new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Formation of supermassive stars and dense star clusters in metal-poor clouds exposed to strong FUV radiation

The direct collapse scenario, which predicts the formation of supermassive stars (SMSs) as precursors to supermassive black holes (SMBHs), has been explored primarily under the assumption of metal-free conditions. However, environments exposed to strong far-ultraviolet (FUV) radiation, which is another requirement for the direct collapse, are often chemically enriched to varying degrees. In this study, we perform radiation hydrodynamic simulations of star-cluster formation in clouds with finite metallicities, Z=10^{-6} to 10^{-2} Z_{odot}, incorporating detailed thermal and chemical processes and radiative feedback from forming stars. Extending the simulations to approximately two million years, we demonstrate that SMSs with masses exceeding 10^4~M_odot can form even in metal-enriched clouds with Z lesssim 10^{-3} Z_{odot}. The accretion process in these cases, driven by "super-competitive accretion," preferentially channels gas into central massive stars in spite of small (sub-pc) scale fragmentation. At Z simeq 10^{-2} Z_{odot}, however, enhanced cooling leads to intense fragmentation on larger scales, resulting in the formation of dense star clusters dominated by very massive stars with 10^3 M_{odot} rather than SMSs. These clusters resemble young massive or globular clusters observed in the distant and local universe, exhibiting compact morphologies and high stellar surface densities. Our findings suggest that SMS formation is viable below a metallicity threshold of approximately 10^{-3} Z_{odot}, significantly increasing the number density of massive seed black holes to levels sufficient to account for the ubiquitous SMBHs observed in the local universe. Moreover, above this metallicity, this scenario naturally explains the transition from SMS formation to dense stellar cluster formation.

  • 2 authors
·
Dec 19, 2024

Tracing the cosmological origin of gas that fuels in situ star formation in TNG50 galaxies

Based on their cosmological origin, the stars of a galaxy can be divided into two categories: those that enter through merger events (ex situ) and those born in the main progenitor (in situ). We used the TNG50 cosmological magnetohydrodynamical simulation and its Lagrangian tracer particles to explore and quantify the origin of gas that ultimately forms the in situ stars of galaxies. We tracked back the baryonic mass contributing to the z=0 in situ stellar populations of galaxies, studying trends in mass from dwarfs to group-scale halos. We find that more massive halos acquire this matter earlier than lower-mass halos, reflecting an overall earlier assembly of their in situ stellar mass. Defining the Lagrangian half-mass radius R_{rm L, 1/2} of a galaxy as the distance containing half of the mass that will form its in situ stars by z=0, we find that R_{rm L, 1/2} is larger for more massive halos at early times, reflecting larger "in situ Lagrangian regions." However, the dependence of this radius on halo mass becomes flat at z simeq 3 and then inverts toward z=0. In addition, R_{rm L, 1/2} increases rapidly with redshift, surpassing the virial radii of halos at z sim 2. This marks the cosmic epoch at which most of the gas that eventually forms the in situ stars of galaxies leaves the intergalactic medium (IGM) and enters halos, a transition that occurs earlier for more massive halos. The formation redshift of the in situ stellar component increases with halo mass, while the formation redshift of the dark matter halo decreases, indicative of a differential assembly history between these two components. Finally, we decomposed the z=0 in situ stellar mass into its distinct modes of accretion. Smooth accretion from the IGM is the most important for low-mass galaxies, while mergers and satellite-stripped gas become relevant and even dominant only for high-mass galaxies.

  • 3 authors
·
Feb 28

Star Formation Rates, Metallicities, and Stellar Masses on kpc-scales in TNG50

Integral field units (IFU) have extended our knowledge of galactic properties to kpc (or, sometimes, even smaller) patches of galaxies. These scales are where the physics driving galaxy evolution (feedback, chemical enrichment, etc.) take place. Quantifying the spatially-resolved properties of galaxies, both observationally and theoretically, is therefore critical to our understanding of galaxy evolution. To this end, we investigate spatially-resolved scaling relations within central galaxies (M_star>10^{9.0}) at z=0 in IllustrisTNG. We examine both the resolved star-forming main sequence (rSFMS) and the resolved mass-metallicity relation (rMZR) using 1~{rm kpc}times1~{rm kpc} maps of galaxies. We find that the rSFMS in IllustrisTNG is well-described by a power-law, but has some dependence on the host galaxy's mass. Conversely, the rMZR for IllustrisTNG can be described by a single power-law at low stellar mass surface density that flattens at high surface densities and is independent of host galaxy mass. We find quantitative agreement in both the rSFMS and rMZR with recent IFU observational campaigns. Furthermore, we argue that the rSFMS is an indirect result of the Schmidt-Kennicutt (SK) law and local gas fraction relation, which are both independent of host galaxy properties. Finally, we expand upon a localized leaky-box model to study the evolution of idealized spaxels and find that it provides a good description of these resolved relations. The degree of agreement, however, between idealized spaxels and simulated spaxels depends on the `net' outflow rate for the spaxel, and the observed scaling relations indicate a preference for a low net outflow rate.

  • 9 authors
·
Jan 30

How do Massive Primordial Black Holes Impact the Formation of the First Stars and Galaxies?

We investigate the impact of massive primordial black holes (PBHs; m_{rm BH}sim 10^6~M_{odot}) on the star formation and first galaxy assembly process using high-resolution hydrodynamical simulations from z = 1100 to z sim 9. We find that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs accelerate structure formation by seeding dark matter halos and gravitationally attracting gas, but strong feedback can delay cooling and suppress star formation. In addition, the presence of baryon-dark matter streaming creates an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star formation compared to standard LambdaCDM. By z sim 10, PBH-seeded galaxies form dense star clusters, with PBH-to-stellar mass ratios comparable to observed high-z AGN like UHZ-1. Our results support PBHs as viable SMBH seeds but do not exclude alternative scenarios. We emphasize that PBH-seeding provides a natural explanation for some of the newly-discovered overmassive SMBHs at high redshift, in particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels. Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such as SKA and HERA will be critical in distinguishing PBH-driven SMBH growth from other pathways.

  • 6 authors
·
Mar 21

EPOCHS Paper V. The dependence of galaxy formation on galaxy structure at z < 7 from JWST observations

We measure the broad impact of galaxy structure on galaxy formation by examining the ongoing star formation and integrated star formation history as revealed through the stellar masses of galaxies at z < 7 based on JWST CEERS data from the Extended Groth Strip (EGS). Using the morphological catalog of 3965 visually classified JWST galaxies from Ferreira et al. (2023), we investigate the evolution of stars, and when they form, as a function of morphological type as well as galaxies classified as passive and starburst through spectral energy distributions. Although disk galaxies dominate the structures of galaxies at z < 7, we find that these disks are in general either `passive', or on the main-sequence of star formation, and do not contain a large population of starburst galaxies. We also find no significant correlation between morphological type and the star formation rate or colours of galaxies at z < 7. In fact, we find that the morphologically classified `spheroids' tend to be blue and are not found to be predominately passive systems at z > 1.5. We also find that the stellar mass function for disk galaxies does not evolve significantly during this time, whereas other galaxy types, such as the peculiar population, evolve dramatically, declining at lower redshifts. This indicates that massive peculiars are more common at higher redshifts. We further find that up to z sim 7, the specific star formation rate (sSFR) does not vary with visual morphology, but strongly depends on stellar mass and internal galaxy mass density. This demonstrates that at early epochs galaxy assembly is a mass-driven, rather than a morphologically-driven, process. Quenching of star formation is therefore a mass-dominated process throughout the universe's history, likely due to the presence of supermassive black holes.

  • 14 authors
·
May 1, 2024

Exploring the Current Star Formation Rate and Nebula Ratio of Star-Formation Galaxies at z < 0.4 with FADO

The star formation rate is a crucial astrophysical tracer for understanding the formation and evolution of galaxies, determining the interaction between interstellar medium properties and star formation, thereby inferring the evolutionary laws of cosmic star formation history and cosmic energy density. The mainstream approach to studying the stellar property in galaxies relies on pure stellar population synthesis models. However, these methods fail to account for the contamination of SFR caused by nebular gas radiation. Recent studies have indicated that neglecting nebular radiation contamination appears non-negligible in galaxies with intense star-forming activities and at relatively high redshifts, potentially leading to overestimating stellar masses. However, there is currently limited targeted research, particularly regarding galaxies at redshifts (z < 0.4). In this work, 6,511 star-formation galaxies are selected from the SDSS-DR18, and FADO fits their spectra. This tool can exclude nebular radiation contributions in the spectral fitting. A tentative work is carried out to explore the SFR of these galaxies. The results indicate that the median \( H_{\alpha} \) flux obtained from FADO fitting differs from that obtained using the pure stellar population synthesis model {\it qsofitmore} by approximately 0.034 dex. Preliminary evidence suggests that the average nebula ratio increases with redshift. Additionally, we investigated the impact of stellar mass on the nebula ratio at low to moderate redshifts. By comparing two spectral fitting software packages, we found that although the contribution of nebular emission is minimal, it generally shows an increasing trend with redshift. We anticipate that by combining optical and near-infrared spectral data, the influence of nebulae may become more prominent in star-forming galaxies at higher redshifts (e.g., up to z sim 2).

  • 5 authors
·
Apr 11, 2024

First Light And Reionisation Epoch Simulations (FLARES) VII: The Star Formation and Metal Enrichment Histories of Galaxies in the early Universe

The star formation and metal enrichment histories of galaxies - at any epoch - constitute one of the key properties of galaxies, and their measurement is a core aim of observational extragalactic astronomy. The lack of deep rest-frame optical coverage at high-redshift has made robust constraints elusive, but this is now changing thanks to the James Webb Space Telescope (JWST). In preparation for the constraints provided by JWST we explore the star formation and metal enrichment histories of galaxies at z=5-13 using the First Light And Reionisation Epoch Simulations (FLARES) suite. Built on the EAGLE model, the unique strategy of FLARES allows us to simulate a wide range of stellar masses (and luminosities) and environments. While we predict significant redshift evolution of average ages and specific star formation rates our core result is a mostly flat relationship of age and specific star formation rate with stellar mass. We also find that galaxies in this epoch predominantly have strongly rising star formation histories, albeit with the magnitude dropping with redshift and stellar mass. In terms of chemical enrichment we predict a strong stellar mass - metallicity relation present at z=10 and beyond alongside significant alpha-enhancement. Finally, we find no environmental dependence of the relationship between age, specific star formation rate, or metallicity with stellar mass.

