new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

A Machine Learning Framework for Stellar Collision Transient Identification

Modern astronomical surveys, such as the Zwicky Transient Facility (ZTF), are capable of detecting thousands of transient events per year, necessitating the use of automated and scalable data analysis techniques. Recent advances in machine learning have enabled the efficient classification and characterization of these transient phenomena. We aim to develop a fully systematic pipeline to identify candidate stellar collision events in galactic nuclei, which may otherwise be identified as tidal disruption events or other transients. We also seek to validate our simulations by comparing key physical parameters derived from observations and used in modeling these events. We generate a comprehensive bank of simulated light curves spanning a range of physical parameters and employ an approximate nearest neighbor algorithm (via the annoy library) to match these with observed ZTF light curves. Our pipeline is successfully able to associate observed ZTF light curves with simulated events. The resulting estimated parameters, including supermassive black hole masses and ejecta mass, are presented and compared to known values when applicable. We demonstrate that a systematic, machine learning-based approach can effectively identify and characterize stellar collision candidate events from large-scale transient surveys. This methodology is especially promising for future surveys which will provide us with significantly high volumes of data, such as LSST, where automated, data-intensive analysis will be critical for advancing our understanding of transient astrophysical phenomena.

  • 2 authors
·
Apr 15

Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors

Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.

  • 5 authors
·
Jul 29