Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMeasuring Massive Multitask Chinese Understanding
The development of large-scale Chinese language models is flourishing, yet there is a lack of corresponding capability assessments. Therefore, we propose a test to measure the multitask accuracy of large Chinese language models. This test encompasses four major domains, including medicine, law, psychology, and education, with 15 subtasks in medicine and 8 subtasks in education. We found that the best-performing models in the zero-shot setting outperformed the worst-performing models by nearly 18.6 percentage points on average. Across the four major domains, the highest average zero-shot accuracy of all models is 0.512. In the subdomains, only the GPT-3.5-turbo model achieved a zero-shot accuracy of 0.693 in clinical medicine, which was the highest accuracy among all models across all subtasks. All models performed poorly in the legal domain, with the highest zero-shot accuracy reaching only 0.239. By comprehensively evaluating the breadth and depth of knowledge across multiple disciplines, this test can more accurately identify the shortcomings of the models.
M3KE: A Massive Multi-Level Multi-Subject Knowledge Evaluation Benchmark for Chinese Large Language Models
Large language models have recently made tremendous progress in a variety of aspects, e.g., cross-task generalization, instruction following. Comprehensively evaluating the capability of large language models in multiple tasks is of great importance. In this paper, we propose M3KE, a Massive Multi-Level Multi-Subject Knowledge Evaluation benchmark, which is developed to measure knowledge acquired by Chinese large language models by testing their multitask accuracy in zero- and few-shot settings. We have collected 20,477 questions from 71 tasks. Our selection covers all major levels of Chinese education system, ranging from the primary school to college, as well as a wide variety of subjects, including humanities, history, politics, law, education, psychology, science, technology, art and religion. All questions are multiple-choice questions with four options, hence guaranteeing a standardized and unified assessment process. We've assessed a number of state-of-the-art open-source Chinese large language models on the proposed benchmark. The size of these models varies from 335M to 130B parameters. Experiment results demonstrate that they perform significantly worse than GPT-3.5 that reaches an accuracy of ~ 48% on M3KE. The dataset is available at https://github.com/tjunlp-lab/M3KE.
Massively Multitask Networks for Drug Discovery
Massively multitask neural architectures provide a learning framework for drug discovery that synthesizes information from many distinct biological sources. To train these architectures at scale, we gather large amounts of data from public sources to create a dataset of nearly 40 million measurements across more than 200 biological targets. We investigate several aspects of the multitask framework by performing a series of empirical studies and obtain some interesting results: (1) massively multitask networks obtain predictive accuracies significantly better than single-task methods, (2) the predictive power of multitask networks improves as additional tasks and data are added, (3) the total amount of data and the total number of tasks both contribute significantly to multitask improvement, and (4) multitask networks afford limited transferability to tasks not in the training set. Our results underscore the need for greater data sharing and further algorithmic innovation to accelerate the drug discovery process.
Multitask Learning and Multistage Fusion for Dimensional Audiovisual Emotion Recognition
Due to its ability to accurately predict emotional state using multimodal features, audiovisual emotion recognition has recently gained more interest from researchers. This paper proposes two methods to predict emotional attributes from audio and visual data using a multitask learning and a fusion strategy. First, multitask learning is employed by adjusting three parameters for each attribute to improve the recognition rate. Second, a multistage fusion is proposed to combine results from various modalities' final prediction. Our approach used multitask learning, employed at unimodal and early fusion methods, shows improvement over single-task learning with an average CCC score of 0.431 compared to 0.297. A multistage method, employed at the late fusion approach, significantly improved the agreement score between true and predicted values on the development set of data (from [0.537, 0.565, 0.083] to [0.68, 0.656, 0.443]) for arousal, valence, and liking.
MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation
When reading medical images such as a computed tomography (CT) scan, radiologists generally search across the image to find lesions, characterize and measure them, and then describe them in the radiological report. To automate this process, we propose a multitask universal lesion analysis network (MULAN) for joint detection, tagging, and segmentation of lesions in a variety of body parts, which greatly extends existing work of single-task lesion analysis on specific body parts. MULAN is based on an improved Mask R-CNN framework with three head branches and a 3D feature fusion strategy. It achieves the state-of-the-art accuracy in the detection and tagging tasks on the DeepLesion dataset, which contains 32K lesions in the whole body. We also analyze the relationship between the three tasks and show that tag predictions can improve detection accuracy via a score refinement layer.
CMMLU: Measuring massive multitask language understanding in Chinese
As the capabilities of large language models (LLMs) continue to advance, evaluating their performance becomes increasingly crucial and challenging. This paper aims to bridge this gap by introducing CMMLU, a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities. We conduct a thorough evaluation of 18 advanced multilingual- and Chinese-oriented LLMs, assessing their performance across different subjects and settings. The results reveal that most existing LLMs struggle to achieve an average accuracy of 50%, even when provided with in-context examples and chain-of-thought prompts, whereas the random baseline stands at 25%. This highlights significant room for improvement in LLMs. Additionally, we conduct extensive experiments to identify factors impacting the models' performance and propose directions for enhancing LLMs. CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
Binary and Multitask Classification Model for Dutch Anaphora Resolution: Die/Dat Prediction
The correct use of Dutch pronouns 'die' and 'dat' is a stumbling block for both native and non-native speakers of Dutch due to the multiplicity of syntactic functions and the dependency on the antecedent's gender and number. Drawing on previous research conducted on neural context-dependent dt-mistake correction models (Heyman et al. 2018), this study constructs the first neural network model for Dutch demonstrative and relative pronoun resolution that specifically focuses on the correction and part-of-speech prediction of these two pronouns. Two separate datasets are built with sentences obtained from, respectively, the Dutch Europarl corpus (Koehn 2015) - which contains the proceedings of the European Parliament from 1996 to the present - and the SoNaR corpus (Oostdijk et al. 2013) - which contains Dutch texts from a variety of domains such as newspapers, blogs and legal texts. Firstly, a binary classification model solely predicts the correct 'die' or 'dat'. The classifier with a bidirectional long short-term memory architecture achieves 84.56% accuracy. Secondly, a multitask classification model simultaneously predicts the correct 'die' or 'dat' and its part-of-speech tag. The model containing a combination of a sentence and context encoder with both a bidirectional long short-term memory architecture results in 88.63% accuracy for die/dat prediction and 87.73% accuracy for part-of-speech prediction. More evenly-balanced data, larger word embeddings, an extra bidirectional long short-term memory layer and integrated part-of-speech knowledge positively affects die/dat prediction performance, while a context encoder architecture raises part-of-speech prediction performance. This study shows promising results and can serve as a starting point for future research on machine learning models for Dutch anaphora resolution.
Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach
Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.
Simple yet Effective Code-Switching Language Identification with Multitask Pre-Training and Transfer Learning
Code-switching, also called code-mixing, is the linguistics phenomenon where in casual settings, multilingual speakers mix words from different languages in one utterance. Due to its spontaneous nature, code-switching is extremely low-resource, which makes it a challenging problem for language and speech processing tasks. In such contexts, Code-Switching Language Identification (CSLID) becomes a difficult but necessary task if we want to maximally leverage existing monolingual tools for other tasks. In this work, we propose two novel approaches toward improving language identification accuracy on an English-Mandarin child-directed speech dataset. Our methods include a stacked Residual CNN+GRU model and a multitask pre-training approach to use Automatic Speech Recognition (ASR) as an auxiliary task for CSLID. Due to the low-resource nature of code-switching, we also employ careful silver data creation using monolingual corpora in both languages and up-sampling as data augmentation. We focus on English-Mandarin code-switched data, but our method works on any language pair. Our best model achieves a balanced accuracy of 0.781 on a real English-Mandarin code-switching child-directed speech corpus and outperforms the previous baseline by 55.3%.
