and literacy. This need is particularly acute in cancer education, where effective prevention and screening education can substantially reduce morbidity and mortality. Methods: We introduce Simplified Digestive Cancer (SimpleDC), a parallel corpus of cancer education materials tailored for health text simplification research, comprising educational content from the American Cancer Society, Centers for Disease Control and Prevention, and National Cancer Institute. Utilizing SimpleDC alongside the existing Med-EASi corpus, we explore Large Language Model (LLM)-based simplification methods, including fine-tuning, reinforcement learning (RL), reinforcement learning with human feedback (RLHF), domain adaptation, and prompt-based approaches. Our experimentation encompasses Llama 2 and GPT-4. A novel RLHF reward function is introduced, featuring a lightweight model adept at distinguishing between original and simplified texts, thereby enhancing the model's effectiveness with unlabeled data. Results: Fine-tuned Llama 2 models demonstrated high performance across various metrics. Our innovative RLHF reward function surpassed existing RL text simplification reward functions in effectiveness. The results underscore that RL/RLHF can augment fine-tuning, facilitating model training on unlabeled text and improving performance. 6 authors · Jan 26, 2024
- Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings -- words from one language that are introduced into another without orthographic adaptation -- and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model. 2 authors · Mar 30, 2022
- FRACAS: A FRench Annotated Corpus of Attribution relations in newS Quotation extraction is a widely useful task both from a sociological and from a Natural Language Processing perspective. However, very little data is available to study this task in languages other than English. In this paper, we present a manually annotated corpus of 1676 newswire texts in French for quotation extraction and source attribution. We first describe the composition of our corpus and the choices that were made in selecting the data. We then detail the annotation guidelines and annotation process, as well as a few statistics about the final corpus and the obtained balance between quote types (direct, indirect and mixed, which are particularly challenging). We end by detailing our inter-annotator agreement between the 8 annotators who worked on manual labelling, which is substantially high for such a difficult linguistic phenomenon. 3 authors · Sep 19, 2023
- CAMS: An Annotated Corpus for Causal Analysis of Mental Health Issues in Social Media Posts Research community has witnessed substantial growth in the detection of mental health issues and their associated reasons from analysis of social media. We introduce a new dataset for Causal Analysis of Mental health issues in Social media posts (CAMS). Our contributions for causal analysis are two-fold: causal interpretation and causal categorization. We introduce an annotation schema for this task of causal analysis. We demonstrate the efficacy of our schema on two different datasets: (i) crawling and annotating 3155 Reddit posts and (ii) re-annotating the publicly available SDCNL dataset of 1896 instances for interpretable causal analysis. We further combine these into the CAMS dataset and make this resource publicly available along with associated source code: https://github.com/drmuskangarg/CAMS. We present experimental results of models learned from CAMS dataset and demonstrate that a classic Logistic Regression model outperforms the next best (CNN-LSTM) model by 4.9\% accuracy. 7 authors · Jul 11, 2022
- ScisummNet: A Large Annotated Corpus and Content-Impact Models for Scientific Paper Summarization with Citation Networks Scientific article summarization is challenging: large, annotated corpora are not available, and the summary should ideally include the article's impacts on research community. This paper provides novel solutions to these two challenges. We 1) develop and release the first large-scale manually-annotated corpus for scientific papers (on computational linguistics) by enabling faster annotation, and 2) propose summarization methods that integrate the authors' original highlights (abstract) and the article's actual impacts on the community (citations), to create comprehensive, hybrid summaries. We conduct experiments to demonstrate the efficacy of our corpus in training data-driven models for scientific paper summarization and the advantage of our hybrid summaries over abstracts and traditional citation-based summaries. Our large annotated corpus and hybrid methods provide a new framework for scientific paper summarization research. 7 authors · Sep 4, 2019
- A large annotated corpus for learning natural language inference Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time. 4 authors · Aug 21, 2015
- NUBES: A Corpus of Negation and Uncertainty in Spanish Clinical Texts This paper introduces the first version of the NUBes corpus (Negation and Uncertainty annotations in Biomedical texts in Spanish). The corpus is part of an on-going research and currently consists of 29,682 sentences obtained from anonymised health records annotated with negation and uncertainty. The article includes an exhaustive comparison with similar corpora in Spanish, and presents the main annotation and design decisions. Additionally, we perform preliminary experiments using deep learning algorithms to validate the annotated dataset. As far as we know, NUBes is the largest publicly available corpus for negation in Spanish and the first that also incorporates the annotation of speculation cues, scopes, and events. 4 authors · Apr 2, 2020
3 Cross-lingual Named Entity Corpus for Slavic Languages This paper presents a corpus manually annotated with named entities for six Slavic languages - Bulgarian, Czech, Polish, Slovenian, Russian, and Ukrainian. This work is the result of a series of shared tasks, conducted in 2017-2023 as a part of the Workshops on Slavic Natural Language Processing. The corpus consists of 5 017 documents on seven topics. The documents are annotated with five classes of named entities. Each entity is described by a category, a lemma, and a unique cross-lingual identifier. We provide two train-tune dataset splits - single topic out and cross topics. For each split, we set benchmarks using a transformer-based neural network architecture with the pre-trained multilingual models - XLM-RoBERTa-large for named entity mention recognition and categorization, and mT5-large for named entity lemmatization and linking. 3 authors · Mar 30, 2024
2 SuperMat: Construction of a linked annotated dataset from superconductors-related publications A growing number of papers are published in the area of superconducting materials science. However, novel text and data mining (TDM) processes are still needed to efficiently access and exploit this accumulated knowledge, paving the way towards data-driven materials design. Herein, we present SuperMat (Superconductor Materials), an annotated corpus of linked data derived from scientific publications on superconductors, which comprises 142 articles, 16052 entities, and 1398 links that are characterised into six categories: the names, classes, and properties of materials; links to their respective superconducting critical temperature (Tc); and parametric conditions such as applied pressure or measurement methods. The construction of SuperMat resulted from a fruitful collaboration between computer scientists and material scientists, and its high quality is ensured through validation by domain experts. The quality of the annotation guidelines was ensured by satisfactory Inter Annotator Agreement (IAA) between the annotators and the domain experts. SuperMat includes the dataset, annotation guidelines, and annotation support tools that use automatic suggestions to help minimise human errors. 12 authors · Jan 7, 2021
- WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus with Rich Annotation for Dialectal Speech Processing The scarcity of large-scale, open-source data for dialects severely hinders progress in speech technology, a challenge particularly acute for the widely spoken Sichuanese dialects of Chinese. To address this critical gap, we introduce WenetSpeech-Chuan, a 10,000-hour, richly annotated corpus constructed using our novel Chuan-Pipeline, a complete data processing framework for dialectal speech. To facilitate rigorous evaluation and demonstrate the corpus's effectiveness, we also release high-quality ASR and TTS benchmarks, WenetSpeech-Chuan-Eval, with manually verified transcriptions. Experiments show that models trained on WenetSpeech-Chuan achieve state-of-the-art performance among open-source systems and demonstrate results comparable to commercial services. As the largest open-source corpus for Sichuanese dialects, WenetSpeech-Chuan not only lowers the barrier to research in dialectal speech processing but also plays a crucial role in promoting AI equity and mitigating bias in speech technologies. The corpus, benchmarks, models, and receipts are publicly available on our project page. 16 authors · Sep 22
- THAI Speech Emotion Recognition (THAI-SER) corpus We present the first sizeable corpus of Thai speech emotion recognition, THAI-SER, containing 41 hours and 36 minutes (27,854 utterances) from 100 recordings made in different recording environments: Zoom and two studio setups. The recordings contain both scripted and improvised sessions, acted by 200 professional actors (112 females and 88 males, aged 18 to 55) and were directed by professional directors. There are five primary emotions: neutral, angry, happy, sad, and frustrated, assigned to the actors when recording utterances. The utterances are annotated with an emotional category using crowdsourcing. To control the annotation process's quality, we also design an extensive filtering and quality control scheme to ensure that the majority agreement score remains above 0.71. We evaluate our annotated corpus using two metrics: inter-annotator reliability and human recognition accuracy. Inter-annotator reliability score was calculated using Krippendorff's alpha, where our corpus, after filtering, achieved an alpha score of 0.692, higher than a recommendation of 0.667. For human recognition accuracy, our corpus scored up to 0.772 post-filtering. We also provide the results of the model trained on the corpus evaluated on both in-corpus and cross-corpus setups. The corpus is publicly available under a Creative Commons BY-SA 4.0, as well as our codes for the experiments. 10 authors · Jul 13
- FCGEC: Fine-Grained Corpus for Chinese Grammatical Error Correction Grammatical Error Correction (GEC) has been broadly applied in automatic correction and proofreading system recently. However, it is still immature in Chinese GEC due to limited high-quality data from native speakers in terms of category and scale. In this paper, we present FCGEC, a fine-grained corpus to detect, identify and correct the grammatical errors. FCGEC is a human-annotated corpus with multiple references, consisting of 41,340 sentences collected mainly from multi-choice questions in public school Chinese examinations. Furthermore, we propose a Switch-Tagger-Generator (STG) baseline model to correct the grammatical errors in low-resource settings. Compared to other GEC benchmark models, experimental results illustrate that STG outperforms them on our FCGEC. However, there exists a significant gap between benchmark models and humans that encourages future models to bridge it. 5 authors · Oct 22, 2022
- The Russian Drug Reaction Corpus and Neural Models for Drug Reactions and Effectiveness Detection in User Reviews The Russian Drug Reaction Corpus (RuDReC) is a new partially annotated corpus of consumer reviews in Russian about pharmaceutical products for the detection of health-related named entities and the effectiveness of pharmaceutical products. The corpus itself consists of two parts, the raw one and the labelled one. The raw part includes 1.4 million health-related user-generated texts collected from various Internet sources, including social media. The labelled part contains 500 consumer reviews about drug therapy with drug- and disease-related information. Labels for sentences include health-related issues or their absence. The sentences with one are additionally labelled at the expression level for identification of fine-grained subtypes such as drug classes and drug forms, drug indications, and drug reactions. Further, we present a baseline model for named entity recognition (NER) and multi-label sentence classification tasks on this corpus. The macro F1 score of 74.85% in the NER task was achieved by our RuDR-BERT model. For the sentence classification task, our model achieves the macro F1 score of 68.82% gaining 7.47% over the score of BERT model trained on Russian data. We make the RuDReC corpus and pretrained weights of domain-specific BERT models freely available at https://github.com/cimm-kzn/RuDReC 6 authors · Apr 7, 2020
- Corpus for Automatic Structuring of Legal Documents In populous countries, pending legal cases have been growing exponentially. There is a need for developing techniques for processing and organizing legal documents. In this paper, we introduce a new corpus for structuring legal documents. In particular, we introduce a corpus of legal judgment documents in English that are segmented into topical and coherent parts. Each of these parts is annotated with a label coming from a list of pre-defined Rhetorical Roles. We develop baseline models for automatically predicting rhetorical roles in a legal document based on the annotated corpus. Further, we show the application of rhetorical roles to improve performance on the tasks of summarization and legal judgment prediction. We release the corpus and baseline model code along with the paper. 7 authors · Jan 31, 2022
