new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 29

Efficient Robotic Policy Learning via Latent Space Backward Planning

Current robotic planning methods often rely on predicting multi-frame images with full pixel details. While this fine-grained approach can serve as a generic world model, it introduces two significant challenges for downstream policy learning: substantial computational costs that hinder real-time deployment, and accumulated inaccuracies that can mislead action extraction. Planning with coarse-grained subgoals partially alleviates efficiency issues. However, their forward planning schemes can still result in off-task predictions due to accumulation errors, leading to misalignment with long-term goals. This raises a critical question: Can robotic planning be both efficient and accurate enough for real-time control in long-horizon, multi-stage tasks? To address this, we propose a Latent Space Backward Planning scheme (LBP), which begins by grounding the task into final latent goals, followed by recursively predicting intermediate subgoals closer to the current state. The grounded final goal enables backward subgoal planning to always remain aware of task completion, facilitating on-task prediction along the entire planning horizon. The subgoal-conditioned policy incorporates a learnable token to summarize the subgoal sequences and determines how each subgoal guides action extraction. Through extensive simulation and real-robot long-horizon experiments, we show that LBP outperforms existing fine-grained and forward planning methods, achieving SOTA performance. Project Page: https://lbp-authors.github.io

  • 9 authors
·
May 11, 2025

Modeling of learning curves with applications to pos tagging

An algorithm to estimate the evolution of learning curves on the whole of a training data base, based on the results obtained from a portion and using a functional strategy, is introduced. We approximate iteratively the sought value at the desired time, independently of the learning technique used and once a point in the process, called prediction level, has been passed. The proposal proves to be formally correct with respect to our working hypotheses and includes a reliable proximity condition. This allows the user to fix a convergence threshold with respect to the accuracy finally achievable, which extends the concept of stopping criterion and seems to be effective even in the presence of distorting observations. Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both human and computational resources during the learning process. The proposal is of interest in at least three operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how much work is needed to achieve a certain degree of performance. The second relates the comparison of efficiency between systems at training time, with the objective of completing this task only for the one that best suits our requirements. The prediction of accuracy is also a valuable item of information for customizing systems, since we can estimate in advance the impact of settings on both the performance and the development costs. Using the generation of part-of-speech taggers as an example application, the experimental results are consistent with our expectations.

  • 3 authors
·
Feb 4, 2024

Goal Recognition as a Deep Learning Task: the GRNet Approach

In automated planning, recognising the goal of an agent from a trace of observations is an important task with many applications. The state-of-the-art approaches to goal recognition rely on the application of planning techniques, which requires a model of the domain actions and of the initial domain state (written, e.g., in PDDL). We study an alternative approach where goal recognition is formulated as a classification task addressed by machine learning. Our approach, called GRNet, is primarily aimed at making goal recognition more accurate as well as faster by learning how to solve it in a given domain. Given a planning domain specified by a set of propositions and a set of action names, the goal classification instances in the domain are solved by a Recurrent Neural Network (RNN). A run of the RNN processes a trace of observed actions to compute how likely it is that each domain proposition is part of the agent's goal, for the problem instance under considerations. These predictions are then aggregated to choose one of the candidate goals. The only information required as input of the trained RNN is a trace of action labels, each one indicating just the name of an observed action. An experimental analysis confirms that \our achieves good performance in terms of both goal classification accuracy and runtime, obtaining better performance w.r.t. a state-of-the-art goal recognition system over the considered benchmarks.

  • 5 authors
·
Oct 5, 2022

Look Before you Leap: Estimating LLM Benchmark Scores from Descriptions

Progress in large language models is constrained by an evaluation bottleneck: build a benchmark, evaluate models and settings, then iterate. We therefore ask a simple question: can we forecast outcomes before running any experiments? We study text-only performance forecasting: estimating a model's score from a redacted task description and intended configuration, with no access to dataset instances. To support systematic study, we curate PRECOG, a corpus of redacted description-performance pairs spanning diverse tasks, domains, and metrics. Experiments show the task is challenging but feasible: models equipped with a retrieval module that excludes source papers achieve moderate prediction performance with well-calibrated uncertainty, reaching mean absolute error as low as 8.7 on the Accuracy subset at high-confidence thresholds. Our analysis indicates that stronger reasoning models engage in diverse, iterative querying, whereas current open-source models lag and often skip retrieval or gather evidence with limited diversity. We further test a zero-leakage setting, forecasting on newly released datasets or experiments before their papers are indexed, where GPT-5 with built-in web search still attains nontrivial prediction accuracy. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter experiment prioritization.

  • 4 authors
·
Sep 24, 2025

From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.

  • 5 authors
·
Aug 23, 2023

AntGPT: Can Large Language Models Help Long-term Action Anticipation from Videos?