  • 11 authors
·
Aug 1, 2022

Universal features of price formation in financial markets: perspectives from Deep Learning

Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.

  • 2 authors
·
Mar 19, 2018

Origin of Phobos and Deimos : Orbital evolution shortly after formation from a potential dislocation

This paper deals with the formation and evolution of Mars' moons, Phobos and Deimos, assuming the dislocation of a larger progenitor as the origin of these moons. The study by Hyodo et al. (2022) argue that under somewhat simplistic modeling, the post-dislocation orbits of Phobos and Deimos inevitably collide within 10,000 years, leading to their mutual annihilation. These findings are based on N-body simulations, accounting for Mars' J_2 and J_4 gravitational perturbations and mutual perturbations between the moons. In this paper, we challenge these findings by extending their work. We incorporate important perturbations such as solar perturbations, Mars' axial precession and nutation, and its deformation along three axes. We also extend some of the hypotheses made by Hyodo et al. (2022) concerning the initial distribution of Phobos and Deimos after the dislocation. Our analysis reveals that including these additional perturbations as well as the possibility of having more than two fragments after the dislocation does not alter the ultimate fate of Phobos and Deimos. The moons still converge towards collision within comparable timescales, supporting Hyodo et al. (2022) conclusions that the dislocation hypothesis under the dynamical scenario developed by Bagheri et al. (2021) has, in the best conditions, about 10\% chance of surviving after the first 100,000 years following their formation.

  • 3 authors
·
Apr 11

PDRs4All. XII. FUV-driven formation of hydrocarbon radicals and their relation with PAHs

We present subarcsecond-resolution ALMA mosaics of the Orion Bar PDR in [CI] 609 um, C2H (4-3), and C18O (3-2) emission lines, complemented by JWST images of H2 and aromatic infrared band (AIB) emission. The rim of the Bar shows very corrugated structures made of small-scale H2 dissociation fronts (DFs). The [CI] 609 um emission peaks very close (~0.002 pc) to the main H2-emitting DFs, suggesting the presence of gas density gradients. These DFs are also bright and remarkably similar in C2H emission, which traces 'hydrocarbon radical peaks' characterized by very high C2H abundances, reaching up to several x10^-7. The high abundance of C2H and of related hydrocarbon radicals, such as CH3, CH2, and CH, can be attributed to gas-phase reactions driven by elevated temperatures, the presence of C+ and C, and the reactivity of FUV-pumped H2. The hydrocarbon radical peaks roughly coincide with maxima of the 3.4/3.3 um AIB intensity ratio, a proxy for the aliphatic-to-aromatic content of PAHs. This implies that the conditions triggering the formation of simple hydrocarbons also favor the formation (and survival) of PAHs with aliphatic side groups, potentially via the contribution of bottom-up processes in which abundant hydrocarbon radicals react in situ with PAHs. Ahead of the DFs, in the atomic PDR zone (where [H]>>[H2]), the AIB emission is brightest, but small PAHs and carbonaceous grains undergo photo-processing due to the stronger FUV field. Our detection of trace amounts of C2H in this zone may result from the photoerosion of these species. This study provides a spatially resolved view of the chemical stratification of key carbon carriers in a PDR. Overall, both bottom-up and top-down processes appear to link simple hydrocarbon molecules with PAHs in molecular clouds; however, the exact chemical pathways and their relative contributions remain to be quantified.

  • 28 authors
·
Mar 5

Channels of Stellar-mass Black Hole Formation

On the basis of a large collection of detailed 3D core-collapse supernova simulations carried to late times, we identify four channels of stellar mass black hole formation. Our examples for Channel 1 involve the formation of lower-gap and above black holes in energetic asymmetric supernova explosions. Our Channel 2 example involves a modest supernova explosion that may leave behind a lower-gap to sim10 M_{odot} black hole. The latter may not be easily distinguishable from ``standard" supernovae that birth neutron stars. Our Channel 3 example experiences an aborted core-collapse explosion, more often in the context of a low-metallicity progenitor, whose residue is a black hole with a mass perhaps up to sim40 M_{odot}. The latter may be accompanied by a pulsational-pair instability supernova (PPISN). Channel 4 is the only quiescent or ``silent" scenario for which perhaps sim5 to 15 M_{odot} black holes are left. Where appropriate, we estimate ^{56}Ni yields, explosion energies, approximate recoil speeds, and residual black hole masses. The progenitor mass density and binding energy profiles at collapse influence the outcome in a systematic way. The statistics and prevalence of these various channels depend not only on still evolving supernova theory, but on remaining issues with the theory of massive star evolution, binary interaction, wind mass loss, metallicity, and the nuclear equation of state. Importantly, we suggest, but have not proven, that the silent channel for black hole formation may not be the dominant formation modality.

  • 3 authors
·
Dec 10, 2024

RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.

  • 8 authors
·
Nov 2, 2023

What needs to go right for an induction head? A mechanistic study of in-context learning circuits and their formation

In-context learning is a powerful emergent ability in transformer models. Prior work in mechanistic interpretability has identified a circuit element that may be critical for in-context learning -- the induction head (IH), which performs a match-and-copy operation. During training of large transformers on natural language data, IHs emerge around the same time as a notable phase change in the loss. Despite the robust evidence for IHs and this interesting coincidence with the phase change, relatively little is known about the diversity and emergence dynamics of IHs. Why is there more than one IH, and how are they dependent on each other? Why do IHs appear all of a sudden, and what are the subcircuits that enable them to emerge? We answer these questions by studying IH emergence dynamics in a controlled setting by training on synthetic data. In doing so, we develop and share a novel optogenetics-inspired causal framework for modifying activations throughout training. Using this framework, we delineate the diverse and additive nature of IHs. By clamping subsets of activations throughout training, we then identify three underlying subcircuits that interact to drive IH formation, yielding the phase change. Furthermore, these subcircuits shed light on data-dependent properties of formation, such as phase change timing, already showing the promise of this more in-depth understanding of subcircuits that need to "go right" for an induction head.

  • 5 authors
·
Apr 10, 2024

Elevated UV luminosity density at Cosmic Dawn explained by non-evolving, weakly-mass dependent star formation efficiency

Recent observations with the James Webb Space Telescope (JWST) have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the Big Bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox-HR, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox-HR re-simulates the cosmic volume (L = 22.1 cMpc) of the original FIREbox run with eight times higher mass resolution (m_b ~ 7800 M_sun), but with identical physics, down to z ~ 6. FIREbox-HR predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at z ~ 6 - 14, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox-HR, the SFE - halo mass relation for intermediate mass halos (M_halo ~ 10^9 - 10^11 M_sun) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE - halo mass relation lead to a larger contribution from lower mass halos at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE - halo mass relation inferred from FIREbox-HR allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at z > 12 will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

  • 14 authors
·
Jul 2, 2024

FLARES IX: The Physical Mechanisms Driving Compact Galaxy Formation and Evolution

In the FLARES (First Light And Reionisation Epoch Simulations) suite of hydrodynamical simulations, we find the high redshift (z>5) intrinsic size-luminosity relation is, surprisingly, negatively sloped. However, after including the effects of dust attenuation we find a positively sloped UV observed size-luminosity relation in good agreement with other simulated and observational studies. In this work, we extend this analysis to probe the underlying physical mechanisms driving the formation and evolution of the compact galaxies driving the negative size-mass/size-luminosity relation. We find the majority of compact galaxies (R_{1/2, star}< 1 pkpc), which drive the negative slope of the size-mass relation, have transitioned from extended to compact sizes via efficient centralised cooling, resulting in high specific star formation rates in their cores. These compact stellar systems are enshrouded by non-star forming gas distributions as much as 100times larger than their stellar counterparts. By comparing with galaxies from the EAGLE simulation suite, we find that these extended gas distributions `turn on' and begin to form stars between z=5 and z=0 leading to increasing sizes, and thus the evolution of the size-mass relation from a negative to a positive slope. This explicitly demonstrates the process of inside-out galaxy formation in which compact bulges form earlier than the surrounding discs.

  • 9 authors
·
Jan 12, 2023

The Stellar Populations and Rest-Frame Colors of Star-Forming Galaxies at $z \approx 8$: Exploring the Impact of Filter Choice and Star Formation History Assumption with JADES

Our understanding of the physical properties of star-forming galaxies during the Epoch of Reionization (EoR, at z > 6) suffers from degeneracies among the apparent properties of the stars, the nebular gas, and the dust. These degeneracies are most prominent with photometry, which has insufficient (1) spectral resolution and (2) rest-frame spectral coverage. We explore ways to break these degeneracies with a sample of N = 22 high-redshift star-forming galaxies at 7 < z_{phot} leq 9, using some of the deepest existing imaging from JWST/NIRCam and JWST/MIRI with JADES. Key to this study is the imaging from JWST/MIRI at 7.7 mum, which provides coverage of the rest-frame I-band at the observed redshifts. We infer stellar population properties and rest-frame colors using a variety of filter sets and star formation history assumptions to explore the impact of these choices. Evaluating these quantities both with and without the 7.7 mum data point shows that dense spectral coverage with JWST/NIRCam (eight or more filters, including at least one medium-band) can compensate for lacking the rest-frame I-band coverage for the vast majority (approx 80%) of our sample. Furthermore, these galaxy properties are most consistently determined by assuming the delayed-tau star formation history, which provides the smallest offsets and scatters around these offsets when including JWST/MIRI. Within extragalactic surveys like JADES and CEERS, our findings suggest that robust characterization of the stellar population properties and rest-frame colors for high-redshift star-forming galaxies is possible with JWST/NIRCam alone at z approx 8.