- The Text Anonymization Benchmark (TAB): A Dedicated Corpus and Evaluation Framework for Text Anonymization We present a novel benchmark and associated evaluation metrics for assessing the performance of text anonymization methods. Text anonymization, defined as the task of editing a text document to prevent the disclosure of personal information, currently suffers from a shortage of privacy-oriented annotated text resources, making it difficult to properly evaluate the level of privacy protection offered by various anonymization methods. This paper presents TAB (Text Anonymization Benchmark), a new, open-source annotated corpus developed to address this shortage. The corpus comprises 1,268 English-language court cases from the European Court of Human Rights (ECHR) enriched with comprehensive annotations about the personal information appearing in each document, including their semantic category, identifier type, confidential attributes, and co-reference relations. Compared to previous work, the TAB corpus is designed to go beyond traditional de-identification (which is limited to the detection of predefined semantic categories), and explicitly marks which text spans ought to be masked in order to conceal the identity of the person to be protected. Along with presenting the corpus and its annotation layers, we also propose a set of evaluation metrics that are specifically tailored towards measuring the performance of text anonymization, both in terms of privacy protection and utility preservation. We illustrate the use of the benchmark and the proposed metrics by assessing the empirical performance of several baseline text anonymization models. The full corpus along with its privacy-oriented annotation guidelines, evaluation scripts and baseline models are available on: https://github.com/NorskRegnesentral/text-anonymisation-benchmark 6 authors · Jan 25, 2022
- SQUINKY! A Corpus of Sentence-level Formality, Informativeness, and Implicature We introduce a corpus of 7,032 sentences rated by human annotators for formality, informativeness, and implicature on a 1-7 scale. The corpus was annotated using Amazon Mechanical Turk. Reliability in the obtained judgments was examined by comparing mean ratings across two MTurk experiments, and correlation with pilot annotations (on sentence formality) conducted in a more controlled setting. Despite the subjectivity and inherent difficulty of the annotation task, correlations between mean ratings were quite encouraging, especially on formality and informativeness. We further explored correlation between the three linguistic variables, genre-wise variation of ratings and correlations within genres, compatibility with automatic stylistic scoring, and sentential make-up of a document in terms of style. To date, our corpus is the largest sentence-level annotated corpus released for formality, informativeness, and implicature. 1 authors · Jun 7, 2015
3 A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively. 5 authors · Apr 18, 2023
- DirectQuote: A Dataset for Direct Quotation Extraction and Attribution in News Articles Quotation extraction and attribution are challenging tasks, aiming at determining the spans containing quotations and attributing each quotation to the original speaker. Applying this task to news data is highly related to fact-checking, media monitoring and news tracking. Direct quotations are more traceable and informative, and therefore of great significance among different types of quotations. Therefore, this paper introduces DirectQuote, a corpus containing 19,760 paragraphs and 10,279 direct quotations manually annotated from online news media. To the best of our knowledge, this is the largest and most complete corpus that focuses on direct quotations in news texts. We ensure that each speaker in the annotation can be linked to a specific named entity on Wikidata, benefiting various downstream tasks. In addition, for the first time, we propose several sequence labeling models as baseline methods to extract and attribute quotations simultaneously in an end-to-end manner. 2 authors · Oct 14, 2021
- Issue Framing in Online Discussion Fora In online discussion fora, speakers often make arguments for or against something, say birth control, by highlighting certain aspects of the topic. In social science, this is referred to as issue framing. In this paper, we introduce a new issue frame annotated corpus of online discussions. We explore to what extent models trained to detect issue frames in newswire and social media can be transferred to the domain of discussion fora, using a combination of multi-task and adversarial training, assuming only unlabeled training data in the target domain. 4 authors · Apr 8, 2019
29 Vript: A Video Is Worth Thousands of Words Advancements in multimodal learning, particularly in video understanding and generation, require high-quality video-text datasets for improved model performance. Vript addresses this issue with a meticulously annotated corpus of 12K high-resolution videos, offering detailed, dense, and script-like captions for over 420K clips. Each clip has a caption of ~145 words, which is over 10x longer than most video-text datasets. Unlike captions only documenting static content in previous datasets, we enhance video captioning to video scripting by documenting not just the content, but also the camera operations, which include the shot types (medium shot, close-up, etc) and camera movements (panning, tilting, etc). By utilizing the Vript, we explore three training paradigms of aligning more text with the video modality rather than clip-caption pairs. This results in Vriptor, a top-performing video captioning model among open-source models, comparable to GPT-4V in performance. Vriptor is also a powerful model capable of end-to-end generation of dense and detailed captions for long videos. Moreover, we introduce Vript-Hard, a benchmark consisting of three video understanding tasks that are more challenging than existing benchmarks: Vript-HAL is the first benchmark evaluating action and object hallucinations in video LLMs, Vript-RR combines reasoning with retrieval resolving question ambiguity in long-video QAs, and Vript-ERO is a new task to evaluate the temporal understanding of events in long videos rather than actions in short videos in previous works. All code, models, and datasets are available in https://github.com/mutonix/Vript. 8 authors · Jun 10, 2024
1 SemEval 2022 Task 12: Symlink- Linking Mathematical Symbols to their Descriptions Given the increasing number of livestreaming videos, automatic speech recognition and post-processing for livestreaming video transcripts are crucial for efficient data management as well as knowledge mining. A key step in this process is punctuation restoration which restores fundamental text structures such as phrase and sentence boundaries from the video transcripts. This work presents a new human-annotated corpus, called BehancePR, for punctuation restoration in livestreaming video transcripts. Our experiments on BehancePR demonstrate the challenges of punctuation restoration for this domain. Furthermore, we show that popular natural language processing toolkits are incapable of detecting sentence boundary on non-punctuated transcripts of livestreaming videos, calling for more research effort to develop robust models for this area. 4 authors · Feb 19, 2022
- A Search Engine for Discovery of Scientific Challenges and Directions Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/ 11 authors · Aug 31, 2021
6 NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals. 4 authors · Oct 22, 2023 6
2 Adverse Event Extraction from Discharge Summaries: A New Dataset, Annotation Scheme, and Initial Findings In this work, we present a manually annotated corpus for Adverse Event (AE) extraction from discharge summaries of elderly patients, a population often underrepresented in clinical NLP resources. The dataset includes 14 clinically significant AEs-such as falls, delirium, and intracranial haemorrhage, along with contextual attributes like negation, diagnosis type, and in-hospital occurrence. Uniquely, the annotation schema supports both discontinuous and overlapping entities, addressing challenges rarely tackled in prior work. We evaluate multiple models using FlairNLP across three annotation granularities: fine-grained, coarse-grained, and coarse-grained with negation. While transformer-based models (e.g., BERT-cased) achieve strong performance on document-level coarse-grained extraction (F1 = 0.943), performance drops notably for fine-grained entity-level tasks (e.g., F1 = 0.675), particularly for rare events and complex attributes. These results demonstrate that despite high-level scores, significant challenges remain in detecting underrepresented AEs and capturing nuanced clinical language. Developed within a Trusted Research Environment (TRE), the dataset is available upon request via DataLoch and serves as a robust benchmark for evaluating AE extraction methods and supporting future cross-dataset generalisation. 8 authors · Jun 17
1 Selective Vision is the Challenge for Visual Reasoning: A Benchmark for Visual Argument Understanding Visual arguments, often used in advertising or social causes, rely on images to persuade viewers to do or believe something. Understanding these arguments requires selective vision: only specific visual stimuli within an image are relevant to the argument, and relevance can only be understood within the context of a broader argumentative structure. While visual arguments are readily appreciated by human audiences, we ask: are today's AI capable of similar understanding? We collect and release VisArgs, an annotated corpus designed to make explicit the (usually implicit) structures underlying visual arguments. VisArgs includes 1,611 images accompanied by three types of textual annotations: 5,112 visual premises (with region annotations), 5,574 commonsense premises, and reasoning trees connecting them to a broader argument. We propose three tasks over VisArgs to probe machine capacity for visual argument understanding: localization of premises, identification of premises, and deduction of conclusions. Experiments demonstrate that 1) machines cannot fully identify the relevant visual cues. The top-performing model, GPT-4-O, achieved an accuracy of only 78.5%, whereas humans reached 98.0%. All models showed a performance drop, with an average decrease in accuracy of 19.5%, when the comparison set was changed from objects outside the image to irrelevant objects within the image. Furthermore, 2) this limitation is the greatest factor impacting their performance in understanding visual arguments. Most models improved the most when given relevant visual premises as additional inputs, compared to other inputs, for deducing the conclusion of the visual argument. 7 authors · Jun 27, 2024
- arXivEdits: Understanding the Human Revision Process in Scientific Writing Scientific publications are the primary means to communicate research discoveries, where the writing quality is of crucial importance. However, prior work studying the human editing process in this domain mainly focused on the abstract or introduction sections, resulting in an incomplete picture. In this work, we provide a complete computational framework for studying text revision in scientific writing. We first introduce arXivEdits, a new annotated corpus of 751 full papers from arXiv with gold sentence alignment across their multiple versions of revision, as well as fine-grained span-level edits and their underlying intentions for 1,000 sentence pairs. It supports our data-driven analysis to unveil the common strategies practiced by researchers for revising their papers. To scale up the analysis, we also develop automatic methods to extract revision at document-, sentence-, and word-levels. A neural CRF sentence alignment model trained on our corpus achieves 93.8 F1, enabling the reliable matching of sentences between different versions. We formulate the edit extraction task as a span alignment problem, and our proposed method extracts more fine-grained and explainable edits, compared to the commonly used diff algorithm. An intention classifier trained on our dataset achieves 78.9 F1 on the fine-grained intent classification task. Our data and system are released at tiny.one/arxivedits. 3 authors · Oct 26, 2022
- LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke. 5 authors · Oct 2, 2020
- NorNE: Annotating Named Entities for Norwegian This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture. 5 authors · Nov 27, 2019
- That is Unacceptable: the Moral Foundations of Canceling Canceling is a morally-driven phenomenon that hinders the development of safe social media platforms and contributes to ideological polarization. To address this issue we present the Canceling Attitudes Detection (CADE) dataset, an annotated corpus of canceling incidents aimed at exploring the factors of disagreements in evaluating people canceling attitudes on social media. Specifically, we study the impact of annotators' morality in their perception of canceling, showing that morality is an independent axis for the explanation of disagreement on this phenomenon. Annotator's judgments heavily depend on the type of controversial events and involved celebrities. This shows the need to develop more event-centric datasets to better understand how harms are perpetrated in social media and to develop more aware technologies for their detection. 4 authors · Feb 17