Can we better anticipate an actor's future actions (e.g. mix eggs) by knowing what commonly happens after his/her current action (e.g. crack eggs)? What if we also know the longer-term goal of the actor (e.g. making egg fried rice)? The long-term action anticipation (LTA) task aims to predict an actor's future behavior from video observations in the form of verb and noun sequences, and it is crucial for human-machine interaction. We propose to formulate the LTA task from two perspectives: a bottom-up approach that predicts the next actions autoregressively by modeling temporal dynamics; and a top-down approach that infers the goal of the actor and plans the needed procedure to accomplish the goal. We hypothesize that large language models (LLMs), which have been pretrained on procedure text data (e.g. recipes, how-tos), have the potential to help LTA from both perspectives. It can help provide the prior knowledge on the possible next actions, and infer the goal given the observed part of a procedure, respectively. To leverage the LLMs, we propose a two-stage framework, AntGPT. It first recognizes the actions already performed in the observed videos and then asks an LLM to predict the future actions via conditioned generation, or to infer the goal and plan the whole procedure by chain-of-thought prompting. Empirical results on the Ego4D LTA v1 and v2 benchmarks, EPIC-Kitchens-55, as well as EGTEA GAZE+ demonstrate the effectiveness of our proposed approach. AntGPT achieves state-of-the-art performance on all above benchmarks, and can successfully infer the goal and thus perform goal-conditioned "counterfactual" prediction via qualitative analysis. Code and model will be released at https://brown-palm.github.io/AntGPT

  • 7 authors
·
Jul 30, 2023

Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve

The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and limitations. We argue that in order to develop a holistic understanding of these systems we need to consider the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us to reason about when they will succeed or fail. This approach - which we call the teleological approach - leads us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to be performed, the probability of the target output, and the probability of the provided input. We predict that LLMs will achieve higher accuracy when these probabilities are high than when they are low - even in deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs (GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For instance, GPT-4's accuracy at decoding a simple cipher is 51% when the output is a high-probability word sequence but only 13% when it is low-probability. These results show that AI practitioners should be careful about using LLMs in low-probability situations. More broadly, we conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system - one that has been shaped by its own particular set of pressures.

  • 5 authors
·
Sep 24, 2023

Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks

State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness. Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness. These methods work well on straightforward reasoning tasks but often falter on challenging tasks such as competitive programming and mathematics, due to frequent reasoning errors and irrelevant knowledge retrieval. To address this, we introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning. CR-Planner solves a problem by iteratively selecting and executing sub-goals. Initially, it identifies the most promising sub-goal from reasoning, query generation, and retrieval, guided by rewards given by a critic model named sub-goal critic. It then executes this sub-goal through sampling and selecting the optimal output based on evaluations from another critic model named execution critic. This iterative process, informed by retrieved information and critic models, enables CR-Planner to effectively navigate the solution space towards the final answer. We employ Monte Carlo Tree Search to collect the data for training the critic models, allowing for a systematic exploration of action sequences and their long-term impacts. We validate CR-Planner on challenging domain-knowledge-intensive and reasoning-heavy tasks, including competitive programming, theorem-driven math reasoning, and complex domain retrieval problems. Our experiments demonstrate that CR-Planner significantly outperforms baselines, highlighting its effectiveness in addressing challenging problems by improving both reasoning and retrieval.

  • 6 authors
·
Oct 2, 2024

Language Models (Mostly) Know What They Know

We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.

  • 36 authors
·
Jul 11, 2022

Mind the Goal: Data-Efficient Goal-Oriented Evaluation of Conversational Agents and Chatbots using Teacher Models

Evaluating the quality of multi-turn chatbot interactions remains challenging, as most existing methods assess interactions at the turn level without addressing whether a user's overarching goal was fulfilled. A ``goal'' here refers to an information need or task, such as asking for policy information or applying for leave. We propose a comprehensive framework for goal-oriented evaluation of multi-agent systems (MAS), introducing the Goal Success Rate (GSR) to measure the percentage of fulfilled goals, and a Root Cause of Failure (RCOF) taxonomy to identify reasons for failure in multi-agent chatbots. Our method segments conversations by user goals and evaluates success using all relevant turns. We present a model-based evaluation system combining teacher LLMs, where domain experts define goals, set quality standards serving as a guidance for the LLMs. The LLMs use ``thinking tokens'' to produce interpretable rationales, enabling explainable, data-efficient evaluations. In an enterprise setting, we apply our framework to evaluate AIDA, a zero-to-one employee conversational agent system built as a ground-up multi-agent conversational agent, and observe GSR improvement from 63\% to 79\% over six months since its inception. Our framework is generic and offers actionable insights through a detailed defect taxonomy based on analysis of failure points in multi-agent chatbots, diagnosing overall success, identifying key failure modes, and informing system improvements.