  • 33 authors
·
Jun 2

The emergence of galactic thin and thick discs across cosmic history

Present-day disc galaxies often exhibit distinct thin and thick discs. The formation mechanisms of the two discs and the timing of their onset remain open questions. To address these questions, we select edge-on galaxies from flagship JWST programs and investigate their disc structures in rest-frame, near-infrared bands. For the first time, we identify thick and thin discs at cosmological distances, dating back over 10 Gyr, and investigate their decomposed structural properties. We classify galaxies into those that require two (i.e. thin and thick) discs and those well fitted by a single disc. Disc radial sizes and vertical heights correlate strongly with the total galaxy mass and/or disc mass, independent of cosmic time. The structure of the thick disc resembles discs found in single-disc galaxies, suggesting that galaxies form a thick disc first, followed by the subsequent formation of an embedded thin disc. The transition from single to double discs occurred around 8 Gyr ago in high-mass galaxies (10^{9.75} - 10^{11}M_odot), earlier than the transition which occurred 4 Gyr ago in low-mass galaxies (10^{9.0} - 10^{9.75}M_odot), indicating sequential formation proceeds in a "downsizing" manner. Toomre Q-regulated disc formation explains the delayed thin disc formation in low-mass galaxies, leading to the observed anti-correlation between the thick-to-thin disc mass ratio and the total galaxy mass. Despite the dominant sequential formation, observations suggest that thick discs may continue to build up mass alongside their thin-disc counterparts.

  • 4 authors
·
Sep 24, 2024

First Light and Reionisation Epoch Simulations (FLARES) X: Environmental Galaxy Bias and Survey Variance at High Redshift

Upcoming deep galaxy surveys with JWST will probe galaxy evolution during the epoch of reionisation (EoR, 5leq zleq10) over relatively compact areas (e.g. sim 300\,arcmin^2 for the JADES GTO survey). It is therefore imperative that we understand the degree of survey variance, to evaluate how representative the galaxy populations in these studies will be. We use the First Light And Reionisation Epoch Simulations (FLARES) to measure the galaxy bias of various tracers over an unprecedentedly large range in overdensity for a hydrodynamic simulation, and use these relations to assess the impact of bias and clustering on survey variance in the EoR. Star formation is highly biased relative to the underlying dark matter distribution, with the mean ratio of the stellar to dark matter density varying by a factor of 100 between regions of low and high matter overdensity (smoothed on a scale of 14,h^{-1}cMpc). This is reflected in the galaxy distribution --the most massive galaxies are found solely in regions of high overdensity. As a consequence of the above, galaxies in the EoR are highly clustered, which can lead to large variance in survey number counts. For mean number counts Nlesssim 100 (1000), in a unit redshift slice of angular area 300\,arcmin^2 (1.4\,deg^2), the 2-sigma range in N is roughly a factor of four (two). We present relations between the expected variance and survey area for different survey geometries; these relations will be of use to observers wishing to understand the impact of survey variance on their results.

  • 8 authors
·
Jan 23, 2023

High-Resolution Image Synthesis with Latent Diffusion Models

By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs. Code is available at https://github.com/CompVis/latent-diffusion .

  • 5 authors
·
Dec 20, 2021 3

Causal evidence for the primordiality of colours in trans-Neptunian objects

The origins of the colours of Trans-Neptunian Objects (TNOs) represent a crucial unresolved question, central to understanding the history of our Solar System. Recent observational surveys revealed correlations between the eccentricity and inclination of TNOs, and their colours. This rekindled the long-standing debate on whether these colours reflect the conditions of TNO formation or their subsequent evolution. We address this question using a model-agnostic, data-driven approach that unanimously converges to a common causal graph from the analysis of two different datasets, each from two different conditional independence test methods. For evaluation, we demonstrate how our model is consistent with the currently-accepted paradigms of TNOs' dynamical histories, without involving any orbital modelling or physics-based assumptions. Our causal model (with no knowledge of the existence of Neptune) predicts the need for an unknown confounding variable, consistent with Neptune's effects. The model predicts that the colour of TNOs is the root cause of their inclination distribution, rather than the other way around. This strongly suggests that the colours of TNOs reflect an underlying dynamical property, most likely their formation location. Our model excludes formation scenarios that invoke substantial colour modification by subsequent evolution. We conclude that the colours of TNOs are predominantly primordial.

  • 6 authors
·
Aug 13

Systematic Outliers in Large Language Models

Outliers have been widely observed in Large Language Models (LLMs), significantly impacting model performance and posing challenges for model compression. Understanding the functionality and formation mechanisms of these outliers is critically important. Existing works, however, largely focus on reducing the impact of outliers from an algorithmic perspective, lacking an in-depth investigation into their causes and roles. In this work, we provide a detailed analysis of the formation process, underlying causes, and functions of outliers in LLMs. We define and categorize three types of outliers-activation outliers, weight outliers, and attention outliers-and analyze their distributions across different dimensions, uncovering inherent connections between their occurrences and their ultimate influence on the attention mechanism. Based on these observations, we hypothesize and explore the mechanisms by which these outliers arise and function, demonstrating through theoretical derivations and experiments that they emerge due to the self-attention mechanism's softmax operation. These outliers act as implicit context-aware scaling factors within the attention mechanism. As these outliers stem from systematic influences, we term them systematic outliers. Our study not only enhances the understanding of Transformer-based LLMs but also shows that structurally eliminating outliers can accelerate convergence and improve model compression. The code is avilable at https://github.com/an-yongqi/systematic-outliers.

  • 5 authors
·
Feb 10

Complementary Probes of Warped Extra Dimension: Colliders, Gravitational Waves and Primordial Black Holes from Phase Transitions

We study the formation of primordial black holes (PBHs) and stochastic gravitational waves background (SGWB) produced by the supercooled radion phase transition (PT) in warped extra-dimension models solving the gauge hierarchy problem. We first determine how the SGWB and the produced PBH mass and abundance depend on the warped model's infrared energy scale rho, and the number of holographic colors N. With this finding, we recast on the plane {rho, N} the current SGWB and PBH constraints, as well as the expected parameter reaches of GW detectors, as LISA and ET, and the gravitational lensing ones, such as NGRST. On the same plane, we also map the collider bounds on massive graviton production, and cosmological bounds on the radion phenomenology. We find that, for N sim 10-50, the considered PT predicts a PBH population mass in the range M_{rm PBH}sim(10^{-1} - 10^{-25}) M_{odot} for rho sim (10^{-4} - 10^{8}) TeV. In the range rho simeq (0.05 - 0.5) GeV, it can explain the recent SGWB hint at nHz frequencies and generate PBH binaries with mass M_{rm PBH}sim(0.1 - 1 ) M_odot detectable at LISA and ET. The experimentally allowed mass region where PBHs can account for the whole dark matter abundance, and are produced with a tuning lesssim 10^{-4}, corresponds to 10 TeV lesssim rholesssim 10^4 TeV. These PBHs can compensate the lack of natural candidates for dark matter in warped extra dimensional models. Such a region represents a great science case where forthcoming and future colliders like HE-LHC and FCC-hh, gravitational-wave observatories and other PBHs probes play a key complementary role.

  • 4 authors
·
Feb 5

The Tale of Two Telescopes: How Hubble Uniquely Complements the James Webb Space Telescope: Galaxies

In this paper, we present a simple but compelling argument, focusing on galaxy science, for preserving the main imagers and operational modes of the Hubble Space Telescope (HST) for as long as is technically feasible. While star-formation started at redshifts zgtrsim10-13, when the universe was less than 300-500 Myr old, the CSFH did not peak until zsimeq1.9, and has steadily declined since that time. Hence, at least half of all stars in the universe formed in the era where HST provides its unique rest-frame UV view of unobscured young, massive stars tracing cosmic star-formation. By rendering a subset of the 556.3 hours of available HST images in 12 filters of the Hubble Ultra Deep Field (HUDF) in an appropriate mix of colors, we illustrate the unique capabilities of HST for galaxy science emphasizing that rest-frame UV-optical wavelength range. We then contrast this with the 52.7 publicly available hours of JWST/NIRCam images in 8 filters of the same HUDF area from the JADES project, rendering these at the redder near-IR wavelengths to illustrate the unique capabilities of JWST to detect older stellar populations at higher redshifts, as well as very dusty stellar populations and Active Galactic Nuclei (AGN). HST uniquely probes (unobscured) young, hot, massive stars in galaxies, while JWST reveals more advanced stages of older stellar populations, as well as relatively short-lived phases where galaxies produce and shed a lot of dust from intense star-formation, and the very high redshift universe (zgtrsim10-11) not accessible by HST. We conclude that HST and JWST are highly complementary facilities that took decades to build to ensure decades of operation. To maximize return on investment on both HST and JWST, ways will need to be found to operate HST imaging instruments in all relevant modes for as long as possible into the JWST mission.

  • 13 authors
·
Oct 1, 2024

Investigating cannibalistic millisecond pulsar binaries using MESA: New constraints from pulsar spin and mass evolution

Compact binary millisecond pulsars (MSPs) with orbital periods lesssim1d are key to understanding binary evolution involving massive neutron stars (NSs). Due to the ablation of the companion by the rapidly spinning pulsar, these systems are also known as spiders and categorized into two main branches: redbacks (RBs; companion mass in the range of 0.1 to 0.5\,\Msun) and black widows (BWs; companion mass lesssim\,0.1\,\Msun). We present models of low- and intermediate-mass X-ray binaries and compare them with observations of Galactic spiders (including the presence or absence of hydrogen lines in their optical spectra), and we constrain and quantify the interaction between the pulsar and the companion. Using MESA, we created the allowed initial parameter space. For the first time in MESA, we also included the detailed evolution of the pulsar spin and modeled the irradiation of the companion by the pulsar wind. Efficient mass accretion onto the NS (at least 70% of the mass transferred is accreted) with an X-ray irradiated disk followed by strong irradiation of the companion can explain most of the properties of the observed spiders. Our RB evolutionary tracks continue to the BW regime, connecting the two branches of spiders. Our models explain the lack of hydrogen in some observed BWs with ultra-light companions. During accretion induced spin up, the mass required to spin up an NS to sub-milliseconds is high enough to collapse it into a black hole. Finally, after analyzing the formation of RB-like spiders with giant companions and orbital periods of several days (huntsmen), we conclude that they are unlikely to produce super-massive NSs (maximum accreted mass lesssim0.5M_{odot}). Cannibalistic MSP binary formation depends heavily on the interplay between accretion onto the pulsar and pulsar wind irradiation.