- RTP-LX: Can LLMs Evaluate Toxicity in Multilingual Scenarios? Large language models (LLMs) and small language models (SLMs) are being adopted at remarkable speed, although their safety still remains a serious concern. With the advent of multilingual S/LLMs, the question now becomes a matter of scale: can we expand multilingual safety evaluations of these models with the same velocity at which they are deployed? To this end we introduce RTP-LX, a human-transcreated and human-annotated corpus of toxic prompts and outputs in 28 languages. RTP-LX follows participatory design practices, and a portion of the corpus is especially designed to detect culturally-specific toxic language. We evaluate seven S/LLMs on their ability to detect toxic content in a culturally-sensitive, multilingual scenario. We find that, although they typically score acceptably in terms of accuracy, they have low agreement with human judges when judging holistically the toxicity of a prompt, and have difficulty discerning harm in context-dependent scenarios, particularly with subtle-yet-harmful content (e.g. microagressions, bias). We release of this dataset to contribute to further reduce harmful uses of these models and improve their safe deployment. 33 authors · Apr 22, 2024
- Transfer Learning across Several Centuries: Machine and Historian Integrated Method to Decipher Royal Secretary's Diary A named entity recognition and classification plays the first and foremost important role in capturing semantics in data and anchoring in translation as well as downstream study for history. However, NER in historical text has faced challenges such as scarcity of annotated corpus, multilanguage variety, various noise, and different convention far different from the contemporary language model. This paper introduces Korean historical corpus (Diary of Royal secretary which is named SeungJeongWon) recorded over several centuries and recently added with named entity information as well as phrase markers which historians carefully annotated. We fined-tuned the language model on history corpus, conducted extensive comparative experiments using our language model and pretrained muti-language models. We set up the hypothesis of combination of time and annotation information and tested it based on statistical t test. Our finding shows that phrase markers clearly improve the performance of NER model in predicting unseen entity in documents written far different time period. It also shows that each of phrase marker and corpus-specific trained model does not improve the performance. We discuss the future research directions and practical strategies to decipher the history document. 5 authors · Jun 26, 2023
- ACL-Fig: A Dataset for Scientific Figure Classification Most existing large-scale academic search engines are built to retrieve text-based information. However, there are no large-scale retrieval services for scientific figures and tables. One challenge for such services is understanding scientific figures' semantics, such as their types and purposes. A key obstacle is the need for datasets containing annotated scientific figures and tables, which can then be used for classification, question-answering, and auto-captioning. Here, we develop a pipeline that extracts figures and tables from the scientific literature and a deep-learning-based framework that classifies scientific figures using visual features. Using this pipeline, we built the first large-scale automatically annotated corpus, ACL-Fig, consisting of 112,052 scientific figures extracted from ~56K research papers in the ACL Anthology. The ACL-Fig-Pilot dataset contains 1,671 manually labeled scientific figures belonging to 19 categories. The dataset is accessible at https://huggingface.co/datasets/citeseerx/ACL-fig under a CC BY-NC license. 5 authors · Jan 28, 2023
- Improving BERT Pretraining with Syntactic Supervision Bidirectional masked Transformers have become the core theme in the current NLP landscape. Despite their impressive benchmarks, a recurring theme in recent research has been to question such models' capacity for syntactic generalization. In this work, we seek to address this question by adding a supervised, token-level supertagging objective to standard unsupervised pretraining, enabling the explicit incorporation of syntactic biases into the network's training dynamics. Our approach is straightforward to implement, induces a marginal computational overhead and is general enough to adapt to a variety of settings. We apply our methodology on Lassy Large, an automatically annotated corpus of written Dutch. Our experiments suggest that our syntax-aware model performs on par with established baselines, despite Lassy Large being one order of magnitude smaller than commonly used corpora. 4 authors · Apr 21, 2021
- Is this Dialogue Coherent? Learning from Dialogue Acts and Entities In this work, we investigate the human perception of coherence in open-domain dialogues. In particular, we address the problem of annotating and modeling the coherence of next-turn candidates while considering the entire history of the dialogue. First, we create the Switchboard Coherence (SWBD-Coh) corpus, a dataset of human-human spoken dialogues annotated with turn coherence ratings, where next-turn candidate utterances ratings are provided considering the full dialogue context. Our statistical analysis of the corpus indicates how turn coherence perception is affected by patterns of distribution of entities previously introduced and the Dialogue Acts used. Second, we experiment with different architectures to model entities, Dialogue Acts and their combination and evaluate their performance in predicting human coherence ratings on SWBD-Coh. We find that models combining both DA and entity information yield the best performances both for response selection and turn coherence rating. 2 authors · Jun 17, 2020
- MIMICause: Representation and automatic extraction of causal relation types from clinical notes Understanding causal narratives communicated in clinical notes can help make strides towards personalized healthcare. Extracted causal information from clinical notes can be combined with structured EHR data such as patients' demographics, diagnoses, and medications. This will enhance healthcare providers' ability to identify aspects of a patient's story communicated in the clinical notes and help make more informed decisions. In this work, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different language model based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss' kappa (kappa) score of 0.72, and our model for identification of causal relations achieved a macro F1 score of 0.56 on the test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts. 6 authors · Oct 13, 2021
13 Understanding the Thinking Process of Reasoning Models: A Perspective from Schoenfeld's Episode Theory While Large Reasoning Models (LRMs) generate extensive chain-of-thought reasoning, we lack a principled framework for understanding how these thoughts are structured. In this paper, we introduce a novel approach by applying Schoenfeld's Episode Theory, a classic cognitive framework for human mathematical problem-solving, to analyze the reasoning traces of LRMs. We annotated thousands of sentences and paragraphs from model-generated solutions to math problems using seven cognitive labels (e.g., Plan, Implement, Verify). The result is the first publicly available benchmark for the fine-grained analysis of machine reasoning, including a large annotated corpus and detailed annotation guidebooks. Our preliminary analysis reveals distinct patterns in LRM reasoning, such as the transition dynamics between cognitive states. This framework provides a theoretically grounded methodology for interpreting LRM cognition and enables future work on more controllable and transparent reasoning systems. 9 authors · Sep 18 2
- Understanding Iterative Revision from Human-Written Text Writing is, by nature, a strategic, adaptive, and more importantly, an iterative process. A crucial part of writing is editing and revising the text. Previous works on text revision have focused on defining edit intention taxonomies within a single domain or developing computational models with a single level of edit granularity, such as sentence-level edits, which differ from human's revision cycles. This work describes IteraTeR: the first large-scale, multi-domain, edit-intention annotated corpus of iteratively revised text. In particular, IteraTeR is collected based on a new framework to comprehensively model the iterative text revisions that generalize to various domains of formal writing, edit intentions, revision depths, and granularities. When we incorporate our annotated edit intentions, both generative and edit-based text revision models significantly improve automatic evaluations. Through our work, we better understand the text revision process, making vital connections between edit intentions and writing quality, enabling the creation of diverse corpora to support computational modeling of iterative text revisions. 6 authors · Mar 7, 2022
- Self-Attentive Model for Headline Generation Headline generation is a special type of text summarization task. While the amount of available training data for this task is almost unlimited, it still remains challenging, as learning to generate headlines for news articles implies that the model has strong reasoning about natural language. To overcome this issue, we applied recent Universal Transformer architecture paired with byte-pair encoding technique and achieved new state-of-the-art results on the New York Times Annotated corpus with ROUGE-L F1-score 24.84 and ROUGE-2 F1-score 13.48. We also present the new RIA corpus and reach ROUGE-L F1-score 36.81 and ROUGE-2 F1-score 22.15 on it. 3 authors · Jan 23, 2019
- Sharing emotions at scale: The Vent dataset The continuous and increasing use of social media has enabled the expression of human thoughts, opinions, and everyday actions publicly at an unprecedented scale. We present the Vent dataset, the largest annotated dataset of text, emotions, and social connections to date. It comprises more than 33 millions of posts by nearly a million of users together with their social connections. Each post has an associated emotion. There are 705 different emotions, organized in 63 "emotion categories", forming a two-level taxonomy of affects. Our initial statistical analysis describes the global patterns of activity in the Vent platform, revealing large heterogenities and certain remarkable regularities regarding the use of the different emotions. We focus on the aggregated use of emotions, the temporal activity, and the social network of users, and outline possible methods to infer emotion networks based on the user activity. We also analyze the text and describe the affective landscape of Vent, finding agreements with existing (small scale) annotated corpus in terms of emotion categories and positive/negative valences. Finally, we discuss possible research questions that can be addressed from this unique dataset. 4 authors · Jan 15, 2019
- Annotated Speech Corpus for Low Resource Indian Languages: Awadhi, Bhojpuri, Braj and Magahi In this paper we discuss an in-progress work on the development of a speech corpus for four low-resource Indo-Aryan languages -- Awadhi, Bhojpuri, Braj and Magahi using the field methods of linguistic data collection. The total size of the corpus currently stands at approximately 18 hours (approx. 4-5 hours each language) and it is transcribed and annotated with grammatical information such as part-of-speech tags, morphological features and Universal dependency relationships. We discuss our methodology for data collection in these languages, most of which was done in the middle of the COVID-19 pandemic, with one of the aims being to generate some additional income for low-income groups speaking these languages. In the paper, we also discuss the results of the baseline experiments for automatic speech recognition system in these languages. 9 authors · Jun 26, 2022
- MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits. 5 authors · Oct 24, 2023
- ILiAD: An Interactive Corpus for Linguistic Annotated Data from Twitter Posts Social Media platforms have offered invaluable opportunities for linguistic research. The availability of up-to-date data, coming from any part in the world, and coming from natural contexts, has allowed researchers to study language in real time. One of the fields that has made great use of social media platforms is Corpus Linguistics. There is currently a wide range of projects which have been able to successfully create corpora from social media. In this paper, we present the development and deployment of a linguistic corpus from Twitter posts in English, coming from 26 news agencies and 27 individuals. The main goal was to create a fully annotated English corpus for linguistic analysis. We include information on morphology and syntax, as well as NLP features such as tokenization, lemmas, and n- grams. The information is presented through a range of powerful visualisations for users to explore linguistic patterns in the corpus. With this tool, we aim to contribute to the area of language technologies applied to linguistic research. 1 authors · Jul 22, 2024