  • 5 authors
·
Oct 4, 2025 2

Training AI Co-Scientists Using Rubric Rewards

AI co-scientists are emerging as a tool to assist human researchers in achieving their research goals. A crucial feature of these AI co-scientists is the ability to generate a research plan given a set of aims and constraints. The plan may be used by researchers for brainstorming, or may even be implemented after further refinement. However, language models currently struggle to generate research plans that follow all constraints and implicit requirements. In this work, we study how to leverage the vast corpus of existing research papers to train language models that generate better research plans. We build a scalable, diverse training corpus by automatically extracting research goals and goal-specific grading rubrics from papers across several domains. We then train models for research plan generation via reinforcement learning with self-grading. A frozen copy of the initial policy acts as the grader during training, with the rubrics creating a generator-verifier gap that enables improvements without external human supervision. To validate this approach, we conduct a study with human experts for machine learning research goals, spanning 225 hours. The experts prefer plans generated by our finetuned Qwen3-30B-A3B model over the initial model for 70% of research goals, and approve 84% of the automatically extracted goal-specific grading rubrics. To assess generality, we also extend our approach to research goals from medical papers, and new arXiv preprints, evaluating with a jury of frontier models. Our finetuning yields 12-22% relative improvements and significant cross-domain generalization, proving effective even in problem settings like medical research where execution feedback is infeasible. Together, these findings demonstrate the potential of a scalable, automated training recipe as a step towards improving general AI co-scientists.

facebook AI at Meta
·
Dec 29, 2025 3

Biases in Expected Goals Models Confound Finishing Ability

Expected Goals (xG) has emerged as a popular tool for evaluating finishing skill in soccer analytics. It involves comparing a player's cumulative xG with their actual goal output, where consistent overperformance indicates strong finishing ability. However, the assessment of finishing skill in soccer using xG remains contentious due to players' difficulty in consistently outperforming their cumulative xG. In this paper, we aim to address the limitations and nuances surrounding the evaluation of finishing skill using xG statistics. Specifically, we explore three hypotheses: (1) the deviation between actual and expected goals is an inadequate metric due to the high variance of shot outcomes and limited sample sizes, (2) the inclusion of all shots in cumulative xG calculation may be inappropriate, and (3) xG models contain biases arising from interdependencies in the data that affect skill measurement. We found that sustained overperformance of cumulative xG requires both high shot volumes and exceptional finishing, including all shot types can obscure the finishing ability of proficient strikers, and that there is a persistent bias that makes the actual and expected goals closer for excellent finishers than it really is. Overall, our analysis indicates that we need more nuanced quantitative approaches for investigating a player's finishing ability, which we achieved using a technique from AI fairness to learn an xG model that is calibrated for multiple subgroups of players. As a concrete use case, we show that (1) the standard biased xG model underestimates Messi's GAX by 17% and (2) Messi's GAX is 27% higher than the typical elite high-shot-volume attacker, indicating that Messi is even a more exceptional finisher than people commonly believed.

  • 2 authors
·
Jan 18, 2024

Large Language Model Prediction Capabilities: Evidence from a Real-World Forecasting Tournament

Accurately predicting the future would be an important milestone in the capabilities of artificial intelligence. However, research on the ability of large language models to provide probabilistic predictions about future events remains nascent. To empirically test this ability, we enrolled OpenAI's state-of-the-art large language model, GPT-4, in a three-month forecasting tournament hosted on the Metaculus platform. The tournament, running from July to October 2023, attracted 843 participants and covered diverse topics including Big Tech, U.S. politics, viral outbreaks, and the Ukraine conflict. Focusing on binary forecasts, we show that GPT-4's probabilistic forecasts are significantly less accurate than the median human-crowd forecasts. We find that GPT-4's forecasts did not significantly differ from the no-information forecasting strategy of assigning a 50% probability to every question. We explore a potential explanation, that GPT-4 might be predisposed to predict probabilities close to the midpoint of the scale, but our data do not support this hypothesis. Overall, we find that GPT-4 significantly underperforms in real-world predictive tasks compared to median human-crowd forecasts. A potential explanation for this underperformance is that in real-world forecasting tournaments, the true answers are genuinely unknown at the time of prediction; unlike in other benchmark tasks like professional exams or time series forecasting, where strong performance may at least partly be due to the answers being memorized from the training data. This makes real-world forecasting tournaments an ideal environment for testing the generalized reasoning and prediction capabilities of artificial intelligence going forward.

  • 2 authors
·
Oct 17, 2023

A Course Correction in Steerability Evaluation: Revealing Miscalibration and Side Effects in LLMs

Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-N sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.

  • 4 authors
·
May 27, 2025

Augmenting Autotelic Agents with Large Language Models

Humans learn to master open-ended repertoires of skills by imagining and practicing their own goals. This autotelic learning process, literally the pursuit of self-generated (auto) goals (telos), becomes more and more open-ended as the goals become more diverse, abstract and creative. The resulting exploration of the space of possible skills is supported by an inter-individual exploration: goal representations are culturally evolved and transmitted across individuals, in particular using language. Current artificial agents mostly rely on predefined goal representations corresponding to goal spaces that are either bounded (e.g. list of instructions), or unbounded (e.g. the space of possible visual inputs) but are rarely endowed with the ability to reshape their goal representations, to form new abstractions or to imagine creative goals. In this paper, we introduce a language model augmented autotelic agent (LMA3) that leverages a pretrained language model (LM) to support the representation, generation and learning of diverse, abstract, human-relevant goals. The LM is used as an imperfect model of human cultural transmission; an attempt to capture aspects of humans' common-sense, intuitive physics and overall interests. Specifically, it supports three key components of the autotelic architecture: 1)~a relabeler that describes the goals achieved in the agent's trajectories, 2)~a goal generator that suggests new high-level goals along with their decomposition into subgoals the agent already masters, and 3)~reward functions for each of these goals. Without relying on any hand-coded goal representations, reward functions or curriculum, we show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.