SAFE: Multitask Failure Detection for Vision-Language-Action Models
While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out-of-the-box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts, and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, pi_0, and pi_0-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results can be found at https://vla-safe.github.io/.
RAVEN: Multitask Retrieval Augmented Vision-Language Learning
The scaling of large language models to encode all the world's knowledge in model parameters is unsustainable and has exacerbated resource barriers. Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored. Existing methods focus on models designed for single tasks. Furthermore, they're limited by the need for resource intensive pre training, additional parameter requirements, unaddressed modality prioritization and lack of clear benefit over non-retrieval baselines. This paper introduces RAVEN, a multitask retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning. By integrating retrieval augmented samples without the need for additional retrieval-specific parameters, we show that the model acquires retrieval properties that are effective across multiple tasks. Our results and extensive ablations across retrieved modalities for the image captioning and VQA tasks indicate significant performance improvements compared to non retrieved baselines +1 CIDEr on MSCOCO, +4 CIDEr on NoCaps and nearly a +3\% accuracy on specific VQA question types. This underscores the efficacy of applying RAG approaches to VLMs, marking a stride toward more efficient and accessible multimodal learning.
StainDiffuser: MultiTask Dual Diffusion Model for Virtual Staining
Hematoxylin and Eosin (H&E) staining is widely regarded as the standard in pathology for diagnosing diseases and tracking tumor recurrence. While H&E staining shows tissue structures, it lacks the ability to reveal specific proteins that are associated with disease severity and treatment response. Immunohistochemical (IHC) stains use antibodies to highlight the expression of these proteins on their respective cell types, improving diagnostic accuracy, and assisting with drug selection for treatment. Despite their value, IHC stains require additional time and resources, limiting their utilization in some clinical settings. Recent advances in deep learning have positioned Image-to-Image (I2I) translation as a computational, cost-effective alternative for IHC. I2I generates high fidelity stain transformations digitally, potentially replacing manual staining in IHC. Diffusion models, the current state of the art in image generation and conditional tasks, are particularly well suited for virtual IHC due to their ability to produce high quality images and resilience to mode collapse. However, these models require extensive and diverse datasets (often millions of samples) to achieve a robust performance, a challenge in virtual staining applications where only thousands of samples are typically available. Inspired by the success of multitask deep learning models in scenarios with limited data, we introduce STAINDIFFUSER, a novel multitask diffusion architecture tailored to virtual staining that achieves convergence with smaller datasets. STAINDIFFUSER simultaneously trains two diffusion processes: (a) generating cell specific IHC stains from H&E images and (b) performing H&E based cell segmentation, utilizing coarse segmentation labels exclusively during training. STAINDIFFUSER generates high-quality virtual stains for two markers, outperforming over twenty I2I baselines.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Deep multitask networks, in which one neural network produces multiple predictive outputs, can offer better speed and performance than their single-task counterparts but are challenging to train properly. We present a gradient normalization (GradNorm) algorithm that automatically balances training in deep multitask models by dynamically tuning gradient magnitudes. We show that for various network architectures, for both regression and classification tasks, and on both synthetic and real datasets, GradNorm improves accuracy and reduces overfitting across multiple tasks when compared to single-task networks, static baselines, and other adaptive multitask loss balancing techniques. GradNorm also matches or surpasses the performance of exhaustive grid search methods, despite only involving a single asymmetry hyperparameter alpha. Thus, what was once a tedious search process that incurred exponentially more compute for each task added can now be accomplished within a few training runs, irrespective of the number of tasks. Ultimately, we will demonstrate that gradient manipulation affords us great control over the training dynamics of multitask networks and may be one of the keys to unlocking the potential of multitask learning.