- Automatically Annotated Turkish Corpus for Named Entity Recognition and Text Categorization using Large-Scale Gazetteers Turkish Wikipedia Named-Entity Recognition and Text Categorization (TWNERTC) dataset is a collection of automatically categorized and annotated sentences obtained from Wikipedia. We constructed large-scale gazetteers by using a graph crawler algorithm to extract relevant entity and domain information from a semantic knowledge base, Freebase. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 77 different domains. Since automated processes are prone to ambiguity, we also introduce two new content specific noise reduction methodologies. Moreover, we map fine-grained entity types to the equivalent four coarse-grained types: person, loc, org, misc. Eventually, we construct six different dataset versions and evaluate the quality of annotations by comparing ground truths from human annotators. We make these datasets publicly available to support studies on Turkish named-entity recognition (NER) and text categorization (TC). 5 authors · Feb 8, 2017
- MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts This paper presents the formal release of MedMentions, a new manually annotated resource for the recognition of biomedical concepts. What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000 abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over 3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines. In addition to the full corpus, a sub-corpus of MedMentions is also presented, comprising annotations for a subset of UMLS 2017 targeted towards document retrieval. To encourage research in Biomedical Named Entity Recognition and Linking, data splits for training and testing are included in the release, and a baseline model and its metrics for entity linking are also described. 2 authors · Feb 25, 2019
- A Crowd-Annotated Spanish Corpus for Humor Analysis Computational Humor involves several tasks, such as humor recognition, humor generation, and humor scoring, for which it is useful to have human-curated data. In this work we present a corpus of 27,000 tweets written in Spanish and crowd-annotated by their humor value and funniness score, with about four annotations per tweet, tagged by 1,300 people over the Internet. It is equally divided between tweets coming from humorous and non-humorous accounts. The inter-annotator agreement Krippendorff's alpha value is 0.5710. The dataset is available for general use and can serve as a basis for humor detection and as a first step to tackle subjectivity. 5 authors · Oct 2, 2017
- Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks. 6 authors · May 18, 2023
- UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec 2 authors · Mar 31, 2021
- SentiALG: Automated Corpus Annotation for Algerian Sentiment Analysis Data annotation is an important but time-consuming and costly procedure. To sort a text into two classes, the very first thing we need is a good annotation guideline, establishing what is required to qualify for each class. In the literature, the difficulties associated with an appropriate data annotation has been underestimated. In this paper, we present a novel approach to automatically construct an annotated sentiment corpus for Algerian dialect (a Maghrebi Arabic dialect). The construction of this corpus is based on an Algerian sentiment lexicon that is also constructed automatically. The presented work deals with the two widely used scripts on Arabic social media: Arabic and Arabizi. The proposed approach automatically constructs a sentiment corpus containing 8000 messages (where 4000 are dedicated to Arabic and 4000 to Arabizi). The achieved F1-score is up to 72% and 78% for an Arabic and Arabizi test sets, respectively. Ongoing work is aimed at integrating transliteration process for Arabizi messages to further improve the obtained results. 4 authors · Aug 15, 2018
- SentiPers: A Sentiment Analysis Corpus for Persian Sentiment Analysis (SA) is a major field of study in natural language processing, computational linguistics and information retrieval. Interest in SA has been constantly growing in both academia and industry over the recent years. Moreover, there is an increasing need for generating appropriate resources and datasets in particular for low resource languages including Persian. These datasets play an important role in designing and developing appropriate opinion mining platforms using supervised, semi-supervised or unsupervised methods. In this paper, we outline the entire process of developing a manually annotated sentiment corpus, SentiPers, which covers formal and informal written contemporary Persian. To the best of our knowledge, SentiPers is a unique sentiment corpus with such a rich annotation in three different levels including document-level, sentence-level, and entity/aspect-level for Persian. The corpus contains more than 26000 sentences of users opinions from digital product domain and benefits from special characteristics such as quantifying the positiveness or negativity of an opinion through assigning a number within a specific range to any given sentence. Furthermore, we present statistics on various components of our corpus as well as studying the inter-annotator agreement among the annotators. Finally, some of the challenges that we faced during the annotation process will be discussed as well. 5 authors · Jan 23, 2018
- SwissDial: Parallel Multidialectal Corpus of Spoken Swiss German Swiss German is a dialect continuum whose natively acquired dialects significantly differ from the formal variety of the language. These dialects are mostly used for verbal communication and do not have standard orthography. This has led to a lack of annotated datasets, rendering the use of many NLP methods infeasible. In this paper, we introduce the first annotated parallel corpus of spoken Swiss German across 8 major dialects, plus a Standard German reference. Our goal has been to create and to make available a basic dataset for employing data-driven NLP applications in Swiss German. We present our data collection procedure in detail and validate the quality of our corpus by conducting experiments with the recent neural models for speech synthesis. 3 authors · Mar 21, 2021
- Leveraging a New Spanish Corpus for Multilingual and Crosslingual Metaphor Detection The lack of wide coverage datasets annotated with everyday metaphorical expressions for languages other than English is striking. This means that most research on supervised metaphor detection has been published only for that language. In order to address this issue, this work presents the first corpus annotated with naturally occurring metaphors in Spanish large enough to develop systems to perform metaphor detection. The presented dataset, CoMeta, includes texts from various domains, namely, news, political discourse, Wikipedia and reviews. In order to label CoMeta, we apply the MIPVU method, the guidelines most commonly used to systematically annotate metaphor on real data. We use our newly created dataset to provide competitive baselines by fine-tuning several multilingual and monolingual state-of-the-art large language models. Furthermore, by leveraging the existing VUAM English data in addition to CoMeta, we present the, to the best of our knowledge, first cross-lingual experiments on supervised metaphor detection. Finally, we perform a detailed error analysis that explores the seemingly high transfer of everyday metaphor across these two languages and datasets. 2 authors · Oct 19, 2022
- RUSLAN: Russian Spoken Language Corpus for Speech Synthesis We present RUSLAN -- a new open Russian spoken language corpus for the text-to-speech task. RUSLAN contains 22200 audio samples with text annotations -- more than 31 hours of high-quality speech of one person -- being the largest annotated Russian corpus in terms of speech duration for a single speaker. We trained an end-to-end neural network for the text-to-speech task on our corpus and evaluated the quality of the synthesized speech using Mean Opinion Score test. Synthesized speech achieves 4.05 score for naturalness and 3.78 score for intelligibility on a 5-point MOS scale. 3 authors · Jun 26, 2019
- Overview of GUA-SPA at IberLEF 2023: Guarani-Spanish Code Switching Analysis We present the first shared task for detecting and analyzing code-switching in Guarani and Spanish, GUA-SPA at IberLEF 2023. The challenge consisted of three tasks: identifying the language of a token, NER, and a novel task of classifying the way a Spanish span is used in the code-switched context. We annotated a corpus of 1500 texts extracted from news articles and tweets, around 25 thousand tokens, with the information for the tasks. Three teams took part in the evaluation phase, obtaining in general good results for Task 1, and more mixed results for Tasks 2 and 3. 7 authors · Sep 12, 2023
- CorIL: Towards Enriching Indian Language to Indian Language Parallel Corpora and Machine Translation Systems India's linguistic landscape is one of the most diverse in the world, comprising over 120 major languages and approximately 1,600 additional languages, with 22 officially recognized as scheduled languages in the Indian Constitution. Despite recent progress in multilingual neural machine translation (NMT), high-quality parallel corpora for Indian languages remain scarce, especially across varied domains. In this paper, we introduce a large-scale, high-quality annotated parallel corpus covering 11 of these languages : English, Telugu, Hindi, Punjabi, Odia, Kashmiri, Sindhi, Dogri, Kannada, Urdu, and Gujarati comprising a total of 772,000 bi-text sentence pairs. The dataset is carefully curated and systematically categorized into three key domains: Government, Health, and General, to enable domain-aware machine translation research and facilitate effective domain adaptation. To demonstrate the utility of CorIL and establish strong benchmarks for future research, we fine-tune and evaluate several state-of-the-art NMT models, including IndicTrans2, NLLB, and BhashaVerse. Our analysis reveals important performance trends and highlights the corpus's value in probing model capabilities. For instance, the results show distinct performance patterns based on language script, with massively multilingual models showing an advantage on Perso-Arabic scripts (Urdu, Sindhi) while other models excel on Indic scripts. This paper provides a detailed domain-wise performance analysis, offering insights into domain sensitivity and cross-script transfer learning. By publicly releasing CorIL, we aim to significantly improve the availability of high-quality training data for Indian languages and provide a valuable resource for the machine translation research community. 22 authors · Sep 24
- Few-shot Natural Language Generation for Task-Oriented Dialog As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations. 7 authors · Feb 27, 2020
- TuPy-E: detecting hate speech in Brazilian Portuguese social media with a novel dataset and comprehensive analysis of models Social media has become integral to human interaction, providing a platform for communication and expression. However, the rise of hate speech on these platforms poses significant risks to individuals and communities. Detecting and addressing hate speech is particularly challenging in languages like Portuguese due to its rich vocabulary, complex grammar, and regional variations. To address this, we introduce TuPy-E, the largest annotated Portuguese corpus for hate speech detection. TuPy-E leverages an open-source approach, fostering collaboration within the research community. We conduct a detailed analysis using advanced techniques like BERT models, contributing to both academic understanding and practical applications 3 authors · Dec 29, 2023
- DiMB-RE: Mining the Scientific Literature for Diet-Microbiome Associations Motivation: The gut microbiota has recently emerged as a key factor that underpins certain connections between diet and human health. A tremendous amount of knowledge has been amassed from experimental studies on diet, human metabolism and microbiome. However, this evidence remains mostly buried in scientific publications, and biomedical literature mining in this domain remains scarce. We developed DiMB-RE, a comprehensive corpus annotated with 15 entity types (e.g., Nutrient, Microorganism) and 13 relation types (e.g., increases, improves) capturing diet-microbiome associations. We also trained and evaluated state-of-the-art natural language processing (NLP) models for named entity, trigger, and relation extraction as well as factuality detection using DiMB-RE. Results: DiMB-RE consists of 14,450 entities and 4,206 relationships from 165 articles. While NLP models performed reasonably well for named entity recognition (0.760 F_{1}), end-to-end relation extraction performance was modest (0.356 F_{1}), partly due to missed entities and triggers as well as cross-sentence relations. Conclusions: To our knowledge, DiMB-RE is largest and most diverse dataset focusing on diet-microbiome interactions. It can serve as a benchmark corpus for biomedical literature mining. Availability: DiMB-RE and the NLP models are available at https://github.com/ScienceNLP-Lab/DiMB-RE. 5 authors · Sep 29, 2024
- EventNet-ITA: Italian Frame Parsing for Events This paper introduces EventNet-ITA, a large, multi-domain corpus annotated with event frames for Italian, and presents an efficient approach for multi-label Frame Parsing. The approach is then evaluated on the dataset. Covering a wide range of individual, social and historical phenomena, the main contribution of EventNet-ITA is to provide the research community with a resource for textual event mining and a novel and extensive tool for Frame Parsing in Italian. 1 authors · May 18, 2023