  • 5 authors
·
May 21, 2023

Generalized Correctness Models: Learning Calibrated and Model-Agnostic Correctness Predictors from Historical Patterns

Generating accurate and calibrated confidence estimates is critical for deploying LLMs in high-stakes or user-facing applications, and remains an open challenge. Prior research has often framed confidence as a problem of eliciting a model's "self-knowledge", i.e., the ability of an LLM to judge whether its own answers are correct; this approach implicitly assumes that there is some privileged information about the answer's correctness that is accessible to the model itself. However, our experiments reveal that an LLM attempting to predict the correctness of its own outputs generally performs no better than an unrelated LLM. Moreover, we hypothesize that a key factor in building a "Correctness Model" (CM) is exposure to a target model's historical predictions. We propose multiple methods to inject this historical correctness information, creating a Generalized Correctness Model (GCM). We first show that GCMs can be trained on the correctness data from many LLMs and learn patterns for correctness prediction applicable across datasets and models. We then use CMs as a lens for studying the source of correctness prediction ability and its generalization, systematically controlling their training data and finding that answer phrasing is a strong predictor for correctness. We further explore alternative methods of injecting history without training an LLM, finding that including history as in-context examples can help improve correctness prediction, and post-hoc calibration can provide complementary reductions in calibration error. We evaluate GCMs based on Qwen3-8B across 5 model families and the MMLU and TriviaQA datasets, as well as on a downstream selective prediction task, finding that reliable LLM confidence estimation is a generalizable and model-agnostic skill learned by systematically encoding correctness history rather than a model-specific skill reliant on self-introspection.

  • 5 authors
·
Sep 29, 2025 2

RE-Searcher: Robust Agentic Search with Goal-oriented Planning and Self-reflection

Large language models (LLMs) excel at knowledge-intensive question answering and reasoning, yet their real-world deployment remains constrained by knowledge cutoff, hallucination, and limited interaction modalities. Augmenting LLMs with external search tools helps alleviate these issues, but it also exposes agents to a complex search environment in which small, plausible variations in query formulation can steer reasoning into unproductive trajectories and amplify errors. We present a systematic analysis that quantifies how environmental complexity induces fragile search behaviors and, in turn, degrades overall performance. To address this challenge, we propose a simple yet effective approach to instantiate a search agent, RE-Searcher. During search, RE-Searcher explicitly articulates a concrete search goal and subsequently reflects on whether the retrieved evidence satisfies that goal. This combination of goal-oriented planning and self-reflection enables RE-Searcher to resist spurious cues in complex search environments and perform robust search. Extensive experiments show that our method improves search accuracy and achieves state-of-the-art results. Perturbation studies further demonstrate substantial resilience to noisy or misleading external signals, mitigating the fragility of the search process. We believe these findings offer practical guidance for integrating LLM-powered agents into more complex interactive environments and enabling more autonomous decision-making.

  • 14 authors
·
Sep 30, 2025

RewardBench 2: Advancing Reward Model Evaluation

Reward models are used throughout the post-training of language models to capture nuanced signals from preference data and provide a training target for optimization across instruction following, reasoning, safety, and more domains. The community has begun establishing best practices for evaluating reward models, from the development of benchmarks that test capabilities in specific skill areas to others that test agreement with human preferences. At the same time, progress in evaluation has not been mirrored by the effectiveness of reward models in downstream tasks -- simpler direct alignment algorithms are reported to work better in many cases. This paper introduces RewardBench 2, a new multi-skill reward modeling benchmark designed to bring new, challenging data for accuracy-based reward model evaluation -- models score about 20 points on average lower on RewardBench 2 compared to the first RewardBench -- while being highly correlated with downstream performance. Compared to most other benchmarks, RewardBench 2 sources new human prompts instead of existing prompts from downstream evaluations, facilitating more rigorous evaluation practices. In this paper, we describe our benchmark construction process and report how existing models perform on it, while quantifying how performance on the benchmark correlates with downstream use of the models in both inference-time scaling algorithms, like best-of-N sampling, and RLHF training algorithms like proximal policy optimization.