  • 3 authors
·
Aug 28, 2024

The challenge of simulating the star cluster population of dwarf galaxies with resolved interstellar medium

We present results on the star cluster properties from a series of high resolution smoothed particles hydrodynamics (SPH) simulations of isolated dwarf galaxies as part of the GRIFFIN project. The simulations at sub-parsec spatial resolution and a minimum particle mass of 4 M_odot incorporate non-equilibrium heating, cooling and chemistry processes, and realise individual massive stars. All the simulations follow feedback channels of massive stars that include the interstellar-radiation field, that is variable in space and time, the radiation input by photo-ionisation and supernova explosions. Varying the star formation efficiency per free-fall time in the range epsilon_ff = 0.2 - 50% neither changes the star formation rates nor the outflow rates. While the environmental densities at star formation change significantly with epsilon_ff, the ambient densities of supernovae are independent of epsilon_ff indicating a decoupling of the two processes. At low epsilon_ff, more massive, and increasingly more bound star clusters are formed, which are typically not destroyed. With increasing epsilon_ff there is a trend for shallower cluster mass functions and the cluster formation efficiency Gamma for young bound clusters decreases from 50 % to sim 1 % showing evidence for cluster disruption. However, none of our simulations form low mass (< 10^3 M_odot) clusters with structural properties in perfect agreement with observations. Traditional star formation models used in galaxy formation simulations based on local free-fall times might therefore not be able to capture low mass star cluster properties without significant fine-tuning.

  • 7 authors
·
Sep 16, 2021

Enhancing Conditional Image Generation with Explainable Latent Space Manipulation

In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.

  • 1 authors
·
Aug 28, 2024 3

An X-ray Significantly Variable, Luminous, Type 2 Quasar at z = 2.99 with a Massive Host Galaxy

We present a comprehensive X-ray analysis and spectral energy distribution (SED) fitting of WISEA J171419.96+602724.6, an extremely luminous type 2 quasar at z = 2.99. The source was suggested as a candidate Compton-thick (column density N_{rm H}>1.5 times 10^{24} cm^{-2}) quasar by a short XMM-Newton observation in 2011. We recently observed the source with deep NuSTAR and XMM-Newton exposures in 2021 and found that the source has a lower obscuration of N_{rm H}sim5 times 10^{22} cm^{-2} with an about four times lower flux. The two epochs of observations suggested that the source was significantly variable in X-ray obscuration, flux, and intrinsic luminosity at 2-3~sigma in less than 2.5 years (in the source rest frame). We performed SED fitting of this source using CIGALE thanks to its great availability of multiwavelength data (from hard X-rays to radio). The source is very luminous with a bolometric luminosity of L_{rm BOL}sim 2.5 times 10^{47} erg s^{-1}. Its host galaxy has a huge star formation rate (SFR) of sim1280 Solar mass yr^{-1} and a huge stellar mass of sim1.1 times 10^{12} Solar mass. The correlation between the SFR and stellar mass of this source is consistent with what was measured in the high-z quasars. It is also consistent with what was measured in the main-sequence star-forming galaxies, suggesting that the presence of the active nucleus in our target does not enhance or suppress the SFR of its host galaxy. The source is an Infrared hyper-luminous, obscured galaxy with significant amount of hot dust in its torus and shares many similar properties with hot, dust obscured galaxies.

  • 11 authors
·
Sep 3, 2024

A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation

Deep learning in computer vision has achieved great success with the price of large-scale labeled training data. However, exhaustive data annotation is impracticable for each task of all domains of interest, due to high labor costs and unguaranteed labeling accuracy. Besides, the uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist. All these nuisances may hinder the verification of typical theories and exposure to new findings. To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization. We in this work push forward along this line by doing profound and extensive research on bare supervised learning and downstream domain adaptation. Specifically, under the well-controlled, IID data setting enabled by 3D rendering, we systematically verify the typical, important learning insights, e.g., shortcut learning, and discover the new laws of various data regimes and network architectures in generalization. We further investigate the effect of image formation factors on generalization, e.g., object scale, material texture, illumination, camera viewpoint, and background in a 3D scene. Moreover, we use the simulation-to-reality adaptation as a downstream task for comparing the transferability between synthetic and real data when used for pre-training, which demonstrates that synthetic data pre-training is also promising to improve real test results. Lastly, to promote future research, we develop a new large-scale synthetic-to-real benchmark for image classification, termed S2RDA, which provides more significant challenges for transfer from simulation to reality. The code and datasets are available at https://github.com/huitangtang/On_the_Utility_of_Synthetic_Data.

  • 2 authors
·
Mar 16, 2023

Accurate Chemistry Collection: Coupled cluster atomization energies for broad chemical space

Accurate thermochemical data with sub-chemical accuracy (i.e., within pm1 kcal mol^{-1} from sufficiently accurate experimental or theoretical reference data) is essential for the development and improvement of computational chemistry methods. Challenging thermochemical properties such as heats of formation and total atomization energies (TAEs) are of particular interest because they rigorously test the ability of computational chemistry methods to accurately describe complex chemical transformations involving multiple bond rearrangements. Yet, existing thermochemical datasets that confidently reach this level of accuracy are limited in either size or scope. Datasets with highly accurate reference values include a small number of data points, and larger datasets provide less accurate data or only cover a narrow portion of the chemical space. The existing datasets are therefore insufficient for developing data-driven methods with predictive accuracy over a large chemical space. The Microsoft Research Accurate Chemistry Collection (MSR-ACC) will address this challenge. Here, it offers the MSR-ACC/TAE25 dataset of 76,879 total atomization energies obtained at the CCSD(T)/CBS level via the W1-F12 thermochemical protocol. The dataset is constructed to exhaustively cover chemical space for all elements up to argon by enumerating and sampling chemical graphs, thus avoiding bias towards any particular subspace of the chemical space (such as drug-like, organic, or experimentally observed molecules). With this first dataset in MSR-ACC, we enable data-driven approaches for developing predictive computational chemistry methods with unprecedented accuracy and scope.

  • 13 authors
·
Jun 17

A multi-messenger hierarchical triple merger gravitational-wave event pair GW190514-GW190521 inside AGN J124942.3 + 344929

There is a candidate electromagnetic counterpart to the binary black hole merger GW190521, identified as ZTF19abanrhr within AGN J124942.3 + 344929. Additionally, GW190514 is proposed as a plausible precursor merger to GW190521 within a hierarchical merger scenario. In this study, we investigate the potential association between GW190514 and GW190521 as a hierarchical triple merger associated with ZTF19abanrhr, taking into account of sky position, distance, and mass of the sources using a Bayesian criterion. Our analysis reveals that the association is favored over a random coincidence, with a log Bayes factor of 16.8, corresponding to an odds ratio of sim199:1, assuming an astrophysical prior odds of 10^{-5}. Notably, when accounting for the primary masses of the two gravitational wave events as potential products of mergers in the AGN formation channel, the Bayes factor increases significantly, further enhancing the preference for this association by a factor of sim10^2, corresponding to a log Bayes factor of 21.5 and an odds ratio of sim2times10^4:1. Our results suggest strong evidence for the first hierarchical triple merger associated with an electromagnetic counterpart in the AGN formation channel. This work is crucial for understanding the formation mechanisms of massive black holes, the role of AGNs in hierarchical mergers, and the implications of multi-messenger astronomy.

  • 2 authors
·
Mar 21

Metastable Cosmological Constant and Gravitational Bubbles: Ultra-Late-Time Transitions in Modified Gravity

The observed cosmological constant may originate as the minimum value U_{min} of a scalar field potential, where the scalar field is frozen due to a large mass. If this vacuum is metastable, it may decay to a true vacuum either at present or in the future. Assuming its decay rate Gamma is comparable to the Hubble expansion rate H_0, we estimate the scale of true vacuum bubbles and analyze their evolution. We find that their initial formation scale is sub-millimeter and their tension causes rapid collapse if m gtrsim 1.7 cdot 10^{-3}, eV. For smaller masses, the bubbles expand at the speed of light. We extend our analysis to scalar-tensor theories with non-minimal coupling, finding that the nucleation scale of gravitational constant bubbles remains consistent with the sub-millimeter regime of General Relativity. The critical mass scale remains around 10^{-3},eV. A theoretical estimate at redshift z_{obs} sim 0.01 suggests an observable bubble radius of sim 50 Mpc, implying a gravitational transition triggered sim 300 Myr ago, with a present-day size approaching 100 Mpc. Additionally, we explore mass ranges (m < 10^{-3},eV) and non-minimal coupling xi ranges (10^{-8},eV^{2-n} - 10^{-1},eV^{2-n}) that lead to a variation Delta G/G_N within the 1%-7% range. We assume non-minimal coupling of the form F(phi)=1/kappa - xi phi^n, with kappa=8pi G_N and 2 leq n leq 9. Finally, we review various local physics or/and transition based proposed solutions to the Hubble tension, including ultra-late-time transitional models (z sim 0.01), screened fifth-force mechanisms, and the Lambda_{rm s}CDM model, which features a transition at z sim 2. We discuss observational hints supporting these scenarios and the theoretical challenges they face.

  • 2 authors
·
Mar 14

Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material

In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.