- GreenLLaMA: A Framework for Detoxification with Explanations Prior works on detoxification are scattered in the sense that they do not cover all aspects of detoxification needed in a real-world scenario. Notably, prior works restrict the task of developing detoxification models to only a seen subset of platforms, leaving the question of how the models would perform on unseen platforms unexplored. Additionally, these works do not address non-detoxifiability, a phenomenon whereby the toxic text cannot be detoxified without altering the meaning. We propose GreenLLaMA, the first comprehensive end-to-end detoxification framework, which attempts to alleviate the aforementioned limitations. We first introduce a cross-platform pseudo-parallel corpus applying multi-step data processing and generation strategies leveraging ChatGPT. We then train a suite of detoxification models with our cross-platform corpus. We show that our detoxification models outperform the SoTA model trained with human-annotated parallel corpus. We further introduce explanation to promote transparency and trustworthiness. GreenLLaMA additionally offers a unique paraphrase detector especially dedicated for the detoxification task to tackle the non-detoxifiable cases. Through experimental analysis, we demonstrate the effectiveness of our cross-platform corpus and the robustness of GreenLLaMA against adversarial toxicity. 3 authors · Feb 24, 2024
3 Error Typing for Smarter Rewards: Improving Process Reward Models with Error-Aware Hierarchical Supervision Large Language Models (LLMs) are prone to hallucination, especially during multi-hop and reasoning-intensive tasks such as mathematical problem solving. While Outcome Reward Models verify only final answers, Process Reward Models (PRMs) score each intermediate step to steer generation toward coherent solutions. We introduce PathFinder-PRM, a novel hierarchical, error-aware discriminative PRM that first classifies math and consistency errors at each step, then combines these fine-grained signals to estimate step correctness. To train PathFinder-PRM, we construct a 400K-sample dataset by enriching the human-annotated PRM800K corpus and RLHFlow Mistral traces with three-dimensional step-level labels. On PRMBench, PathFinder-PRM achieves a new state-of-the-art PRMScore of 67.7, outperforming the prior best (65.5) while using 3 times less data. When applied to reward guided greedy search, our model yields prm@8 48.3, a +1.5 point gain over the strongest baseline. These results demonstrate that decoupled error detection and reward estimation not only boost fine-grained error detection but also substantially improve end-to-end, reward-guided mathematical reasoning with greater data efficiency. 5 authors · May 26 2
1 MaiBaam Annotation Guidelines This document provides the annotation guidelines for MaiBaam, a Bavarian corpus annotated with part-of-speech (POS) tags and syntactic dependencies. MaiBaam belongs to the Universal Dependencies (UD) project, and our annotations elaborate on the general and German UD version 2 guidelines. In this document, we detail how to preprocess and tokenize Bavarian data, provide an overview of the POS tags and dependencies we use, explain annotation decisions that would also apply to closely related languages like German, and lastly we introduce and motivate decisions that are specific to Bavarian grammar. 4 authors · Mar 9, 2024 1
- This before That: Causal Precedence in the Biomedical Domain Causal precedence between biochemical interactions is crucial in the biomedical domain, because it transforms collections of individual interactions, e.g., bindings and phosphorylations, into the causal mechanisms needed to inform meaningful search and inference. Here, we analyze causal precedence in the biomedical domain as distinct from open-domain, temporal precedence. First, we describe a novel, hand-annotated text corpus of causal precedence in the biomedical domain. Second, we use this corpus to investigate a battery of models of precedence, covering rule-based, feature-based, and latent representation models. The highest-performing individual model achieved a micro F1 of 43 points, approaching the best performers on the simpler temporal-only precedence tasks. Feature-based and latent representation models each outperform the rule-based models, but their performance is complementary to one another. We apply a sieve-based architecture to capitalize on this lack of overlap, achieving a micro F1 score of 46 points. 4 authors · Jun 26, 2016
- ContractNLI: A Dataset for Document-level Natural Language Inference for Contracts Reviewing contracts is a time-consuming procedure that incurs large expenses to companies and social inequality to those who cannot afford it. In this work, we propose "document-level natural language inference (NLI) for contracts", a novel, real-world application of NLI that addresses such problems. In this task, a system is given a set of hypotheses (such as "Some obligations of Agreement may survive termination.") and a contract, and it is asked to classify whether each hypothesis is "entailed by", "contradicting to" or "not mentioned by" (neutral to) the contract as well as identifying "evidence" for the decision as spans in the contract. We annotated and release the largest corpus to date consisting of 607 annotated contracts. We then show that existing models fail badly on our task and introduce a strong baseline, which (1) models evidence identification as multi-label classification over spans instead of trying to predict start and end tokens, and (2) employs more sophisticated context segmentation for dealing with long documents. We also show that linguistic characteristics of contracts, such as negations by exceptions, are contributing to the difficulty of this task and that there is much room for improvement. 2 authors · Oct 4, 2021
- EmoMent: An Emotion Annotated Mental Health Corpus from two South Asian Countries People often utilise online media (e.g., Facebook, Reddit) as a platform to express their psychological distress and seek support. State-of-the-art NLP techniques demonstrate strong potential to automatically detect mental health issues from text. Research suggests that mental health issues are reflected in emotions (e.g., sadness) indicated in a person's choice of language. Therefore, we developed a novel emotion-annotated mental health corpus (EmoMent), consisting of 2802 Facebook posts (14845 sentences) extracted from two South Asian countries - Sri Lanka and India. Three clinical psychology postgraduates were involved in annotating these posts into eight categories, including 'mental illness' (e.g., depression) and emotions (e.g., 'sadness', 'anger'). EmoMent corpus achieved 'very good' inter-annotator agreement of 98.3% (i.e. % with two or more agreement) and Fleiss' Kappa of 0.82. Our RoBERTa based models achieved an F1 score of 0.76 and a macro-averaged F1 score of 0.77 for the first task (i.e. predicting a mental health condition from a post) and the second task (i.e. extent of association of relevant posts with the categories defined in our taxonomy), respectively. 8 authors · Aug 17, 2022
- QASR: QCRI Aljazeera Speech Resource -- A Large Scale Annotated Arabic Speech Corpus We introduce the largest transcribed Arabic speech corpus, QASR, collected from the broadcast domain. This multi-dialect speech dataset contains 2,000 hours of speech sampled at 16kHz crawled from Aljazeera news channel. The dataset is released with lightly supervised transcriptions, aligned with the audio segments. Unlike previous datasets, QASR contains linguistically motivated segmentation, punctuation, speaker information among others. QASR is suitable for training and evaluating speech recognition systems, acoustics- and/or linguistics- based Arabic dialect identification, punctuation restoration, speaker identification, speaker linking, and potentially other NLP modules for spoken data. In addition to QASR transcription, we release a dataset of 130M words to aid in designing and training a better language model. We show that end-to-end automatic speech recognition trained on QASR reports a competitive word error rate compared to the previous MGB-2 corpus. We report baseline results for downstream natural language processing tasks such as named entity recognition using speech transcript. We also report the first baseline for Arabic punctuation restoration. We make the corpus available for the research community. 4 authors · Jun 24, 2021
1 AGB-DE: A Corpus for the Automated Legal Assessment of Clauses in German Consumer Contracts Legal tasks and datasets are often used as benchmarks for the capabilities of language models. However, openly available annotated datasets are rare. In this paper, we introduce AGB-DE, a corpus of 3,764 clauses from German consumer contracts that have been annotated and legally assessed by legal experts. Together with the data, we present a first baseline for the task of detecting potentially void clauses, comparing the performance of an SVM baseline with three fine-tuned open language models and the performance of GPT-3.5. Our results show the challenging nature of the task, with no approach exceeding an F1-score of 0.54. While the fine-tuned models often performed better with regard to precision, GPT-3.5 outperformed the other approaches with regard to recall. An analysis of the errors indicates that one of the main challenges could be the correct interpretation of complex clauses, rather than the decision boundaries of what is permissible and what is not. 2 authors · Jun 10, 2024
- ELCC: the Emergent Language Corpus Collection We introduce the Emergent Language Corpus Collection (ELCC): a collection of corpora generated from open source implementations of emergent communication systems across the literature. These systems include a variety of signalling game environments as well as more complex environments like a social deduction game and embodied navigation. Each corpus is annotated with metadata describing the characteristics of the source system as well as a suite of analyses of the corpus (e.g., size, entropy, average message length, performance as transfer learning data). Currently, research studying emergent languages requires directly running different systems which takes time away from actual analyses of such languages, makes studies which compare diverse emergent languages rare, and presents a barrier to entry for researchers without a background in deep learning. The availability of a substantial collection of well-documented emergent language corpora, then, will enable research which can analyze a wider variety of emergent languages, which more effectively uncovers general principles in emergent communication rather than artifacts of particular environments. We provide some quantitative and qualitative analyses with ELCC to demonstrate potential use cases of the resource in this vein. 2 authors · Jul 4, 2024
- CORAA: a large corpus of spontaneous and prepared speech manually validated for speech recognition in Brazilian Portuguese Automatic Speech recognition (ASR) is a complex and challenging task. In recent years, there have been significant advances in the area. In particular, for the Brazilian Portuguese (BP) language, there were about 376 hours public available for ASR task until the second half of 2020. With the release of new datasets in early 2021, this number increased to 574 hours. The existing resources, however, are composed of audios containing only read and prepared speech. There is a lack of datasets including spontaneous speech, which are essential in different ASR applications. This paper presents CORAA (Corpus of Annotated Audios) v1. with 290.77 hours, a publicly available dataset for ASR in BP containing validated pairs (audio-transcription). CORAA also contains European Portuguese audios (4.69 hours). We also present a public ASR model based on Wav2Vec 2.0 XLSR-53 and fine-tuned over CORAA. Our model achieved a Word Error Rate of 24.18% on CORAA test set and 20.08% on Common Voice test set. When measuring the Character Error Rate, we obtained 11.02% and 6.34% for CORAA and Common Voice, respectively. CORAA corpora were assembled to both improve ASR models in BP with phenomena from spontaneous speech and motivate young researchers to start their studies on ASR for Portuguese. All the corpora are publicly available at https://github.com/nilc-nlp/CORAA under the CC BY-NC-ND 4.0 license. 11 authors · Oct 14, 2021
- The Annotation Guideline of LST20 Corpus This report presents the annotation guideline for LST20, a large-scale corpus with multiple layers of linguistic annotation for Thai language processing. Our guideline consists of five layers of linguistic annotation: word segmentation, POS tagging, named entities, clause boundaries, and sentence boundaries. The dataset complies to the CoNLL-2003-style format for ease of use. LST20 Corpus offers five layers of linguistic annotation as aforementioned. At a large scale, it consists of 3,164,864 words, 288,020 named entities, 248,962 clauses, and 74,180 sentences, while it is annotated with 16 distinct POS tags. All 3,745 documents are also annotated with 15 news genres. Regarding its sheer size, this dataset is considered large enough for developing joint neural models for NLP. With the existence of this publicly available corpus, Thai has become a linguistically rich language for the first time. 9 authors · Aug 11, 2020
- Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen's Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning and AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available. 3 authors · May 19, 2022