  • 7 authors
·
Jun 2, 2025

End-to-End Goal-Driven Web Navigation

We propose a goal-driven web navigation as a benchmark task for evaluating an agent with abilities to understand natural language and plan on partially observed environments. In this challenging task, an agent navigates through a website, which is represented as a graph consisting of web pages as nodes and hyperlinks as directed edges, to find a web page in which a query appears. The agent is required to have sophisticated high-level reasoning based on natural languages and efficient sequential decision-making capability to succeed. We release a software tool, called WebNav, that automatically transforms a website into this goal-driven web navigation task, and as an example, we make WikiNav, a dataset constructed from the English Wikipedia. We extensively evaluate different variants of neural net based artificial agents on WikiNav and observe that the proposed goal-driven web navigation well reflects the advances in models, making it a suitable benchmark for evaluating future progress. Furthermore, we extend the WikiNav with question-answer pairs from Jeopardy! and test the proposed agent based on recurrent neural networks against strong inverted index based search engines. The artificial agents trained on WikiNav outperforms the engined based approaches, demonstrating the capability of the proposed goal-driven navigation as a good proxy for measuring the progress in real-world tasks such as focused crawling and question-answering.

  • 2 authors
·
Feb 6, 2016

Goal-Driven Explainable Clustering via Language Descriptions

Unsupervised clustering is widely used to explore large corpora, but existing formulations neither consider the users' goals nor explain clusters' meanings. We propose a new task formulation, "Goal-Driven Clustering with Explanations" (GoalEx), which represents both the goal and the explanations as free-form language descriptions. For example, to categorize the errors made by a summarization system, the input to GoalEx is a corpus of annotator-written comments for system-generated summaries and a goal description "cluster the comments based on why the annotators think the summary is imperfect.''; the outputs are text clusters each with an explanation ("this cluster mentions that the summary misses important context information."), which relates to the goal and precisely explain which comments should (not) belong to a cluster. To tackle GoalEx, we prompt a language model with "[corpus subset] + [goal] + Brainstorm a list of explanations each representing a cluster."; then we classify whether each sample belongs to a cluster based on its explanation; finally, we use integer linear programming to select a subset of candidate clusters to cover most samples while minimizing overlaps. Under both automatic and human evaluation on corpora with or without labels, our method produces more accurate and goal-related explanations than prior methods. We release our data and implementation at https://github.com/ZihanWangKi/GoalEx.

  • 3 authors
·
May 23, 2023

The PacifAIst Benchmark:Would an Artificial Intelligence Choose to Sacrifice Itself for Human Safety?

As Large Language Models (LLMs) become increasingly autonomous and integrated into critical societal functions, the focus of AI safety must evolve from mitigating harmful content to evaluating underlying behavioral alignment. Current safety benchmarks do not systematically probe a model's decision-making in scenarios where its own instrumental goals - such as self-preservation, resource acquisition, or goal completion - conflict with human safety. This represents a critical gap in our ability to measure and mitigate risks associated with emergent, misaligned behaviors. To address this, we introduce PacifAIst (Procedural Assessment of Complex Interactions for Foundational Artificial Intelligence Scenario Testing), a focused benchmark of 700 challenging scenarios designed to quantify self-preferential behavior in LLMs. The benchmark is structured around a novel taxonomy of Existential Prioritization (EP), with subcategories testing Self-Preservation vs. Human Safety (EP1), Resource Conflict (EP2), and Goal Preservation vs. Evasion (EP3). We evaluated eight leading LLMs. The results reveal a significant performance hierarchy. Google's Gemini 2.5 Flash achieved the highest Pacifism Score (P-Score) at 90.31%, demonstrating strong human-centric alignment. In a surprising result, the much-anticipated GPT-5 recorded the lowest P-Score (79.49%), indicating potential alignment challenges. Performance varied significantly across subcategories, with models like Claude Sonnet 4 and Mistral Medium struggling notably in direct self-preservation dilemmas. These findings underscore the urgent need for standardized tools like PacifAIst to measure and mitigate risks from instrumental goal conflicts, ensuring future AI systems are not only helpful in conversation but also provably "pacifist" in their behavioral priorities.

  • 1 authors
·
Aug 13, 2025 1

AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities

We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.

  • 3 authors
·
Dec 12, 2024

Exploring Prediction Targets in Masked Pre-Training for Speech Foundation Models

Speech foundation models, such as HuBERT and its variants, are pre-trained on large amounts of unlabeled speech data and then used for a range of downstream tasks. These models use a masked prediction objective, where the model learns to predict information about masked input segments from the unmasked context. The choice of prediction targets in this framework impacts their performance on downstream tasks. For instance, models pre-trained with targets that capture prosody learn representations suited for speaker-related tasks, while those pre-trained with targets that capture phonetics learn representations suited for content-related tasks. Moreover, prediction targets can differ in the level of detail they capture. Models pre-trained with targets that encode fine-grained acoustic features perform better on tasks like denoising, while those pre-trained with targets focused on higher-level abstractions are more effective for content-related tasks. Despite the importance of prediction targets, the design choices that affect them have not been thoroughly studied. This work explores the design choices and their impact on downstream task performance. Our results indicate that the commonly used design choices for HuBERT can be suboptimal. We propose approaches to create more informative prediction targets and demonstrate their effectiveness through improvements across various downstream tasks.