  • 3 authors
·
Nov 26, 2024

A catalog of ringed galaxies in the TNG50 simulation: Analysis of their properties and structure

The catalog of ringed galaxies was compiled through visual classification of synthetic images from the TNG50 simulation. Galaxies were selected based on specific criteria: a redshift range of 0.01 < z < 0.1, stellar mass M_star >10^9 M_odot, stellar half-mass radius r_{50} > 1 kpc, and specific star formation rate (sSFR), log(sSFR/yr^{-1}) > -13. Our classification allowed for differentiation between inner rings, outer rings, combinations of rings, and partial rings (pseudo-rings), including barred and non-barred ringed galaxies. We constructed a control sample of non-ringed galaxies with similar redshift, stellar mass, and environmental density distributions. We identified 807 ringed galaxies. Approximately 59% possess an inner ring, 22% a partial ring, 12% an outer ring, and 7% have i+o rings. Our statistical analysis reveals that 64% (507 galaxies) exhibit bars. Ringed galaxies exhibit lower efficiency for star formation, reduced gas fractions, redder colors, and higher metallicities compared to non-ringed disk objects. They also show greater variability in metallicity for a given stellar mass. From the analysis of radial profiles, galaxies with outer rings exhibit a r_{50} similar to or slightly larger than their control group, while those with inner or partial rings tend to have smaller sizes. A deeper exploration of radial density profiles revealed a pronounced central mass deficit preceding the ring structures, with inner and outer rings located at r_{50} and 1.5 , r_{50}, respectively. Galaxies with both i+o rings have inner rings that are more compact and massive. Additionally, galaxies with partial rings exhibit deeper mass profiles than their controls, particularly in central areas. These findings improve our understanding of galactic evolution and the complex interplay between mass distribution and morphology.

  • 4 authors
·
Nov 23, 2024

Explainable AI through a Democratic Lens: DhondtXAI for Proportional Feature Importance Using the D'Hondt Method

In democratic societies, electoral systems play a crucial role in translating public preferences into political representation. Among these, the D'Hondt method is widely used to ensure proportional representation, balancing fair representation with governmental stability. Recently, there has been a growing interest in applying similar principles of proportional representation to enhance interpretability in machine learning, specifically in Explainable AI (XAI). This study investigates the integration of D'Hondt-based voting principles in the DhondtXAI method, which leverages resource allocation concepts to interpret feature importance within AI models. Through a comparison of SHAP (Shapley Additive Explanations) and DhondtXAI, we evaluate their effectiveness in feature attribution within CatBoost and XGBoost models for breast cancer and diabetes prediction, respectively. The DhondtXAI approach allows for alliance formation and thresholding to enhance interpretability, representing feature importance as seats in a parliamentary view. Statistical correlation analyses between SHAP values and DhondtXAI allocations support the consistency of interpretations, demonstrating DhondtXAI's potential as a complementary tool for understanding feature importance in AI models. The results highlight that integrating electoral principles, such as proportional representation and alliances, into AI explainability can improve user understanding, especially in high-stakes fields like healthcare.

  • 1 authors
·
Nov 7, 2024

Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band

We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time.

  • 4 authors
·
Apr 10, 2024

BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting

While neural rendering has demonstrated impressive capabilities in 3D scene reconstruction and novel view synthesis, it heavily relies on high-quality sharp images and accurate camera poses. Numerous approaches have been proposed to train Neural Radiance Fields (NeRF) with motion-blurred images, commonly encountered in real-world scenarios such as low-light or long-exposure conditions. However, the implicit representation of NeRF struggles to accurately recover intricate details from severely motion-blurred images and cannot achieve real-time rendering. In contrast, recent advancements in 3D Gaussian Splatting achieve high-quality 3D scene reconstruction and real-time rendering by explicitly optimizing point clouds as Gaussian spheres. In this paper, we introduce a novel approach, named BAD-Gaussians (Bundle Adjusted Deblur Gaussian Splatting), which leverages explicit Gaussian representation and handles severe motion-blurred images with inaccurate camera poses to achieve high-quality scene reconstruction. Our method models the physical image formation process of motion-blurred images and jointly learns the parameters of Gaussians while recovering camera motion trajectories during exposure time. In our experiments, we demonstrate that BAD-Gaussians not only achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods on both synthetic and real datasets but also enables real-time rendering capabilities. Our project page and source code is available at https://lingzhezhao.github.io/BAD-Gaussians/

  • 3 authors
·
Mar 18, 2024

The mechanistic basis of data dependence and abrupt learning in an in-context classification task

Transformer models exhibit in-context learning: the ability to accurately predict the response to a novel query based on illustrative examples in the input sequence. In-context learning contrasts with traditional in-weights learning of query-output relationships. What aspects of the training data distribution and architecture favor in-context vs in-weights learning? Recent work has shown that specific distributional properties inherent in language, such as burstiness, large dictionaries and skewed rank-frequency distributions, control the trade-off or simultaneous appearance of these two forms of learning. We first show that these results are recapitulated in a minimal attention-only network trained on a simplified dataset. In-context learning (ICL) is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning. By identifying progress measures that precede in-context learning and targeted experiments, we construct a two-parameter model of an induction head which emulates the full data distributional dependencies displayed by the attention-based network. A phenomenological model of induction head formation traces its abrupt emergence to the sequential learning of three nested logits enabled by an intrinsic curriculum. We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL, which is implemented by nested nonlinearities sequentially learned during training.

  • 1 authors
·
Dec 3, 2023

Crystal Structure Generation with Autoregressive Large Language Modeling

The generation of plausible crystal structures is often the first step in predicting the structure and properties of a material from its chemical composition. Quickly generating and predicting inorganic crystal structures is important for the discovery of new materials, which can target applications such as energy or electronic devices. However, most current methods for crystal structure prediction are computationally expensive, slowing the pace of innovation. Seeding structure prediction algorithms with quality generated candidates can overcome a major bottleneck. Here, we introduce CrystaLLM, a methodology for the versatile generation of crystal structures, based on the autoregressive large language modeling (LLM) of the Crystallographic Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses on modeling crystal structures through text. CrystaLLM can produce plausible crystal structures for a wide range of inorganic compounds unseen in training, as demonstrated by ab initio simulations. The integration with predictors of formation energy permits the use of a Monte Carlo Tree Search algorithm to improve the generation of meaningful structures. Our approach challenges conventional representations of crystals, and demonstrates the potential of LLMs for learning effective 'world models' of crystal chemistry, which will lead to accelerated discovery and innovation in materials science.

  • 3 authors
·
Jul 10, 2023

Harnessing the Hubble Space Telescope Archives: A Catalogue of 21,926 Interacting Galaxies

Mergers play a complex role in galaxy formation and evolution. Continuing to improve our understanding of these systems require ever larger samples, which can be difficult (even impossible) to select from individual surveys. We use the new platform ESA Datalabs to assemble a catalogue of interacting galaxies from the Hubble Space Telescope science archives; this catalogue is larger than previously published catalogues by nearly an order of magnitude. In particular, we apply the Zoobot convolutional neural network directly to the entire public archive of HST F814W images and make probabilistic interaction predictions for 126 million sources from the Hubble Source Catalogue. We employ a combination of automated visual representation and visual analysis to identify a clean sample of 21,926 interacting galaxy systems, mostly with z < 1. Sixty five percent of these systems have no previous references in either the NASA Extragalactic Database or Simbad. In the process of removing contamination, we also discover many other objects of interest, such as gravitational lenses, edge-on protoplanetary disks, and `backlit' overlapping galaxies. We briefly investigate the basic properties of this sample, and we make our catalogue publicly available for use by the community. In addition to providing a new catalogue of scientifically interesting objects imaged by HST, this work also demonstrates the power of the ESA Datalabs tool to facilitate substantial archival analysis without placing a high computational or storage burden on the end user.

  • 16 authors
·
Mar 1, 2023

Evidence for a Massive Protocluster in S255N

S255N is a luminous far-infrared source that contains many indications of active star formation but lacks a prominent near-infrared stellar cluster. We present mid-infrared through radio observations aimed at exploring the evolutionary state of this region. Our observations include 1.3mm continuum and spectral line data from the Submillimeter Array, VLA 3.6cm continuum and 1.3cm water maser data, and multicolor IRAC images from the Spitzer Space Telescope. The cometary morphology of the previously-known UCHII region G192.584-0.041 is clearly revealed in our sensitive, multi-configuration 3.6cm images. The 1.3mm continuum emission has been resolved into three compact cores, all of which are dominated by dust emission and have radii < 7000AU. The mass estimates for these cores range from 6 to 35 Msun. The centroid of the brightest dust core (SMA1) is offset by 1.1'' (2800 AU) from the peak of the cometary UCHII region and exhibits the strongest HC3N, CN, and DCN line emission in the region. SMA1 also exhibits compact CH3OH, SiO, and H2CO emission and likely contains a young hot core. We find spatial and kinematic evidence that SMA1 may contain further multiplicity, with one of the components coincident with a newly-detected H2O maser. There are no mid-infrared point source counterparts to any of the dust cores, further suggesting an early evolutionary phase for these objects. The dominant mid-infrared emission is a diffuse, broadband component that traces the surface of the cometary UCHII region but is obscured by foreground material on its southern edge. An additional 4.5 micron linear feature emanating to the northeast of SMA1 is aligned with a cluster of methanol masers and likely traces a outflow from a protostar within SMA1. Our observations provide direct evidence that S255N is forming a cluster of intermediate to high-mass stars.

  • 3 authors
·
Apr 7, 2007

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

We present OmniJARVIS, a novel Vision-Language-Action (VLA) model for open-world instruction-following agents in open-world Minecraft. Compared to prior works that either emit textual goals to separate controllers or produce the control command directly, OmniJARVIS seeks a different path to ensure both strong reasoning and efficient decision-making capabilities via unified tokenization of multimodal interaction data. First, we introduce a self-supervised approach to learn a behavior encoder that produces discretized tokens for behavior trajectories tau = {o_0, a_0, dots} and an imitation learning (IL) policy decoder conditioned on these tokens. These additional behavior tokens will be augmented to the vocabulary of pretrained Multimodal Language Models (MLMs). With this encoder, we then pack long-term multimodal interactions involving task instructions, memories, thoughts, observations, textual responses, behavior trajectories, etc. into unified token sequences and model them with autoregressive transformers. Thanks to the semantically meaningful behavior tokens, the resulting VLA model, OmniJARVIS, can reason (by producing chain-of-thoughts), plan, answer questions, and act (by producing behavior tokens for the IL policy decoder). OmniJARVIS demonstrates excellent performances on a comprehensive collection of atomic, programmatic, and open-ended tasks in open-world Minecraft. Our analysis further unveils the crucial design principles in interaction data formation, unified tokenization, and its scaling potentials.