2 RuSentNE-2023: Evaluating Entity-Oriented Sentiment Analysis on Russian News Texts The paper describes the RuSentNE-2023 evaluation devoted to targeted sentiment analysis in Russian news texts. The task is to predict sentiment towards a named entity in a single sentence. The dataset for RuSentNE-2023 evaluation is based on the Russian news corpus RuSentNE having rich sentiment-related annotation. The corpus is annotated with named entities and sentiments towards these entities, along with related effects and emotional states. The evaluation was organized using the CodaLab competition framework. The main evaluation measure was macro-averaged measure of positive and negative classes. The best results achieved were of 66% Macro F-measure (Positive+Negative classes). We also tested ChatGPT on the test set from our evaluation and found that the zero-shot answers provided by ChatGPT reached 60% of the F-measure, which corresponds to 4th place in the evaluation. ChatGPT also provided detailed explanations of its conclusion. This can be considered as quite high for zero-shot application. 3 authors · May 28, 2023
- PlantBert: An Open Source Language Model for Plant Science The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science. 8 authors · Jun 10
- Controllable Dialogue Simulation with In-Context Learning Building dialogue systems requires a large corpus of annotated dialogues. Such datasets are usually created via crowdsourcing, which is expensive and time-consuming. In this paper, we propose Dialogic, a novel dialogue simulation method based on large language model in-context learning to automate dataset creation. Seeded with a few annotated dialogues, Dialogic automatically selects in-context examples for demonstration and prompts GPT-3 to generate new dialogues and annotations in a controllable way. Our method can rapidly expand a small set of dialogue data with minimum or zero human involvement and parameter update and is thus much more cost-efficient and time-saving than crowdsourcing. Experimental results on the MultiWOZ dataset demonstrate that training a model on the simulated dialogues leads to even better performance than using the same amount of human-generated dialogues under the challenging low-resource settings, with as few as 85 dialogues as a seed. When enough data is available, our method can still serve as an effective data augmentation method. Human evaluation results also show that our simulated dialogues have near-human fluency and annotation accuracy. The code and data are available at \url{https://github.com/Leezekun/dialogic}. 6 authors · Oct 9, 2022
2 Barack's Wife Hillary: Using Knowledge-Graphs for Fact-Aware Language Modeling Modeling human language requires the ability to not only generate fluent text but also encode factual knowledge. However, traditional language models are only capable of remembering facts seen at training time, and often have difficulty recalling them. To address this, we introduce the knowledge graph language model (KGLM), a neural language model with mechanisms for selecting and copying facts from a knowledge graph that are relevant to the context. These mechanisms enable the model to render information it has never seen before, as well as generate out-of-vocabulary tokens. We also introduce the Linked WikiText-2 dataset, a corpus of annotated text aligned to the Wikidata knowledge graph whose contents (roughly) match the popular WikiText-2 benchmark. In experiments, we demonstrate that the KGLM achieves significantly better performance than a strong baseline language model. We additionally compare different language model's ability to complete sentences requiring factual knowledge, showing that the KGLM outperforms even very large language models in generating facts. 5 authors · Jun 17, 2019
1 ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations The current workflow for Information Extraction (IE) analysts involves the definition of the entities/relations of interest and a training corpus with annotated examples. In this demonstration we introduce a new workflow where the analyst directly verbalizes the entities/relations, which are then used by a Textual Entailment model to perform zero-shot IE. We present the design and implementation of a toolkit with a user interface, as well as experiments on four IE tasks that show that the system achieves very good performance at zero-shot learning using only 5--15 minutes per type of a user's effort. Our demonstration system is open-sourced at https://github.com/BBN-E/ZS4IE . A demonstration video is available at https://vimeo.com/676138340 . 5 authors · Mar 25, 2022
- CleanComedy: Creating Friendly Humor through Generative Techniques Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets. 5 authors · Dec 12, 2024
1 Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos. 6 authors · Jul 5, 2023
1 RED-ACE: Robust Error Detection for ASR using Confidence Embeddings ASR Error Detection (AED) models aim to post-process the output of Automatic Speech Recognition (ASR) systems, in order to detect transcription errors. Modern approaches usually use text-based input, comprised solely of the ASR transcription hypothesis, disregarding additional signals from the ASR model. Instead, we propose to utilize the ASR system's word-level confidence scores for improving AED performance. Specifically, we add an ASR Confidence Embedding (ACE) layer to the AED model's encoder, allowing us to jointly encode the confidence scores and the transcribed text into a contextualized representation. Our experiments show the benefits of ASR confidence scores for AED, their complementary effect over the textual signal, as well as the effectiveness and robustness of ACE for combining these signals. To foster further research, we publish a novel AED dataset consisting of ASR outputs on the LibriSpeech corpus with annotated transcription errors. 4 authors · Mar 14, 2022
- ViWikiFC: Fact-Checking for Vietnamese Wikipedia-Based Textual Knowledge Source Fact-checking is essential due to the explosion of misinformation in the media ecosystem. Although false information exists in every language and country, most research to solve the problem mainly concentrated on huge communities like English and Chinese. Low-resource languages like Vietnamese are necessary to explore corpora and models for fact verification. To bridge this gap, we construct ViWikiFC, the first manual annotated open-domain corpus for Vietnamese Wikipedia Fact Checking more than 20K claims generated by converting evidence sentences extracted from Wikipedia articles. We analyze our corpus through many linguistic aspects, from the new dependency rate, the new n-gram rate, and the new word rate. We conducted various experiments for Vietnamese fact-checking, including evidence retrieval and verdict prediction. BM25 and InfoXLM (Large) achieved the best results in two tasks, with BM25 achieving an accuracy of 88.30% for SUPPORTS, 86.93% for REFUTES, and only 56.67% for the NEI label in the evidence retrieval task, InfoXLM (Large) achieved an F1 score of 86.51%. Furthermore, we also conducted a pipeline approach, which only achieved a strict accuracy of 67.00% when using InfoXLM (Large) and BM25. These results demonstrate that our dataset is challenging for the Vietnamese language model in fact-checking tasks. 4 authors · May 13, 2024
- CsFEVER and CTKFacts: Acquiring Czech data for fact verification In this paper, we examine several methods of acquiring Czech data for automated fact-checking, which is a task commonly modeled as a classification of textual claim veracity w.r.t. a corpus of trusted ground truths. We attempt to collect sets of data in form of a factual claim, evidence within the ground truth corpus, and its veracity label (supported, refuted or not enough info). As a first attempt, we generate a Czech version of the large-scale FEVER dataset built on top of Wikipedia corpus. We take a hybrid approach of machine translation and document alignment; the approach and the tools we provide can be easily applied to other languages. We discuss its weaknesses and inaccuracies, propose a future approach for their cleaning and publish the 127k resulting translations, as well as a version of such dataset reliably applicable for the Natural Language Inference task - the CsFEVER-NLI. Furthermore, we collect a novel dataset of 3,097 claims, which is annotated using the corpus of 2.2M articles of Czech News Agency. We present its extended annotation methodology based on the FEVER approach, and, as the underlying corpus is kept a trade secret, we also publish a standalone version of the dataset for the task of Natural Language Inference we call CTKFactsNLI. We analyze both acquired datasets for spurious cues - annotation patterns leading to model overfitting. CTKFacts is further examined for inter-annotator agreement, thoroughly cleaned, and a typology of common annotator errors is extracted. Finally, we provide baseline models for all stages of the fact-checking pipeline and publish the NLI datasets, as well as our annotation platform and other experimental data. 5 authors · Jan 26, 2022
- A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature We present a corpus of 5,000 richly annotated abstracts of medical articles describing clinical randomized controlled trials. Annotations include demarcations of text spans that describe the Patient population enrolled, the Interventions studied and to what they were Compared, and the Outcomes measured (the `PICO' elements). These spans are further annotated at a more granular level, e.g., individual interventions within them are marked and mapped onto a structured medical vocabulary. We acquired annotations from a diverse set of workers with varying levels of expertise and cost. We describe our data collection process and the corpus itself in detail. We then outline a set of challenging NLP tasks that would aid searching of the medical literature and the practice of evidence-based medicine. 7 authors · Jun 11, 2018
1 SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization This paper introduces the SAMSum Corpus, a new dataset with abstractive dialogue summaries. We investigate the challenges it poses for automated summarization by testing several models and comparing their results with those obtained on a corpus of news articles. We show that model-generated summaries of dialogues achieve higher ROUGE scores than the model-generated summaries of news -- in contrast with human evaluators' judgement. This suggests that a challenging task of abstractive dialogue summarization requires dedicated models and non-standard quality measures. To our knowledge, our study is the first attempt to introduce a high-quality chat-dialogues corpus, manually annotated with abstractive summarizations, which can be used by the research community for further studies. 4 authors · Nov 27, 2019
- APPReddit: a Corpus of Reddit Posts Annotated for Appraisal Despite the large number of computational resources for emotion recognition, there is a lack of data sets relying on appraisal models. According to Appraisal theories, emotions are the outcome of a multi-dimensional evaluation of events. In this paper, we present APPReddit, the first corpus of non-experimental data annotated according to this theory. After describing its development, we compare our resource with enISEAR, a corpus of events created in an experimental setting and annotated for appraisal. Results show that the two corpora can be mapped notwithstanding different typologies of data and annotations schemes. A SVM model trained on APPReddit predicts four appraisal dimensions without significant loss. Merging both corpora in a single training set increases the prediction of 3 out of 4 dimensions. Such findings pave the way to a better performing classification model for appraisal prediction. 6 authors · May 31, 2022
- E-NER -- An Annotated Named Entity Recognition Corpus of Legal Text Identifying named entities such as a person, location or organization, in documents can highlight key information to readers. Training Named Entity Recognition (NER) models requires an annotated data set, which can be a time-consuming labour-intensive task. Nevertheless, there are publicly available NER data sets for general English. Recently there has been interest in developing NER for legal text. However, prior work and experimental results reported here indicate that there is a significant degradation in performance when NER methods trained on a general English data set are applied to legal text. We describe a publicly available legal NER data set, called E-NER, based on legal company filings available from the US Securities and Exchange Commission's EDGAR data set. Training a number of different NER algorithms on the general English CoNLL-2003 corpus but testing on our test collection confirmed significant degradations in accuracy, as measured by the F1-score, of between 29.4\% and 60.4\%, compared to training and testing on the E-NER collection. 3 authors · Dec 19, 2022
- MultiBooked: A Corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification While sentiment analysis has become an established field in the NLP community, research into languages other than English has been hindered by the lack of resources. Although much research in multi-lingual and cross-lingual sentiment analysis has focused on unsupervised or semi-supervised approaches, these still require a large number of resources and do not reach the performance of supervised approaches. With this in mind, we introduce two datasets for supervised aspect-level sentiment analysis in Basque and Catalan, both of which are under-resourced languages. We provide high-quality annotations and benchmarks with the hope that they will be useful to the growing community of researchers working on these languages. 3 authors · Mar 22, 2018
- A Finnish News Corpus for Named Entity Recognition We present a corpus of Finnish news articles with a manually prepared named entity annotation. The corpus consists of 953 articles (193,742 word tokens) with six named entity classes (organization, location, person, product, event, and date). The articles are extracted from the archives of Digitoday, a Finnish online technology news source. The corpus is available for research purposes. We present baseline experiments on the corpus using a rule-based and two deep learning systems on two, in-domain and out-of-domain, test sets. 4 authors · Aug 12, 2019