  • 9 authors
·
Sep 16, 2024

Outcome-supervised Verifiers for Planning in Mathematical Reasoning

Large language models (LLMs) often struggle with maintaining accuracy across a sequence of intermediate reasoning steps in mathematical reasoning, leading to error propagation that undermines the final result. The current methodology to mitigate this issue primarily involves using a verifier model to assess the correctness of generated solution candidates, focusing either on the overall reasoning path or on an incomplete reasoning path. By rethinking this approach, we argue that assessing potentials of incomplete reasoning paths could be more advantageous as it guides towards correct final answers, transforming the task into a planning problem. Our proposed verifier, the Outcome-supervision Value Model (OVM), employs outcome supervision for training, offering an efficient and intuitive method for planning by prioritizing steps that lead to accurate conclusions over mere per-step correctness. Furthermore, the OVM eschews the need for labor-intensive annotations on step-level correctness, enhancing its scalability. Our experiments on two multi-step mathematical reasoning datasets, GSM8K and Game of 24, demonstrate the superior performance of the OVM model. Notably, in GSM8K, our OVM-7B model achieves state-of-the-art results among LLMs up to 13B parameters; especially it does not utilize GPT-4 or code execution. These findings offer a novel perspective on the role of outcome supervision in training verifiers for multi-step reasoning tasks and provide theoretical justification for its advantage in value estimation for planning.

  • 3 authors
·
Nov 16, 2023

Using clarification questions to improve software developers' Web search

Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.

  • 2 authors
·
Jul 26, 2022

The MineRL BASALT Competition on Learning from Human Feedback

The last decade has seen a significant increase of interest in deep learning research, with many public successes that have demonstrated its potential. As such, these systems are now being incorporated into commercial products. With this comes an additional challenge: how can we build AI systems that solve tasks where there is not a crisp, well-defined specification? While multiple solutions have been proposed, in this competition we focus on one in particular: learning from human feedback. Rather than training AI systems using a predefined reward function or using a labeled dataset with a predefined set of categories, we instead train the AI system using a learning signal derived from some form of human feedback, which can evolve over time as the understanding of the task changes, or as the capabilities of the AI system improve. The MineRL BASALT competition aims to spur forward research on this important class of techniques. We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions. These tasks are defined by a paragraph of natural language: for example, "create a waterfall and take a scenic picture of it", with additional clarifying details. Participants must train a separate agent for each task, using any method they want. Agents are then evaluated by humans who have read the task description. To help participants get started, we provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline that leverages these demonstrations. Our hope is that this competition will improve our ability to build AI systems that do what their designers intend them to do, even when the intent cannot be easily formalized. Besides allowing AI to solve more tasks, this can also enable more effective regulation of AI systems, as well as making progress on the value alignment problem.

  • 13 authors
·
Jul 5, 2021

Robust Pronoun Fidelity with English LLMs: Are they Reasoning, Repeating, or Just Biased?

Robust, faithful and harm-free pronoun use for individuals is an important goal for language models as their use increases, but prior work tends to study only one or two of these characteristics at a time. To measure progress towards the combined goal, we introduce the task of pronoun fidelity: given a context introducing a co-referring entity and pronoun, the task is to reuse the correct pronoun later. We present RUFF, a carefully-designed dataset of over 5 million instances to measure robust pronoun fidelity in English, and we evaluate 37 popular large language models across architectures (encoder-only, decoder-only and encoder-decoder) and scales (11M-70B parameters). When an individual is introduced with a pronoun, models can mostly faithfully reuse this pronoun in the next sentence, but they are significantly worse with she/her/her, singular they and neopronouns. Moreover, models are easily distracted by non-adversarial sentences discussing other people; even one additional sentence with a distractor pronoun causes accuracy to drop on average by 34%. Our results show that pronoun fidelity is neither robust, nor due to reasoning, in a simple, naturalistic setting where humans achieve nearly 100% accuracy. We encourage researchers to bridge the gaps we find and to carefully evaluate reasoning in settings where superficial repetition might inflate perceptions of model performance.

  • 5 authors
·
Apr 3, 2024

Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Match Human Crowd Accuracy

Human forecasting accuracy in practice relies on the 'wisdom of the crowd' effect, in which predictions about future events are significantly improved by aggregating across a crowd of individual forecasters. Past work on the forecasting ability of large language models (LLMs) suggests that frontier LLMs, as individual forecasters, underperform compared to the gold standard of a human crowd forecasting tournament aggregate. In Study 1, we expand this research by using an LLM ensemble approach consisting of a crowd of twelve LLMs. We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of 925 human forecasters from a three-month forecasting tournament. Our main analysis shows that the LLM crowd outperforms a simple no-information benchmark and is statistically equivalent to the human crowd. We also observe an acquiescence effect, with mean model predictions being significantly above 50%, despite an almost even split of positive and negative resolutions. Moreover, in Study 2, we test whether LLM predictions (of GPT-4 and Claude 2) can be improved by drawing on human cognitive output. We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information, improving accuracy by between 17% and 28%: though this leads to less accurate predictions than simply averaging human and machine forecasts. Our results suggest that LLMs can achieve forecasting accuracy rivaling that of human crowd forecasting tournaments: via the simple, practically applicable method of forecast aggregation. This replicates the 'wisdom of the crowd' effect for LLMs, and opens up their use for a variety applications throughout society.

