- Enterprise Large Language Model Evaluation Benchmark Large Language Models (LLMs) ) have demonstrated promise in boosting productivity across AI-powered tools, yet existing benchmarks like Massive Multitask Language Understanding (MMLU) inadequately assess enterprise-specific task complexities. We propose a 14-task framework grounded in Bloom's Taxonomy to holistically evaluate LLM capabilities in enterprise contexts. To address challenges of noisy data and costly annotation, we develop a scalable pipeline combining LLM-as-a-Labeler, LLM-as-a-Judge, and corrective retrieval-augmented generation (CRAG), curating a robust 9,700-sample benchmark. Evaluation of six leading models shows open-source contenders like DeepSeek R1 rival proprietary models in reasoning tasks but lag in judgment-based scenarios, likely due to overthinking. Our benchmark reveals critical enterprise performance gaps and offers actionable insights for model optimization. This work provides enterprises a blueprint for tailored evaluations and advances practical LLM deployment. 7 authors · Jun 25, 2025
- SpeechR: A Benchmark for Speech Reasoning in Large Audio-Language Models Large audio-language models (LALMs) have achieved near-human performance in sentence-level transcription and emotion recognition. However, existing evaluations focus mainly on surface-level perception, leaving the capacity of models for contextual and inference-driven reasoning in speech-based scenarios insufficiently examined. To address this gap, we introduce SpeechR, a unified benchmark for evaluating reasoning over speech in large audio-language models. SpeechR evaluates models along three key dimensions: factual retrieval, procedural inference, and normative judgment. It includes three distinct evaluation formats. The multiple-choice version measures answer selection accuracy. The generative version assesses the coherence and logical consistency of reasoning chains. The acoustic-feature version investigates whether variations in stress and emotion affect reasoning performance. Evaluations on eleven state-of-the-art LALMs reveal that high transcription accuracy does not translate into strong reasoning capabilities. SpeechR establishes a structured benchmark for evaluating reasoning in spoken language, enabling more targeted analysis of model capabilities across diverse dialogue-based tasks. 5 authors · Aug 3, 2025
- MoCa: Measuring Human-Language Model Alignment on Causal and Moral Judgment Tasks Human commonsense understanding of the physical and social world is organized around intuitive theories. These theories support making causal and moral judgments. When something bad happens, we naturally ask: who did what, and why? A rich literature in cognitive science has studied people's causal and moral intuitions. This work has revealed a number of factors that systematically influence people's judgments, such as the violation of norms and whether the harm is avoidable or inevitable. We collected a dataset of stories from 24 cognitive science papers and developed a system to annotate each story with the factors they investigated. Using this dataset, we test whether large language models (LLMs) make causal and moral judgments about text-based scenarios that align with those of human participants. On the aggregate level, alignment has improved with more recent LLMs. However, using statistical analyses, we find that LLMs weigh the different factors quite differently from human participants. These results show how curated, challenge datasets combined with insights from cognitive science can help us go beyond comparisons based merely on aggregate metrics: we uncover LLMs implicit tendencies and show to what extent these align with human intuitions. 6 authors · Oct 30, 2023
29 Who's Your Judge? On the Detectability of LLM-Generated Judgments Large Language Model (LLM)-based judgments leverage powerful LLMs to efficiently evaluate candidate content and provide judgment scores. However, the inherent biases and vulnerabilities of LLM-generated judgments raise concerns, underscoring the urgent need for distinguishing them in sensitive scenarios like academic peer reviewing. In this work, we propose and formalize the task of judgment detection and systematically investigate the detectability of LLM-generated judgments. Unlike LLM-generated text detection, judgment detection relies solely on judgment scores and candidates, reflecting real-world scenarios where textual feedback is often unavailable in the detection process. Our preliminary analysis shows that existing LLM-generated text detection methods perform poorly given their incapability to capture the interaction between judgment scores and candidate content -- an aspect crucial for effective judgment detection. Inspired by this, we introduce J-Detector, a lightweight and transparent neural detector augmented with explicitly extracted linguistic and LLM-enhanced features to link LLM judges' biases with candidates' properties for accurate detection. Experiments across diverse datasets demonstrate the effectiveness of J-Detector and show how its interpretability enables quantifying biases in LLM judges. Finally, we analyze key factors affecting the detectability of LLM-generated judgments and validate the practical utility of judgment detection in real-world scenarios. Data Mining and Machine Learning lab · Sep 29, 2025 2