  • 10 authors
·
Jun 27, 2024 5

DETR Doesn't Need Multi-Scale or Locality Design

This paper presents an improved DETR detector that maintains a "plain" nature: using a single-scale feature map and global cross-attention calculations without specific locality constraints, in contrast to previous leading DETR-based detectors that reintroduce architectural inductive biases of multi-scale and locality into the decoder. We show that two simple technologies are surprisingly effective within a plain design to compensate for the lack of multi-scale feature maps and locality constraints. The first is a box-to-pixel relative position bias (BoxRPB) term added to the cross-attention formulation, which well guides each query to attend to the corresponding object region while also providing encoding flexibility. The second is masked image modeling (MIM)-based backbone pre-training which helps learn representation with fine-grained localization ability and proves crucial for remedying dependencies on the multi-scale feature maps. By incorporating these technologies and recent advancements in training and problem formation, the improved "plain" DETR showed exceptional improvements over the original DETR detector. By leveraging the Object365 dataset for pre-training, it achieved 63.9 mAP accuracy using a Swin-L backbone, which is highly competitive with state-of-the-art detectors which all heavily rely on multi-scale feature maps and region-based feature extraction. Code is available at https://github.com/impiga/Plain-DETR .

  • 6 authors
·
Aug 3, 2023

A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation

In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine. ADPs capture atomic vibrations, reflecting thermal and structural properties, but traditional computation is often expensive. This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature. CartNet integrates a neighbour equalization technique to emphasize covalent and contact interactions, and a Cholesky-based head to ensure valid ADP predictions. We also propose a rotational SO(3) data augmentation strategy during training to handle unseen orientations. An ADP dataset with over 200,000 experimental crystal structures from the Cambridge Structural Database (CSD) was curated to validate the approach. CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches. We further evaluated CartNet on other datasets covering formation energy, band gap, total energy, energy above the convex hull, bulk moduli, and shear moduli, achieving 7.71% better results on the Jarvis Dataset and 13.16% on the Materials Project Dataset. These gains establish CartNet as a state-of-the-art solution for diverse crystal property predictions. Project website and online demo: https://www.ee.ub.edu/cartnet

  • 7 authors
·
Jan 30

Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction

Matbench Discovery simulates the deployment of machine learning (ML) energy models in a high-throughput search for stable inorganic crystals. We address the disconnect between (i) thermodynamic stability and formation energy and (ii) in-domain vs out-of-distribution performance. Alongside this paper, we publish a Python package to aid with future model submissions and a growing online leaderboard with further insights into trade-offs between various performance metrics. To answer the question which ML methodology performs best at materials discovery, our initial release explores a variety of models including random forests, graph neural networks (GNN), one-shot predictors, iterative Bayesian optimizers and universal interatomic potentials (UIP). Ranked best-to-worst by their test set F1 score on thermodynamic stability prediction, we find CHGNet > M3GNet > MACE > ALIGNN > MEGNet > CGCNN > CGCNN+P > Wrenformer > BOWSR > Voronoi tessellation fingerprints with random forest. The top 3 models are UIPs, the winning methodology for ML-guided materials discovery, achieving F1 scores of ~0.6 for crystal stability classification and discovery acceleration factors (DAF) of up to 5x on the first 10k most stable predictions compared to dummy selection from our test set. We also highlight a sharp disconnect between commonly used global regression metrics and more task-relevant classification metrics. Accurate regressors are susceptible to unexpectedly high false-positive rates if those accurate predictions lie close to the decision boundary at 0 eV/atom above the convex hull where most materials are. Our results highlight the need to focus on classification metrics that actually correlate with improved stability hit rate.

  • 6 authors
·
Aug 28, 2023

Persistent homology of the cosmic web. I: Hierarchical topology in $Λ$CDM cosmologies

Using a set of LambdaCDM simulations of cosmic structure formation, we study the evolving connectivity and changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of topological features. In this study we establish, for the first time, the link between persistence diagrams, the features they show, and the gravitationally driven cosmic structure formation process. By following the diagrams' development over cosmic time, the link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp apexes in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concentration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to the cosmic web's hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers.

  • 8 authors
·
Nov 25, 2020

The ALPINE-CRISTAL-JWST Survey: The Fast Metal Enrichment of Massive Galaxies at z~5

We present the stellar mass-metallicity relation (MZR) and mass-metallicity-star formation relation ("fundamental metallicity relation"; FMR) of 18 massive (log(M/M_odot) = 9.5-11) main-sequence galaxies at z~5 from the ALPINE-CRISTAL-JWST sample. This sample complements recent studies by JWST at up to two orders of magnitude lower stellar masses. The metallicities are derived using strong optical lines, and verified by temperature-based oxygen abundance measurements for five galaxies for which faint auroral lines are detected. We find little evolution at the massive end of the MZR between z~5 and cosmic noon at z~2, suggesting a fast metal enrichment at early times. The FMR at z=5 exhibits a 5x larger scatter (preferentially to lower metallicities) compared the local FMR relation. This scatter can be explained by a bursty star formation and the direct build-up of metals in early galaxies as well as differences in age and outflow efficiencies. Capitalizing on all available samples, we find that the observed MZR and FMR over three orders of stellar mass is generally in good agreement with results from cosmological simulation, although some underestimate the metal enrichment at low stellar masses. This may be due to too efficient metal-rich outflows. We show that the ALPINE-CRISTAL-JWST galaxies likely joined the current FMR at z~10 and will evolve into massive (log(M/M_odot)~11.4) galaxies with super-solar metallicities by z=0.

  • 56 authors
·
Oct 17

Living Capillary Bridges

Biological tissues exhibit complex behaviors with their dynamics often resembling inert soft matter such as liquids, polymers, colloids, and liquid crystals. These analogies enable physics-based approaches for investigations of emergent behaviors in biological processes. A well-studied case is the spreading of cellular aggregates on solid surfaces, where they display dynamics similar to viscous droplets. In vivo, however, cells and tissues are in a confined environment with varying geometries and mechanical properties to which they need to adapt. In this work, we compressed cellular aggregates between two solid surfaces and studied their dynamics using microscopy, and computer simulations. The confined cellular aggregates transitioned from compressed spheres into dynamic living capillary bridges exhibiting bridge thinning and a convex-to-concave meniscus curvature transition. We found that the stability of the bridge is determined by the interplay between cell growth and cell spreading on the confining surfaces. This interaction leads to bridge rupture at a critical length scale determined by the distance between the plates. The force distributions, formation and stability regimes of the living capillary bridges were characterized with full 3D computer simulations that included cell division, migration and growth dynamics, directly showing how mechanical principles govern the behavior of the living bridges; cellular aggregates display jamming and stiffening analogously to granular matter, and cell division along the long axis enhances thinning. Based on our results, we propose a new class of active soft matter behavior, where cellular aggregates exhibit liquid-like adaptation to confinement, but with self-organized rupturing driven by biological activity.

  • 8 authors
·
Oct 16

An analytic redshift-independent formulation of baryonic effects on the matter power spectrum

Baryonic effects created by feedback processes associated with galaxy formation are an important, poorly constrained systematic effect for models of large-scale structure as probed by weak gravitational lensing. Upcoming surveys require fast methods to predict and marginalize over the potential impact of baryons on the total matter power spectrum. Here we use the FLAMINGO cosmological hydrodynamical simulations to test a recent proposal to approximate the matter power spectrum as the sum of the linear matter power spectrum and a constant multiple, A_{rm mod}, of the difference between the linear and non-linear gravity-only power spectra. We show that replacing this constant multiple with a one-parameter family of sigmoid functions of the wavenumber k allows to us match the predictions of simulations with different feedback strengths for z leq 1, k < 3~hrm Mpc^{-1}, and the different cosmological models in the FLAMINGO suite. The baryonic response predicted by FLAMINGO models that use jet-like AGN feedback instead of the fiducial thermally-driven AGN feedback can also be reproduced, but at the cost of increasing the number of parameters in the sigmoid function from one to three. The assumption that A_{rm mod} depends only on k breaks down for decaying dark matter models, highlighting the need for more advanced baryon response models when studying cosmological models that deviate strongly from LambdaCDM.

  • 2 authors
·
Apr 22

Can Generative Agent-Based Modeling Replicate the Friendship Paradox in Social Media Simulations?

Generative Agent-Based Modeling (GABM) is an emerging simulation paradigm that combines the reasoning abilities of Large Language Models with traditional Agent-Based Modeling to replicate complex social behaviors, including interactions on social media. While prior work has focused on localized phenomena such as opinion formation and information spread, its potential to capture global network dynamics remains underexplored. This paper addresses this gap by analyzing GABM-based social media simulations through the lens of the Friendship Paradox (FP), a counterintuitive phenomenon where individuals, on average, have fewer friends than their friends. We propose a GABM framework for social media simulations, featuring generative agents that emulate real users with distinct personalities and interests. Using Twitter datasets on the US 2020 Election and the QAnon conspiracy, we show that the FP emerges naturally in GABM simulations. Consistent with real-world observations, the simulations unveil a hierarchical structure, where agents preferentially connect with others displaying higher activity or influence. Additionally, we find that infrequent connections primarily drive the FP, reflecting patterns in real networks. These findings validate GABM as a robust tool for modeling global social media phenomena and highlight its potential for advancing social science by enabling nuanced analysis of user behavior.