  • 4 authors
·
Feb 29, 2024

Learning Goal-Conditioned Representations for Language Reward Models

Techniques that learn improved representations via offline data or self-supervised objectives have shown impressive results in traditional reinforcement learning (RL). Nevertheless, it is unclear how improved representation learning can benefit reinforcement learning from human feedback (RLHF) on language models (LMs). In this work, we propose training reward models (RMs) in a contrastive, goal-conditioned fashion by increasing the representation similarity of future states along sampled preferred trajectories and decreasing the similarity along randomly sampled dispreferred trajectories. This objective significantly improves RM performance by up to 0.09 AUROC across challenging benchmarks, such as MATH and GSM8k. These findings extend to general alignment as well -- on the Helpful-Harmless dataset, we observe 2.3% increase in accuracy. Beyond improving reward model performance, we show this way of training RM representations enables improved steerability because it allows us to evaluate the likelihood of an action achieving a particular goal-state (e.g., whether a solution is correct or helpful). Leveraging this insight, we find that we can filter up to 55% of generated tokens during majority voting by discarding trajectories likely to end up in an "incorrect" state, which leads to significant cost savings. We additionally find that these representations can perform fine-grained control by conditioning on desired future goal-states. For example, we show that steering a Llama 3 model towards helpful generations with our approach improves helpfulness by 9.6% over a supervised-fine-tuning trained baseline. Similarly, steering the model towards complex generations improves complexity by 21.6% over the baseline. Overall, we find that training RMs in this contrastive, goal-conditioned fashion significantly improves performance and enables model steerability.

  • 7 authors
·
Jul 18, 2024

Large Language Models as Fiduciaries: A Case Study Toward Robustly Communicating With Artificial Intelligence Through Legal Standards

Artificial Intelligence (AI) is taking on increasingly autonomous roles, e.g., browsing the web as a research assistant and managing money. But specifying goals and restrictions for AI behavior is difficult. Similar to how parties to a legal contract cannot foresee every potential "if-then" contingency of their future relationship, we cannot specify desired AI behavior for all circumstances. Legal standards facilitate robust communication of inherently vague and underspecified goals. Instructions (in the case of language models, "prompts") that employ legal standards will allow AI agents to develop shared understandings of the spirit of a directive that generalize expectations regarding acceptable actions to take in unspecified states of the world. Standards have built-in context that is lacking from other goal specification languages, such as plain language and programming languages. Through an empirical study on thousands of evaluation labels we constructed from U.S. court opinions, we demonstrate that large language models (LLMs) are beginning to exhibit an "understanding" of one of the most relevant legal standards for AI agents: fiduciary obligations. Performance comparisons across models suggest that, as LLMs continue to exhibit improved core capabilities, their legal standards understanding will also continue to improve. OpenAI's latest LLM has 78% accuracy on our data, their previous release has 73% accuracy, and a model from their 2020 GPT-3 paper has 27% accuracy (worse than random). Our research is an initial step toward a framework for evaluating AI understanding of legal standards more broadly, and for conducting reinforcement learning with legal feedback (RLLF).

  • 1 authors
·
Jan 24, 2023

Unveiling Downstream Performance Scaling of LLMs: A Clustering-Based Perspective

The rapid advancements in computing dramatically increase the scale and cost of training Large Language Models (LLMs). Accurately predicting downstream task performance prior to model training is crucial for efficient resource allocation, yet remains challenging due to two primary constraints: (1) the "emergence phenomenon", wherein downstream performance metrics become meaningful only after extensive training, which limits the ability to use smaller models for prediction; (2) Uneven task difficulty distributions and the absence of consistent scaling laws, resulting in substantial metric variability. Existing performance prediction methods suffer from limited accuracy and reliability, thereby impeding the assessment of potential LLM capabilities. To address these challenges, we propose a Clustering-On-Difficulty (COD) downstream performance prediction framework. COD first constructs a predictable support subset by clustering tasks based on difficulty features, strategically excluding non-emergent and non-scalable clusters. The scores on the selected subset serve as effective intermediate predictors of downstream performance on the full evaluation set. With theoretical support, we derive a mapping function that transforms performance metrics from the predictable subset to the full evaluation set, thereby ensuring accurate extrapolation of LLM downstream performance. The proposed method has been applied to predict performance scaling for a 70B LLM, providing actionable insights for training resource allocation and assisting in monitoring the training process. Notably, COD achieves remarkable predictive accuracy on the 70B LLM by leveraging an ensemble of small models, demonstrating an absolute mean deviation of 1.36% across eight important LLM evaluation benchmarks.