Consecutive Question Generation via Dynamic Multitask Learning
In this paper, we propose the task of consecutive question generation (CQG), which generates a set of logically related question-answer pairs to understand a whole passage, with a comprehensive consideration of the aspects including accuracy, coverage, and informativeness. To achieve this, we first examine the four key elements of CQG, i.e., question, answer, rationale, and context history, and propose a novel dynamic multitask framework with one main task generating a question-answer pair, and four auxiliary tasks generating other elements. It directly helps the model generate good questions through both joint training and self-reranking. At the same time, to fully explore the worth-asking information in a given passage, we make use of the reranking losses to sample the rationales and search for the best question series globally. Finally, we measure our strategy by QA data augmentation and manual evaluation, as well as a novel application of generated question-answer pairs on DocNLI. We prove that our strategy can improve question generation significantly and benefit multiple related NLP tasks.
Scalable and Efficient MoE Training for Multitask Multilingual Models
The Mixture of Experts (MoE) models are an emerging class of sparsely activated deep learning models that have sublinear compute costs with respect to their parameters. In contrast with dense models, the sparse architecture of MoE offers opportunities for drastically growing model size with significant accuracy gain while consuming much lower compute budget. However, supporting large scale MoE training also has its own set of system and modeling challenges. To overcome the challenges and embrace the opportunities of MoE, we first develop a system capable of scaling MoE models efficiently to trillions of parameters. It combines multi-dimensional parallelism and heterogeneous memory technologies harmoniously with MoE to empower 8x larger models on the same hardware compared with existing work. Besides boosting system efficiency, we also present new training methods to improve MoE sample efficiency and leverage expert pruning strategy to improve inference time efficiency. By combining the efficient system and training methods, we are able to significantly scale up large multitask multilingual models for language generation which results in a great improvement in model accuracy. A model trained with 10 billion parameters on 50 languages can achieve state-of-the-art performance in Machine Translation (MT) and multilingual natural language generation tasks. The system support of efficient MoE training has been implemented and open-sourced with the DeepSpeed library.
MMMG: a Comprehensive and Reliable Evaluation Suite for Multitask Multimodal Generation
Automatically evaluating multimodal generation presents a significant challenge, as automated metrics often struggle to align reliably with human evaluation, especially for complex tasks that involve multiple modalities. To address this, we present MMMG, a comprehensive and human-aligned benchmark for multimodal generation across 4 modality combinations (image, audio, interleaved text and image, interleaved text and audio), with a focus on tasks that present significant challenges for generation models, while still enabling reliable automatic evaluation through a combination of models and programs. MMMG encompasses 49 tasks (including 29 newly developed ones), each with a carefully designed evaluation pipeline, and 937 instructions to systematically assess reasoning, controllability, and other key capabilities of multimodal generation models. Extensive validation demonstrates that MMMG is highly aligned with human evaluation, achieving an average agreement of 94.3%. Benchmarking results on 24 multimodal generation models reveal that even though the state-of-the-art model, GPT Image, achieves 78.3% accuracy for image generation, it falls short on multimodal reasoning and interleaved generation. Furthermore, results suggest considerable headroom for improvement in audio generation, highlighting an important direction for future research.
Constructing interval variables via faceted Rasch measurement and multitask deep learning: a hate speech application
We propose a general method for measuring complex variables on a continuous, interval spectrum by combining supervised deep learning with the Constructing Measures approach to faceted Rasch item response theory (IRT). We decompose the target construct, hate speech in our case, into multiple constituent components that are labeled as ordinal survey items. Those survey responses are transformed via IRT into a debiased, continuous outcome measure. Our method estimates the survey interpretation bias of the human labelers and eliminates that influence on the generated continuous measure. We further estimate the response quality of each labeler using faceted IRT, allowing responses from low-quality labelers to be removed. Our faceted Rasch scaling procedure integrates naturally with a multitask deep learning architecture for automated prediction on new data. The ratings on the theorized components of the target outcome are used as supervised, ordinal variables for the neural networks' internal concept learning. We test the use of an activation function (ordinal softmax) and loss function (ordinal cross-entropy) designed to exploit the structure of ordinal outcome variables. Our multitask architecture leads to a new form of model interpretation because each continuous prediction can be directly explained by the constituent components in the penultimate layer. We demonstrate this new method on a dataset of 50,000 social media comments sourced from YouTube, Twitter, and Reddit and labeled by 11,000 U.S.-based Amazon Mechanical Turk workers to measure a continuous spectrum from hate speech to counterspeech. We evaluate Universal Sentence Encoders, BERT, and RoBERTa as language representation models for the comment text, and compare our predictive accuracy to Google Jigsaw's Perspective API models, showing significant improvement over this standard benchmark.
ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
Time-series data are critical in diverse applications, such as industrial monitoring, medical diagnostics, and climate research. However, effectively integrating these high-dimensional temporal signals with natural language for dynamic, interactive tasks remains a significant challenge. To address this, we introduce the Time-Series Question Answering (Time-Series QA) task and release EngineMT-QA, the first large-scale, multi-task, temporal-textual QA dataset designed to capture complex interactions between time-series signals and natural language. Building on this resource, we propose the Instruct Time Transformer (ITFormer), a novel framework that bridges time-series encoders with frozen large language models (LLMs). ITFormer effectively extracts, aligns, and fuses temporal and textual features, achieving a strong improvement in QA accuracy over strong baselines with fewer than 1\% additional trainable parameters. By combining computational efficiency with robust cross-modal modeling, our work establishes a adaptable paradigm for integrating temporal data with natural language, paving the way for new research and applications in multi-modal AI. More details about the project, including datasets and code, are available at: https://pandalin98.github.io/itformer_site/
Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery
Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.
Validation of artificial neural networks to model the acoustic behaviour of induction motors
In the last decade, the sound quality of electric induction motors is a hot topic in the research field. Specially, due to its high number of applications, the population is exposed to physical and psychological discomfort caused by the noise emission. Therefore, it is necessary to minimise its psychological impact on the population. In this way, the main goal of this work is to evaluate the use of multitask artificial neural networks as a modelling technique for simultaneously predicting psychoacoustic parameters of induction motors. Several inputs are used, such as, the electrical magnitudes of the motor power signal and the number of poles, instead of separating the noise of the electric motor from the environmental noise. Two different kind of artificial neural networks are proposed to evaluate the acoustic quality of induction motors, by using the equivalent sound pressure, the loudness, the roughness and the sharpness as outputs. Concretely, two different topologies have been considered: simple models and more complex models. The former are more interpretable, while the later lead to higher accuracy at the cost of hiding the cause-effect relationship. Focusing on the simple interpretable models, product unit neural networks achieved the best results: for MSE and for SEP. The main benefit of this product unit model is its simplicity, since only 10 inputs variables are used, outlining the effective transfer mechanism of multitask artificial neural networks to extract common features of multiple tasks. Finally, a deep analysis of the acoustic quality of induction motors in done using the best product unit neural networks.
A Multi-task Supervised Compression Model for Split Computing
Split computing (neq split learning) is a promising approach to deep learning models for resource-constrained edge computing systems, where weak sensor (mobile) devices are wirelessly connected to stronger edge servers through channels with limited communication capacity. State-of-theart work on split computing presents methods for single tasks such as image classification, object detection, or semantic segmentation. The application of existing methods to multitask problems degrades model accuracy and/or significantly increase runtime latency. In this study, we propose Ladon, the first multi-task-head supervised compression model for multi-task split computing. Experimental results show that the multi-task supervised compression model either outperformed or rivaled strong lightweight baseline models in terms of predictive performance for ILSVRC 2012, COCO 2017, and PASCAL VOC 2012 datasets while learning compressed representations at its early layers. Furthermore, our models reduced end-to-end latency (by up to 95.4%) and energy consumption of mobile devices (by up to 88.2%) in multi-task split computing scenarios.