- The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain This paper presents a new challenging information extraction task in the domain of materials science. We develop an annotation scheme for marking information on experiments related to solid oxide fuel cells in scientific publications, such as involved materials and measurement conditions. With this paper, we publish our annotation guidelines, as well as our SOFC-Exp corpus consisting of 45 open-access scholarly articles annotated by domain experts. A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested named entity recognition and slot filling tasks as well as high annotation quality. We also present strong neural-network based models for a variety of tasks that can be addressed on the basis of our new data set. On all tasks, using BERT embeddings leads to large performance gains, but with increasing task complexity, adding a recurrent neural network on top seems beneficial. Our models will serve as competitive baselines in future work, and analysis of their performance highlights difficult cases when modeling the data and suggests promising research directions. 7 authors · Jun 4, 2020
- S2ORC: The Semantic Scholar Open Research Corpus We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text. 5 authors · Nov 7, 2019
35 Evaluating D-MERIT of Partial-annotation on Information Retrieval Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval. 7 authors · Jun 23, 2024 2
- A Dataset of German Legal Documents for Named Entity Recognition We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx. 3 authors · Mar 29, 2020
1 A Corpus for Detecting High-Context Medical Conditions in Intensive Care Patient Notes Focusing on Frequently Readmitted Patients A crucial step within secondary analysis of electronic health records (EHRs) is to identify the patient cohort under investigation. While EHRs contain medical billing codes that aim to represent the conditions and treatments patients may have, much of the information is only present in the patient notes. Therefore, it is critical to develop robust algorithms to infer patients' conditions and treatments from their written notes. In this paper, we introduce a dataset for patient phenotyping, a task that is defined as the identification of whether a patient has a given medical condition (also referred to as clinical indication or phenotype) based on their patient note. Nursing Progress Notes and Discharge Summaries from the Intensive Care Unit of a large tertiary care hospital were manually annotated for the presence of several high-context phenotypes relevant to treatment and risk of re-hospitalization. This dataset contains 1102 Discharge Summaries and 1000 Nursing Progress Notes. Each Discharge Summary and Progress Note has been annotated by at least two expert human annotators (one clinical researcher and one resident physician). Annotated phenotypes include treatment non-adherence, chronic pain, advanced/metastatic cancer, as well as 10 other phenotypes. This dataset can be utilized for academic and industrial research in medicine and computer science, particularly within the field of medical natural language processing. 10 authors · Mar 6, 2020
2 ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community. 14 authors · Nov 8, 2022
- A Large and Balanced Corpus for Fine-grained Arabic Readability Assessment This paper introduces the Balanced Arabic Readability Evaluation Corpus (BAREC), a large-scale, fine-grained dataset for Arabic readability assessment. BAREC consists of 69,441 sentences spanning 1+ million words, carefully curated to cover 19 readability levels, from kindergarten to postgraduate comprehension. The corpus balances genre diversity, topical coverage, and target audiences, offering a comprehensive resource for evaluating Arabic text complexity. The corpus was fully manually annotated by a large team of annotators. The average pairwise inter-annotator agreement, measured by Quadratic Weighted Kappa, is 81.8%, reflecting a high level of substantial agreement. Beyond presenting the corpus, we benchmark automatic readability assessment across different granularity levels, comparing a range of techniques. Our results highlight the challenges and opportunities in Arabic readability modeling, demonstrating competitive performance across various methods. To support research and education, we make BAREC openly available, along with detailed annotation guidelines and benchmark results. 3 authors · Feb 19
- CoAM: Corpus of All-Type Multiword Expressions Multiword expressions (MWEs) refer to idiomatic sequences of multiple words. MWE identification, i.e., detecting MWEs in text, can play a key role in downstream tasks such as machine translation. Existing datasets for MWE identification are inconsistently annotated, limited to a single type of MWE, or limited in size. To enable reliable and comprehensive evaluation, we created CoAM: Corpus of All-Type Multiword Expressions, a dataset of 1.3K sentences constructed through a multi-step process to enhance data quality consisting of human annotation, human review, and automated consistency checking. MWEs in CoAM are tagged with MWE types, such as Noun and Verb, to enable fine-grained error analysis. Annotations for CoAM were collected using a new interface created with our interface generator, which allows easy and flexible annotation of MWEs in any form, including discontinuous ones. Through experiments using CoAM, we find that a fine-tuned large language model outperforms the current state-of-the-art approach for MWE identification. Furthermore, analysis using our MWE type tagged data reveals that Verb MWEs are easier than Noun MWEs to identify across approaches. 7 authors · Dec 23, 2024
- Sina at FigNews 2024: Multilingual Datasets Annotated with Bias and Propaganda The proliferation of bias and propaganda on social media is an increasingly significant concern, leading to the development of techniques for automatic detection. This article presents a multilingual corpus of 12, 000 Facebook posts fully annotated for bias and propaganda. The corpus was created as part of the FigNews 2024 Shared Task on News Media Narratives for framing the Israeli War on Gaza. It covers various events during the War from October 7, 2023 to January 31, 2024. The corpus comprises 12, 000 posts in five languages (Arabic, Hebrew, English, French, and Hindi), with 2, 400 posts for each language. The annotation process involved 10 graduate students specializing in Law. The Inter-Annotator Agreement (IAA) was used to evaluate the annotations of the corpus, with an average IAA of 80.8% for bias and 70.15% for propaganda annotations. Our team was ranked among the bestperforming teams in both Bias and Propaganda subtasks. The corpus is open-source and available at https://sina.birzeit.edu/fada 5 authors · Jul 12, 2024
- A Diverse Corpus for Evaluating and Developing English Math Word Problem Solvers We present ASDiv (Academia Sinica Diverse MWP Dataset), a diverse (in terms of both language patterns and problem types) English math word problem (MWP) corpus for evaluating the capability of various MWP solvers. Existing MWP corpora for studying AI progress remain limited either in language usage patterns or in problem types. We thus present a new English MWP corpus with 2,305 MWPs that cover more text patterns and most problem types taught in elementary school. Each MWP is annotated with its problem type and grade level (for indicating the level of difficulty). Furthermore, we propose a metric to measure the lexicon usage diversity of a given MWP corpus, and demonstrate that ASDiv is more diverse than existing corpora. Experiments show that our proposed corpus reflects the true capability of MWP solvers more faithfully. 3 authors · Jun 29, 2021
- CODE-ACCORD: A Corpus of Building Regulatory Data for Rule Generation towards Automatic Compliance Checking Automatic Compliance Checking (ACC) within the Architecture, Engineering, and Construction (AEC) sector necessitates automating the interpretation of building regulations to achieve its full potential. However, extracting information from textual rules to convert them to a machine-readable format has been a challenge due to the complexities associated with natural language and the limited resources that can support advanced machine-learning techniques. To address this challenge, we introduce CODE-ACCORD, a unique dataset compiled under the EU Horizon ACCORD project. CODE-ACCORD comprises 862 self-contained sentences extracted from the building regulations of England and Finland. Aligned with our core objective of facilitating information extraction from text for machine-readable rule generation, each sentence was annotated with entities and relations. Entities represent specific components such as "window" and "smoke detectors", while relations denote semantic associations between these entities, collectively capturing the conveyed ideas in natural language. We manually annotated all the sentences using a group of 12 annotators. Each sentence underwent annotations by multiple annotators and subsequently careful data curation to finalise annotations, ensuring their accuracy and reliability, thereby establishing the dataset as a solid ground truth. CODE-ACCORD offers a rich resource for diverse machine learning and natural language processing (NLP) related tasks in ACC, including text classification, entity recognition and relation extraction. To the best of our knowledge, this is the first entity and relation-annotated dataset in compliance checking, which is also publicly available. 14 authors · Mar 4, 2024
- Taec: a Manually annotated text dataset for trait and phenotype extraction and entity linking in wheat breeding literature Wheat varieties show a large diversity of traits and phenotypes. Linking them to genetic variability is essential for shorter and more efficient wheat breeding programs. Newly desirable wheat variety traits include disease resistance to reduce pesticide use, adaptation to climate change, resistance to heat and drought stresses, or low gluten content of grains. Wheat breeding experiments are documented by a large body of scientific literature and observational data obtained in-field and under controlled conditions. The cross-referencing of complementary information from the literature and observational data is essential to the study of the genotype-phenotype relationship and to the improvement of wheat selection. The scientific literature on genetic marker-assisted selection describes much information about the genotype-phenotype relationship. However, the variety of expressions used to refer to traits and phenotype values in scientific articles is a hinder to finding information and cross-referencing it. When trained adequately by annotated examples, recent text mining methods perform highly in named entity recognition and linking in the scientific domain. While several corpora contain annotations of human and animal phenotypes, currently, no corpus is available for training and evaluating named entity recognition and entity-linking methods in plant phenotype literature. The Triticum aestivum trait Corpus is a new gold standard for traits and phenotypes of wheat. It consists of 540 PubMed references fully annotated for trait, phenotype, and species named entities using the Wheat Trait and Phenotype Ontology and the species taxonomy of the National Center for Biotechnology Information. A study of the performance of tools trained on the Triticum aestivum trait Corpus shows that the corpus is suitable for the training and evaluation of named entity recognition and linking. 5 authors · Jan 14, 2024
- Carolina: a General Corpus of Contemporary Brazilian Portuguese with Provenance, Typology and Versioning Information This paper presents the first publicly available version of the Carolina Corpus and discusses its future directions. Carolina is a large open corpus of Brazilian Portuguese texts under construction using web-as-corpus methodology enhanced with provenance, typology, versioning, and text integrality. The corpus aims at being used both as a reliable source for research in Linguistics and as an important resource for Computer Science research on language models, contributing towards removing Portuguese from the set of low-resource languages. Here we present the construction of the corpus methodology, comparing it with other existing methodologies, as well as the corpus current state: Carolina's first public version has 653,322,577 tokens, distributed over 7 broad types. Each text is annotated with several different metadata categories in its header, which we developed using TEI annotation standards. We also present ongoing derivative works and invite NLP researchers to contribute with their own. 14 authors · Mar 28, 2023
- Med-EASi: Finely Annotated Dataset and Models for Controllable Simplification of Medical Texts Automatic medical text simplification can assist providers with patient-friendly communication and make medical texts more accessible, thereby improving health literacy. But curating a quality corpus for this task requires the supervision of medical experts. In this work, we present Med-EASi (textbf{Med}ical dataset for textbf{E}laborative and textbf{A}bstractive textbf{Si}mplification), a uniquely crowdsourced and finely annotated dataset for supervised simplification of short medical texts. Its expert-layman-AI collaborative annotations facilitate controllability over text simplification by marking four kinds of textual transformations: elaboration, replacement, deletion, and insertion. To learn medical text simplification, we fine-tune T5-large with four different styles of input-output combinations, leading to two control-free and two controllable versions of the model. We add two types of controllability into text simplification, by using a multi-angle training approach: position-aware, which uses in-place annotated inputs and outputs, and position-agnostic, where the model only knows the contents to be edited, but not their positions. Our results show that our fine-grained annotations improve learning compared to the unannotated baseline. Furthermore, position-aware control generates better simplification than the position-agnostic one. The data and code are available at https://github.com/Chandrayee/CTRL-SIMP. 4 authors · Feb 17, 2023
