- CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data Generation Conversational search provides a natural interface for information retrieval (IR). Recent approaches have demonstrated promising results in applying dense retrieval to conversational IR. However, training dense retrievers requires large amounts of in-domain paired data. This hinders the development of conversational dense retrievers, as abundant in-domain conversations are expensive to collect. In this paper, we propose CONVERSER, a framework for training conversational dense retrievers with at most 6 examples of in-domain dialogues. Specifically, we utilize the in-context learning capability of large language models to generate conversational queries given a passage in the retrieval corpus. Experimental results on conversational retrieval benchmarks OR-QuAC and TREC CAsT 19 show that the proposed CONVERSER achieves comparable performance to fully-supervised models, demonstrating the effectiveness of our proposed framework in few-shot conversational dense retrieval. All source code and generated datasets are available at https://github.com/MiuLab/CONVERSER 5 authors · Sep 13, 2023
- ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval Conversational search requires accurate interpretation of user intent from complex multi-turn contexts. This paper presents ChatRetriever, which inherits the strong generalization capability of large language models to robustly represent complex conversational sessions for dense retrieval. To achieve this, we propose a simple and effective dual-learning approach that adapts LLM for retrieval via contrastive learning while enhancing the complex session understanding through masked instruction tuning on high-quality conversational instruction tuning data. Extensive experiments on five conversational search benchmarks demonstrate that ChatRetriever substantially outperforms existing conversational dense retrievers, achieving state-of-the-art performance on par with LLM-based rewriting approaches. Furthermore, ChatRetriever exhibits superior robustness in handling diverse conversational contexts. Our work highlights the potential of adapting LLMs for retrieval with complex inputs like conversational search sessions and proposes an effective approach to advance this research direction. 7 authors · Apr 21, 2024
36 ChatQA: Building GPT-4 Level Conversational QA Models In this work, we introduce ChatQA, a family of conversational question answering (QA) models, that obtain GPT-4 level accuracies. Specifically, we propose a two-stage instruction tuning method that can significantly improve the zero-shot conversational QA results from large language models (LLMs). To handle retrieval in conversational QA, we fine-tune a dense retriever on a multi-turn QA dataset, which provides comparable results to using the state-of-the-art query rewriting model while largely reducing deployment cost. Notably, our ChatQA-70B can outperform GPT-4 in terms of average score on 10 conversational QA datasets (54.14 vs. 53.90), without relying on any synthetic data from OpenAI GPT models. 6 authors · Jan 18, 2024 6
1 ENGRAM: Effective, Lightweight Memory Orchestration for Conversational Agents Large language models (LLMs) deployed in user-facing applications require long-horizon consistency: the ability to remember prior interactions, respect user preferences, and ground reasoning in past events. However, contemporary memory systems often adopt complex architectures such as knowledge graphs, multi-stage retrieval pipelines, and OS-style schedulers, which introduce engineering complexity and reproducibility challenges. We present ENGRAM, a lightweight memory system that organizes conversation into three canonical memory types (episodic, semantic, and procedural) through a single router and retriever. Each user turn is converted into typed memory records with normalized schemas and embeddings and stored in a database. At query time, the system retrieves top-k dense neighbors for each type, merges results with simple set operations, and provides the most relevant evidence as context to the model. ENGRAM attains state-of-the-art results on LoCoMo, a multi-session conversational QA benchmark for long-horizon memory, and exceeds the full-context baseline by 15 points on LongMemEval while using only about 1% of the tokens. These results show that careful memory typing and straightforward dense retrieval can enable effective long-term memory management in language models without requiring complex architectures. 2 authors · Nov 16, 2025