  • 4 authors
·
Feb 9

Structure and Dynamics of the Young Massive Star Cluster Westerlund 1

We present a structural analysis of the young massive star cluster Westerlund 1 (Wd 1). With multi-epoch Hubble Space Telescope (HST) observations, we measure the proper motions of 10346 stars and determine their kinematic memberships by fitting a Gaussian mixture model to their proper motions. After correcting for extinction and completeness, we model the stellar density distribution and confirm the presence of an elongation with an eccentricity of 0.71. The eccentricity decreases slightly with increasing mass. We fit the radial profile with the Elson, Fall, and Freeman model, observing a decrease in the core radius with increasing mass, indicative of weak but detectable mass segregation. This finding is further supported by a measured mass segregation ratio of Lambda_rm MSR=1.11pm0.11, only above 1 by 1sigma, and slightly shorter minimum spanning tree length for higher mass bins. The cluster has a 1D velocity dispersion of 3.42 pm 0.10~km,s^{-1}, suggesting it is subvirial. The subvirial state implies either exceptionally high star formation efficiency or inefficient stellar feedback caused by local gas expulsion before stars reach the cluster. The crossing time is 0.30 Myr and the relaxation time is 0.26 Gyr. Given the age of Wd 1 of 10.7 Myr, we expect evident mass segregation for stars more massive than 10~M_odot, which accounts for the minor mass segregation found in the mass range of 1.00x201312.14~M_odot in this work. This suggests the overall mass segregation in Wd 1 is not primordial.

  • 11 authors
·
Jan 28

Dynamics of the Beta Pictoris planetary system and possibility of an additional planet

The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet.

  • 4 authors
·
Jan 6

UpStory: the Uppsala Storytelling dataset

Friendship and rapport play an important role in the formation of constructive social interactions, and have been widely studied in educational settings due to their impact on student outcomes. Given the growing interest in automating the analysis of such phenomena through Machine Learning (ML), access to annotated interaction datasets is highly valuable. However, no dataset on dyadic child-child interactions explicitly capturing rapport currently exists. Moreover, despite advances in the automatic analysis of human behaviour, no previous work has addressed the prediction of rapport in child-child dyadic interactions in educational settings. We present UpStory -- the Uppsala Storytelling dataset: a novel dataset of naturalistic dyadic interactions between primary school aged children, with an experimental manipulation of rapport. Pairs of children aged 8-10 participate in a task-oriented activity: designing a story together, while being allowed free movement within the play area. We promote balanced collection of different levels of rapport by using a within-subjects design: self-reported friendships are used to pair each child twice, either minimizing or maximizing pair separation in the friendship network. The dataset contains data for 35 pairs, totalling 3h 40m of audio and video recordings. It includes two video sources covering the play area, as well as separate voice recordings for each child. An anonymized version of the dataset is made publicly available, containing per-frame head pose, body pose, and face features; as well as per-pair information, including the level of rapport. Finally, we provide ML baselines for the prediction of rapport.

  • 7 authors
·
Jul 5, 2024

First Light and Reionization Epoch Simulations (FLARES) -- XV: The physical properties of super-massive black holes and their impact on galaxies in the early universe

Understanding the co-evolution of super-massive black holes (SMBHs) and their host galaxies remains a key challenge of extragalactic astrophysics, particularly the earliest stages at high-redshift. However, studying SMBHs at high-redshift with cosmological simulations, is challenging due to the large volumes and high-resolution required. Through its innovative simulation strategy, the First Light And Reionisation Epoch Simulations (FLARES) suite of cosmological hydrodynamical zoom simulations allows us to simulate a much wider range of environments which contain SMBHs with masses extending to M_{bullet}>10^{9} M_{odot} at z=5. In this paper, we use FLARES to study the physical properties of SMBHs and their hosts in the early Universe (5le, z le10). FLARES predicts a sharply declining density with increasing redshift, decreasing by a factor of 100 over the range z=5to 10. Comparison between our predicted bolometric luminosity function and pre-JWST observations yield a good match. However, recent JWST observations appear to suggest a larger contribution of SMBHs than previously observed, or predicted by FLARES. Finally, by using a re-simulation with AGN feedback disabled, we explore the impact of AGN feedback on their host galaxies. This reveals that AGN feedback results in a reduction of star formation activity, even at z>5, but only in the most massive galaxies. A deeper analysis reveals that AGN are also the cause of suppressed star formation in passive galaxies but that the presence of an AGN doesn't necessarily result in the suppression of star formation.

  • 12 authors
·
Apr 3, 2024

Spatially-Aware Transformer for Embodied Agents

Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.

  • 3 authors
·
Feb 23, 2024

The Redshift Evolution of the $M_\bullet-M_\star$ Relation for JWST's Supermassive Black Holes at $z > 4$

JWST has detected many overmassive galactic systems at z > 4, where the mass of the black hole, M_bullet, is 10-100 times larger than expected from local relations, given the host's stellar mass, M_star. This Letter presents a model to describe these overmassive systems in the high-z Universe. We suggest that the black hole mass is the main driver of high-z star formation quenching. SMBHs globally impact their high-z galaxies because their hosts are physically small, and the black holes have duty cycles close to unity at z > 4. In this regime, we assume that black hole mass growth is regulated by the quasar's output, while stellar mass growth is quenched by it and uncorrelated to the global properties of the host halo. We find that the ratio M_bullet/M_star controls the average star formation efficiency: if M_bullet/M_star > 8times 10^{18} (n Lambda/f_{edd})[(Omega_b M_h)/(Omega_m M_star) - 1], then the galaxy is unable to form stars efficiently. Once this ratio exceeds the threshold, a runaway process brings the originally overmassive system towards the local M_bullet - M_star relation. Furthermore, the M_bullet - M_star relation evolves with redshift as propto (1+z)^{5/2}. At z sim 5, we find an overmassive factor of sim 55, in excellent agreement with current JWST data and the high-z relation inferred from those. Extending the black hole horizon farther in redshift and lower in mass will test this model and improve our understanding of the early co-evolution of black holes and galaxies.

  • 2 authors
·
Jan 8, 2024

Transfer learning for galaxy feature detection: Finding Giant Star-forming Clumps in low redshift galaxies using Faster R-CNN

Giant Star-forming Clumps (GSFCs) are areas of intensive star-formation that are commonly observed in high-redshift (z>1) galaxies but their formation and role in galaxy evolution remain unclear. High-resolution observations of low-redshift clumpy galaxy analogues are rare and restricted to a limited set of galaxies but the increasing availability of wide-field galaxy survey data makes the detection of large clumpy galaxy samples increasingly feasible. Deep Learning, and in particular CNNs, have been successfully applied to image classification tasks in astrophysical data analysis. However, one application of DL that remains relatively unexplored is that of automatically identifying and localising specific objects or features in astrophysical imaging data. In this paper we demonstrate the feasibility of using Deep learning-based object detection models to localise GSFCs in astrophysical imaging data. We apply the Faster R-CNN object detection framework (FRCNN) to identify GSFCs in low redshift (z<0.3) galaxies. Unlike other studies, we train different FRCNN models not on simulated images with known labels but on real observational data that was collected by the Sloan Digital Sky Survey Legacy Survey and labelled by volunteers from the citizen science project `Galaxy Zoo: Clump Scout'. The FRCNN model relies on a CNN component as a `backbone' feature extractor. We show that CNNs, that have been pre-trained for image classification using astrophysical images, outperform those that have been pre-trained on terrestrial images. In particular, we compare a domain-specific CNN -`Zoobot' - with a generic classification backbone and find that Zoobot achieves higher detection performance and also requires smaller training data sets to do so. Our final model is capable of producing GSFC detections with a completeness and purity of >=0.8 while only being trained on ~5,000 galaxy images.

  • 11 authors
·
Dec 6, 2023

Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe

The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here.

  • 23 authors
·
Nov 14, 2023

RABBITS -- II. The impact of AGN feedback on coalescing supermassive black holes in disc and elliptical galaxy mergers

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we investigate the orbital evolution of supermassive black holes (SMBHs) during galaxy mergers. We simulate both disc and elliptical galaxy mergers using the KETJU code, which can simultaneously follow galaxy (hydro-)dynamics and small-scale SMBH dynamics with post-Newtonian corrections. With our SMBH binary subgrid model, we show how active galactic nuclei (AGNs) feedback affects galaxy properties and SMBH coalescence. We find that simulations without AGN feedback exhibit excessive star formation, resulting in merger remnants that deviate from observed properties. Kinetic AGN feedback proves more effective than thermal AGN feedback in expelling gas from the centre and quenching star formation. The different central galaxy properties, which are a result of distinct AGN feedback models, lead to varying rates of SMBH orbital decay. In the dynamical friction phase, galaxies with higher star formation and higher SMBH masses possess denser centres, become more resistant to tidal stripping, experience greater dynamical friction, and consequently form SMBH binaries earlier. As AGN feedback reduces gas densities in the centres, dynamical friction by stars dominates over gas. In the SMBH hardening phase, compared to elliptical mergers, disc mergers exhibit higher central densities of newly formed stars, resulting in accelerated SMBH hardening and shorter merger time-scales (i.e. lesssim 500 Myr versus gtrsim 1 Gyr). Our findings highlight the importance of AGN feedback and its numerical implementation in understanding the SMBH coalescing process, a key focus for low-frequency gravitational wave observatories.

  • 8 authors
·
Nov 2, 2023

Galaxy Zoo: Kinematics of strongly and weakly barred galaxies

We study the bar pattern speeds and corotation radii of 225 barred galaxies, using IFU data from MaNGA and the Tremaine-Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for R, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars (R < 1.0; 11% of our sample), fast bars (1.0 < R < 1.4; 27%) and slow bars (R > 1.4; 62%). Simulations show that R is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with {\Lambda}CDM. However, the median value of R is still lower than what is predicted by simulations.

  • 11 authors
·
Feb 10, 2023

The JWST Hubble Sequence: The Rest-Frame Optical Evolution of Galaxy Structure at $1.5 < z < 8$

We present results on the morphological and structural evolution of a total of 4265 galaxies observed with JWST at 1.5 < z < 8 in the JWST CEERS observations that overlap with the CANDELS EGS field. This is the biggest visually classified sample observed with JWST yet, sim20 times larger than previous studies, and allows us to examine in detail how galaxy structure has changed over this critical epoch. All sources were classified by six individual classifiers using a simple classification scheme aimed to produce disk/spheroid/peculiar classifications, whereby we determine how the relative number of these morphologies evolves since the Universe's first billion years. Additionally, we explore structural and quantitative morphology measurements using Morfometryka, and show that galaxies at z > 3 are not dominated by irregular and peculiar structures, either visually or quantitatively, as previously thought. We find a strong dominance of morphologically selected disk galaxies up to z = 8, a far higher redshift than previously thought possible. We also find that the stellar mass and star formation rate densities are dominated by disk galaxies up to z sim 6, demonstrating that most stars in the universe were likely formed in a disk galaxy. We compare our results to theory to show that the fraction of types we find is predicted by cosmological simulations, and that the Hubble Sequence was already in place as early as one billion years after the Big Bang. Additionally, we make our visual classifications public for the community.