- A Bilingual Parallel Corpus with Discourse Annotations Machine translation (MT) has almost achieved human parity at sentence-level translation. In response, the MT community has, in part, shifted its focus to document-level translation. However, the development of document-level MT systems is hampered by the lack of parallel document corpora. This paper describes BWB, a large parallel corpus first introduced in Jiang et al. (2022), along with an annotated test set. The BWB corpus consists of Chinese novels translated by experts into English, and the annotated test set is designed to probe the ability of machine translation systems to model various discourse phenomena. Our resource is freely available, and we hope it will serve as a guide and inspiration for more work in document-level machine translation. 6 authors · Oct 26, 2022
- The Moral Foundations Reddit Corpus Moral framing and sentiment can affect a variety of online and offline behaviors, including donation, pro-environmental action, political engagement, and even participation in violent protests. Various computational methods in Natural Language Processing (NLP) have been used to detect moral sentiment from textual data, but in order to achieve better performances in such subjective tasks, large sets of hand-annotated training data are needed. Previous corpora annotated for moral sentiment have proven valuable, and have generated new insights both within NLP and across the social sciences, but have been limited to Twitter. To facilitate improving our understanding of the role of moral rhetoric, we present the Moral Foundations Reddit Corpus, a collection of 16,123 Reddit comments that have been curated from 12 distinct subreddits, hand-annotated by at least three trained annotators for 8 categories of moral sentiment (i.e., Care, Proportionality, Equality, Purity, Authority, Loyalty, Thin Morality, Implicit/Explicit Morality) based on the updated Moral Foundations Theory (MFT) framework. We use a range of methodologies to provide baseline moral-sentiment classification results for this new corpus, e.g., cross-domain classification and knowledge transfer. 16 authors · Aug 10, 2022
- The JDDC Corpus: A Large-Scale Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task 8 authors · Nov 22, 2019
- BHAAV- A Text Corpus for Emotion Analysis from Hindi Stories In this paper, we introduce the first and largest Hindi text corpus, named BHAAV, which means emotions in Hindi, for analyzing emotions that a writer expresses through his characters in a story, as perceived by a narrator/reader. The corpus consists of 20,304 sentences collected from 230 different short stories spanning across 18 genres such as Inspirational and Mystery. Each sentence has been annotated into one of the five emotion categories - anger, joy, suspense, sad, and neutral, by three native Hindi speakers with at least ten years of formal education in Hindi. We also discuss challenges in the annotation of low resource languages such as Hindi, and discuss the scope of the proposed corpus along with its possible uses. We also provide a detailed analysis of the dataset and train strong baseline classifiers reporting their performances. 6 authors · Oct 9, 2019
- Introducing RONEC -- the Romanian Named Entity Corpus We present RONEC - the Named Entity Corpus for the Romanian language. The corpus contains over 26000 entities in ~5000 annotated sentences, belonging to 16 distinct classes. The sentences have been extracted from a copy-right free newspaper, covering several styles. This corpus represents the first initiative in the Romanian language space specifically targeted for named entity recognition. It is available in BRAT and CoNLL-U Plus formats, and it is free to use and extend at github.com/dumitrescustefan/ronec . 2 authors · Sep 3, 2019
- A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval. 2 authors · Dec 19, 2018
- A Large-Scale Corpus for Conversation Disentanglement Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 80% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research. 9 authors · Oct 25, 2018
- Herald: A Natural Language Annotated Lean 4 Dataset Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon. 7 authors · Oct 9, 2024
- CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have been published on social media. Some of this information can pose a real danger to people's health, particularly when false information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore, automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets, there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities, relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement. Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is more useful than the knowledge indirectly available in pretrained language models. 3 authors · Apr 26, 2022
- Open Source MagicData-RAMC: A Rich Annotated Mandarin Conversational(RAMC) Speech Dataset This paper introduces a high-quality rich annotated Mandarin conversational (RAMC) speech dataset called MagicData-RAMC. The MagicData-RAMC corpus contains 180 hours of conversational speech data recorded from native speakers of Mandarin Chinese over mobile phones with a sampling rate of 16 kHz. The dialogs in MagicData-RAMC are classified into 15 diversified domains and tagged with topic labels, ranging from science and technology to ordinary life. Accurate transcription and precise speaker voice activity timestamps are manually labeled for each sample. Speakers' detailed information is also provided. As a Mandarin speech dataset designed for dialog scenarios with high quality and rich annotations, MagicData-RAMC enriches the data diversity in the Mandarin speech community and allows extensive research on a series of speech-related tasks, including automatic speech recognition, speaker diarization, topic detection, keyword search, text-to-speech, etc. We also conduct several relevant tasks and provide experimental results to help evaluate the dataset. 12 authors · Mar 31, 2022
- The Norwegian Parliamentary Speech Corpus The Norwegian Parliamentary Speech Corpus (NPSC) is a speech dataset with recordings of meetings from Stortinget, the Norwegian parliament. It is the first, publicly available dataset containing unscripted, Norwegian speech designed for training of automatic speech recognition (ASR) systems. The recordings are manually transcribed and annotated with language codes and speakers, and there are detailed metadata about the speakers. The transcriptions exist in both normalized and non-normalized form, and non-standardized words are explicitly marked and annotated with standardized equivalents. To test the usefulness of this dataset, we have compared an ASR system trained on the NPSC with a baseline system trained on only manuscript-read speech. These systems were tested on an independent dataset containing spontaneous, dialectal speech. The NPSC-trained system performed significantly better, with a 22.9% relative improvement in word error rate (WER). Moreover, training on the NPSC is shown to have a "democratizing" effect in terms of dialects, as improvements are generally larger for dialects with higher WER from the baseline system. 2 authors · Jan 26, 2022
- NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria (Hausa, Igbo, Nigerian-Pidgin, and Yor\`ub\'a ) consisting of around 30,000 annotated tweets per language (and 14,000 for Nigerian-Pidgin), including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a rangeof pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptivefine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivizeresearch on sentiment analysis in under-represented languages. 12 authors · Jan 20, 2022
- Annotating the Tweebank Corpus on Named Entity Recognition and Building NLP Models for Social Media Analysis Social media data such as Twitter messages ("tweets") pose a particular challenge to NLP systems because of their short, noisy, and colloquial nature. Tasks such as Named Entity Recognition (NER) and syntactic parsing require highly domain-matched training data for good performance. To date, there is no complete training corpus for both NER and syntactic analysis (e.g., part of speech tagging, dependency parsing) of tweets. While there are some publicly available annotated NLP datasets of tweets, they are only designed for individual tasks. In this study, we aim to create Tweebank-NER, an English NER corpus based on Tweebank V2 (TB2), train state-of-the-art (SOTA) Tweet NLP models on TB2, and release an NLP pipeline called Twitter-Stanza. We annotate named entities in TB2 using Amazon Mechanical Turk and measure the quality of our annotations. We train the Stanza pipeline on TB2 and compare with alternative NLP frameworks (e.g., FLAIR, spaCy) and transformer-based models. The Stanza tokenizer and lemmatizer achieve SOTA performance on TB2, while the Stanza NER tagger, part-of-speech (POS) tagger, and dependency parser achieve competitive performance against non-transformer models. The transformer-based models establish a strong baseline in Tweebank-NER and achieve the new SOTA performance in POS tagging and dependency parsing on TB2. We release the dataset and make both the Stanza pipeline and BERTweet-based models available "off-the-shelf" for use in future Tweet NLP research. Our source code, data, and pre-trained models are available at: https://github.com/social-machines/TweebankNLP. 4 authors · Jan 18, 2022
- speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit. 9 authors · Apr 3, 2021
- A comprehensive review of automatic text summarization techniques: method, data, evaluation and coding We provide a literature review about Automatic Text Summarization (ATS) systems. We consider a citation-based approach. We start with some popular and well-known papers that we have in hand about each topic we want to cover and we have tracked the "backward citations" (papers that are cited by the set of papers we knew beforehand) and the "forward citations" (newer papers that cite the set of papers we knew beforehand). In order to organize the different methods, we present the diverse approaches to ATS guided by the mechanisms they use to generate a summary. Besides presenting the methods, we also present an extensive review of the datasets available for summarization tasks and the methods used to evaluate the quality of the summaries. Finally, we present an empirical exploration of these methods using the CNN Corpus dataset that provides golden summaries for extractive and abstractive methods. 7 authors · Jan 4, 2023
- ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation An automated system that could assist a judge in predicting the outcome of a case would help expedite the judicial process. For such a system to be practically useful, predictions by the system should be explainable. To promote research in developing such a system, we introduce ILDC (Indian Legal Documents Corpus). ILDC is a large corpus of 35k Indian Supreme Court cases annotated with original court decisions. A portion of the corpus (a separate test set) is annotated with gold standard explanations by legal experts. Based on ILDC, we propose the task of Court Judgment Prediction and Explanation (CJPE). The task requires an automated system to predict an explainable outcome of a case. We experiment with a battery of baseline models for case predictions and propose a hierarchical occlusion based model for explainability. Our best prediction model has an accuracy of 78% versus 94% for human legal experts, pointing towards the complexity of the prediction task. The analysis of explanations by the proposed algorithm reveals a significant difference in the point of view of the algorithm and legal experts for explaining the judgments, pointing towards scope for future research. 7 authors · May 27, 2021
- BEEP! Korean Corpus of Online News Comments for Toxic Speech Detection Toxic comments in online platforms are an unavoidable social issue under the cloak of anonymity. Hate speech detection has been actively done for languages such as English, German, or Italian, where manually labeled corpus has been released. In this work, we first present 9.4K manually labeled entertainment news comments for identifying Korean toxic speech, collected from a widely used online news platform in Korea. The comments are annotated regarding social bias and hate speech since both aspects are correlated. The inter-annotator agreement Krippendorff's alpha score is 0.492 and 0.496, respectively. We provide benchmarks using CharCNN, BiLSTM, and BERT, where BERT achieves the highest score on all tasks. The models generally display better performance on bias identification, since the hate speech detection is a more subjective issue. Additionally, when BERT is trained with bias label for hate speech detection, the prediction score increases, implying that bias and hate are intertwined. We make our dataset publicly available and open competitions with the corpus and benchmarks. 3 authors · May 25, 2020