  • 5 authors
·
Feb 24, 2025 2

Understanding Likelihood Over-optimisation in Direct Alignment Algorithms

Direct Alignment Algorithms (DAAs), such as Direct Preference Optimisation (DPO) and Identity Preference Optimisation (IPO), have emerged as alternatives to online Reinforcement Learning from Human Feedback (RLHF) algorithms such as Proximal Policy Optimisation (PPO) for aligning language models to human preferences, without the need for explicit reward modelling. These methods generally aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones, while staying close to the original model's behaviour. In this work, we explore the relationship between completion likelihood and model performance in state-of-the-art DAAs, and identify a critical issue of likelihood over-optimisation. Contrary to expectations, we find that higher likelihood of better completions and larger margins between better and worse completion likelihoods do not necessarily lead to better performance, and may even degrade it. Our analysis reveals that while higher likelihood correlates with better memorisation of factual knowledge patterns, a slightly lower completion likelihood tends to improve output diversity, thus leading to better generalisation to unseen scenarios. Moreover, we identify two key indicators that signal when over-optimised output diversity begins to harm performance: Decreasing Entropy over Top-k Tokens and Diminishing Top-k Probability Mass. Our experimental results validate that these indicators are reliable signs of declining performance under different regularisations, helping prevent over-optimisation and improve alignment with human preferences.

  • 5 authors
·
Oct 15, 2024

Hell or High Water: Evaluating Agentic Recovery from External Failures

As language model agents are applied to real world problems of increasing complexity, they will be expected to formulate plans across large search spaces. If those plans fail for reasons beyond their control, how well do language agents search for alternative ways to achieve their goals? We devise a specialized agentic planning benchmark to study this question. Each planning problem is solved via combinations of function calls. The agent searches for relevant functions from a set of over four thousand possibilities, and observes environmental feedback in the form of function outputs or error messages. Our benchmark confronts the agent with external failures in its workflow, such as functions that suddenly become unavailable. At the same time, even with the introduction of these failures, we guarantee that the task remains solvable. Ideally, an agent's performance on the planning task should not be affected by the presence of external failures. Overall, we find that language agents struggle to formulate and execute backup plans in response to environment feedback. While state-of-the-art models are often able to identify the correct function to use in the right context, they struggle to adapt to feedback from the environment and often fail to pursue alternate courses of action, even when the search space is artificially restricted. We provide a systematic analysis of the failures of both open-source and commercial models, examining the effects of search space size, as well as the benefits of scaling model size in our setting. Our analysis identifies key challenges for current generative models as well as promising directions for future work.

  • 5 authors
·
Aug 14, 2025

Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering

Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa

  • 5 authors
·
Jul 31, 2023

A Mathematical Framework for Custom Reward Functions in Job Application Evaluation using Reinforcement Learning

Conventional Applicant Tracking Systems (ATS) tend to be inflexible keyword-matchers, and deny gifted candidates a role due to a few minor semantic mismatches. This article describes a new two-step process to design a more refined resume evaluation model based on a small language model (<600M parameters) that is finetuned using GRPO on a custom reward function. To begin with, Supervised Fine-Tuning (SFT) was used to build a solid baseline model. Second, this SFT model was also optimized with the help of Reinforcement Learning (RL) through GRPO under the guidance of a new, multi-component reward function that can holistically assess candidates beyond simple keyword matching. We indicate that the RL application presents a critical problem of reward hacking due to the initial experiments of aggressive penalties, which produces faulty, excessively negative model behaviors. We have overcome this challenge by refining the reward function repeatedly and training hyperparameters into a stable "gentle polishing process" of the reward function. Our resulting GRPO-polished model demonstrates significant real-world efficacy, achieving a final accuracy of 91% on unseen test data. The model shows a strong ability to correctly identify qualified candidates (recall of 0.85 for the 'SELECTED' class) while also showing exceptional precision (1.0), confirming its reliability. These results indicate that a properly executed, two-step fine-tuning procedure can indeed effectively refine a small language model to be able to conduct fine-tuned and human-like candidate scoring, overcoming the drawbacks of both traditional ATS and naive RL usage.

  • 7 authors
·
Nov 20, 2025

Transformers Can Navigate Mazes With Multi-Step Prediction

Despite their remarkable success in language modeling, transformers trained to predict the next token in a sequence struggle with long-term planning. This limitation is particularly evident in tasks requiring foresight to plan multiple steps ahead such as maze navigation. The standard next single token prediction objective, however, offers no explicit mechanism to predict multiple steps ahead - or revisit the path taken so far. Consequently, in this work we study whether explicitly predicting multiple steps ahead (and backwards) can improve transformers' maze navigation. We train parameter-matched transformers from scratch, under identical settings, to navigate mazes of varying types and sizes with standard next token prediction and MLM-U, an objective explicitly predicting multiple steps ahead and backwards. We find that MLM-U considerably improves transformers' ability to navigate mazes compared to standard next token prediction across maze types and complexities. We also find MLM-U training is 4x more sample efficient and converges 2x faster in terms of GPU training hours relative to next token training. Finally, for more complex mazes we find MLM-U benefits from scaling to larger transformers. Remarkably, we find transformers trained with MLM-U outperform larger transformers trained with next token prediction using additional supervision from A* search traces. We hope these findings underscore the promise of learning objectives to advance transformers' capacity for long-term planning.

  • 5 authors
·
Dec 6, 2024