  • 16 authors
·
Oct 3, 2022

An inorganic ABX3 perovskite materials dataset for target property prediction and classification using machine learning

The reliability with Machine Learning (ML) techniques in novel materials discovery often depend on the quality of the dataset, in addition to the relevant features used in describing the material. In this regard, the current study presents and validates a newly processed materials dataset that can be utilized for benchmark ML analysis, as it relates to the prediction and classification of deterministic target properties. Originally, the dataset was extracted from the Open Quantum Materials Database (OQMD) and contains a robust 16,323 samples of ABX3 inorganic perovskite structures. The dataset is tabular in form and is preprocessed to include sixty-one generalized input features that broadly describes the physicochemical, stability/geometrical, and Density Functional Theory (DFT) target properties associated with the elemental ionic sites in a three-dimensional ABX3 polyhedral. For validation, four different ML models are employed to predict three distinctive target properties, namely: formation energy, energy band gap, and crystal system. On experimentation, the best accuracy measurements are reported at 0.013 eV/atom MAE, 0.216 eV MAE, and 85% F1, corresponding to the formation energy prediction, band gap prediction and crystal system multi-classification, respectively. Moreover, the realized results are compared with previous literature and as such, affirms the resourcefulness of the current dataset for future benchmark materials analysis via ML techniques. The preprocessed dataset and source codes are openly available to download from github.com/chenebuah/ML_abx3_dataset.

  • 2 authors
·
Dec 18, 2023

The bulk metallicity of giant planets around M stars

The bulk-metallicity determination of giant exoplanets is essential to constrain their formation and evolution pathways and to compare them to the solar system. Previous studies inferred an inverse relation between the mass and bulk metallicity. However, the data almost exclusively contained planets that orbit FGK stars. The recent discoveries of giant exoplanets around M-dwarf stars present an opportunity to probe whether they follow a mass-metallicity trend different from that of their FGK counterparts. Using evolution models we characterised the interiors of giant exoplanets with reliable mass-radius measurements that orbit FGK and M-dwarf stars. We then inferred the mass-metallicity trends for both populations. We found that the bulk metallicity of giant planets around M stars is overall lower compared to those around FGK stars. This yielded mass-metallicity relations for the two populations with similar slopes but significantly different offsets. The lack of metal-rich giant planets around M dwarfs could explain the difference in the inferred offset and be a result of different formation conditions. However, there were only 20 successful bulk-metallicity retrievals for the giant planets around M dwarfs, which resulted in rather large uncertainties. Therefore, it is of great importance to continue detecting these planets with both transit and radial velocities. Additionally, the characterisation of the atmospheres of giant planets around M-stars can further help to constrain their interiors and to investigate the atmosp

  • 2 authors
·
Nov 25, 2024

Protein Multimer Structure Prediction via Prompt Learning

Understanding the 3D structures of protein multimers is crucial, as they play a vital role in regulating various cellular processes. It has been empirically confirmed that the multimer structure prediction~(MSP) can be well handled in a step-wise assembly fashion using provided dimer structures and predicted protein-protein interactions~(PPIs). However, due to the biological gap in the formation of dimers and larger multimers, directly applying PPI prediction techniques can often cause a poor generalization to the MSP task. To address this challenge, we aim to extend the PPI knowledge to multimers of different scales~(i.e., chain numbers). Specifically, we propose \textsc{PromptMSP}, a pre-training and Prompt tuning framework for Multimer Structure Prediction. First, we tailor the source and target tasks for effective PPI knowledge learning and efficient inference, respectively. We design PPI-inspired prompt learning to narrow the gaps of two task formats and generalize the PPI knowledge to multimers of different scales. We provide a meta-learning strategy to learn a reliable initialization of the prompt model, enabling our prompting framework to effectively adapt to limited data for large-scale multimers. Empirically, we achieve both significant accuracy (RMSD and TM-Score) and efficiency improvements compared to advanced MSP models. The code, data and checkpoints are released at https://github.com/zqgao22/PromptMSP.

  • 6 authors
·
Feb 28, 2024

PosterLayout: A New Benchmark and Approach for Content-aware Visual-Textual Presentation Layout

Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements, including text, logo, and underlay, which is a key to automatic template-free creative graphic design. In practical applications, e.g., poster designs, the canvas is originally non-empty, and both inter-element relationships as well as inter-layer relationships should be concerned when generating a proper layout. A few recent works deal with them simultaneously, but they still suffer from poor graphic performance, such as a lack of layout variety or spatial non-alignment. Since content-aware visual-textual presentation layout is a novel task, we first construct a new dataset named PosterLayout, which consists of 9,974 poster-layout pairs and 905 images, i.e., non-empty canvases. It is more challenging and useful for greater layout variety, domain diversity, and content diversity. Then, we propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers, and a novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts. Specifically, the discriminator is design-sequence-aware and will supervise the "design" process of the generator. Experimental results verify the usefulness of the new benchmark and the effectiveness of the proposed approach, which achieves the best performance by generating suitable layouts for diverse canvases.

  • 5 authors
·
Mar 28, 2023

Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers

In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available at https://github.com/danaroth83/irca.

  • 5 authors
·
Mar 24, 2023

LoTSS jellyfish galaxies: II. Ram pressure stripping in groups versus clusters

Numerous examples of ram pressure stripping in galaxy clusters are present in literature; however, substantially less work has been focused on ram pressure stripping in lower mass groups. In this work we use the LOFAR Two-metre Sky Survey (LoTSS) to search for jellyfish galaxies in ~500 SDSS groups (z<0.05), making this the most comprehensive search for ram pressure stripping in groups to date. We identify 60 jellyfish galaxies in groups with extended, asymmetric radio continuum tails, which are found across the entire range of group mass from 10^{12.5} < M_group < 10^{14},h^{-1},M_odot. We compare the group jellyfish galaxies identified in this work with the LoTSS jellyfish galaxies in clusters presented in Roberts et al. (2021), allowing us to compare the effects of ram pressure stripping across three decades in group/cluster mass. We find that jellyfish galaxies are most commonly found in clusters, with the frequency decreasing towards the lowest mass groups. Both the orientation of observed radio continuum tails, and the positions of group jellyfish galaxies in phase space, suggest that galaxies are stripped more slowly in groups relative to clusters. Finally, we find that the star formation rates of jellyfish galaxies in groups are consistent with `normal' star-forming group galaxies, which is in contrast to cluster jellyfish galaxies that have clearly enhanced star formation rates. On the whole, there is clear evidence for ongoing ram pressure stripping in galaxy groups (down to very low group masses), though the frequency of jellyfish galaxies and the strength of ram pressure stripping appears smaller in groups than clusters. Differences in the efficiency of ram pressure stripping in groups versus clusters likely contributes to the positive trend between quenched fraction and host halo mass observed in the local Universe.

  • 6 authors
·
Jun 11, 2021

Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach

We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) - term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowledge such as syntactic knowledge, terminological knowledge, semantic knowledge, etc.) to the identification of terms (term extraction) and relations between them (relation extraction) called semantic pre-processing technology - SPT. Our method relies on automatic term extraction from the natural language texts and subsequent formation of the problem-oriented or application-oriented (also deeply annotated) text corpora where the fundamental entity is the term (includes non-compositional and compositional terms). This gives us an opportunity to changeover from distributed word representations (or word embeddings) to distributed term representations (or term embeddings). This transition will allow to generate more accurate semantic maps of different subject domains (also, of relations between input terms - it is useful to explore clusters and oppositions, or to test your hypotheses about them). The semantic map can be represented as a graph using Vec2graph - a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs. The Vec2graph library coupled with term embeddings will not only improve accuracy in solving standard NLP tasks, but also update the conventional concept of automated ontology development. The main practical result of our work is the development kit (set of toolkits represented as web service APIs and web application), which provides all necessary routines for the basic linguistic pre-processing and the semantic pre-processing of the natural language texts in Ukrainian for future training of term vector space models.

  • 4 authors
·
Mar 6, 2020

Superposed Episodic and Semantic Memory via Sparse Distributed Representation

The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.

  • 2 authors
·
Oct 21, 2017

Rotation-invariant convolutional neural networks for galaxy morphology prediction

Measuring the morphological parameters of galaxies is a key requirement for studying their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS) have resulted in the availability of very large collections of images, which have permitted population-wide analyses of galaxy morphology. Morphological analysis has traditionally been carried out mostly via visual inspection by trained experts, which is time-consuming and does not scale to large (gtrsim10^4) numbers of images. Although attempts have been made to build automated classification systems, these have not been able to achieve the desired level of accuracy. The Galaxy Zoo project successfully applied a crowdsourcing strategy, inviting online users to classify images by answering a series of questions. Unfortunately, even this approach does not scale well enough to keep up with the increasing availability of galaxy images. We present a deep neural network model for galaxy morphology classification which exploits translational and rotational symmetry. It was developed in the context of the Galaxy Challenge, an international competition to build the best model for morphology classification based on annotated images from the Galaxy Zoo project. For images with high agreement among the Galaxy Zoo participants, our model is able to reproduce their consensus with near-perfect accuracy (> 99%) for most questions. Confident model predictions are highly accurate, which makes the model suitable for filtering large collections of images and forwarding challenging images to experts for manual annotation. This approach greatly reduces the experts' workload without affecting accuracy. The application of these algorithms to larger sets of training data will be critical for analysing results from future surveys such as the LSST.

  • 3 authors
·
Mar 24, 2015