LLM Distillation for Efficient Few-Shot Multiple Choice Question Answering
Multiple Choice Question Answering (MCQA) is an important problem with numerous real-world applications, such as medicine, law, and education. The high cost of building MCQA datasets makes few-shot learning pivotal in this domain. While Large Language Models (LLMs) can enable few-shot learning, their direct application in real-world scenarios is often hindered by their high computational cost. To address this challenge, we propose a simple yet effective approach that uses LLMs for data generation and scoring. Our approach utilizes LLMs to create MCQA data which contains questions and choices, and to assign probability scores to the generated choices. We then use the generated data and LLM-assigned scores to finetune a smaller and more efficient encoder-only model, DeBERTa-v3-base by leveraging distillation loss. Extensive experiments on the Massive Multitask Language Understanding (MMLU) benchmark demonstrate that our method improves accuracy from 28.9% to 39.3%, representing a gain of over 10% compared to a baseline finetuned directly on 5-shot examples. This shows the effectiveness of LLM-driven data generation and knowledge distillation for few-shot MCQA.
DFPE: A Diverse Fingerprint Ensemble for Enhancing LLM Performance
Large Language Models (LLMs) have shown remarkable capabilities across various natural language processing tasks but often struggle to excel uniformly in diverse or complex domains. We propose a novel ensemble method - Diverse Fingerprint Ensemble (DFPE), which leverages the complementary strengths of multiple LLMs to achieve more robust performance. Our approach involves: (1) clustering models based on response "fingerprints" patterns, (2) applying a quantile-based filtering mechanism to remove underperforming models at a per-subject level, and (3) assigning adaptive weights to remaining models based on their subject-wise validation accuracy. In experiments on the Massive Multitask Language Understanding (MMLU) benchmark, DFPE outperforms the best single model by 3% overall accuracy and 5% in discipline-level accuracy. This method increases the robustness and generalization of LLMs and underscores how model selection, diversity preservation, and performance-driven weighting can effectively address challenging, multi-faceted language understanding tasks.
Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications, ranging from content generation to interactive entertainment, and artistic creation. However, the diversity of downstream tasks in multitask scenarios presents substantial adaptation challenges for LLMs. While traditional methods often succumb to knowledge confusion on their monolithic dense models, Mixture-of-Experts (MoE) has been emerged as a promising solution with its sparse architecture for effective task decoupling. Inspired by the principles of human cognitive neuroscience, we design a novel framework Intuition-MoR1E that leverages the inherent semantic clustering of instances to mimic the human brain to deal with multitask, offering implicit guidance to router for optimized feature allocation. Moreover, we introduce cutting-edge Rank-1 Experts formulation designed to manage a spectrum of intuitions, demonstrating enhanced parameter efficiency and effectiveness in multitask LLM finetuning. Extensive experiments demonstrate that Intuition-MoR1E achieves superior efficiency and 2.15\% overall accuracy improvement across 14 public datasets against other state-of-the-art baselines.
Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks
As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.
Language Complexity Measurement as a Noisy Zero-Shot Proxy for Evaluating LLM Performance
Large Language Models (LLMs) have made significant strides in natural language generation but often face challenges in tasks requiring precise calculations and structural analysis. This paper investigates the performance of state-of-the-art LLMs on language complexity measurement tasks, through the computation of the LIX readability metric and Average Dependency Distance (ADD). Using Swedish high school and university-level essays, we evaluate the models' abilities to compute LIX scores and perform dependency parsing, comparing their results to established ground truths. Our findings reveal that while all models demonstrate some capacity for these tasks, ChatGPT-o1-mini performs most consistently, achieving the highest accuracy in both LIX computation and dependency parsing. Additionally, we observe a strong significant correlation -0.875 p 0.026 (N=6) between the models' accuracy in computing LIX and their overall performance on the Massive Multitask Language Understanding (MMLU) benchmark. These results suggest that language complexity measurement abilities can serve as a noisy zero-shot proxies for assessing the general capabilities of LLMs, providing a practical method for model evaluation without the need for extensive benchmarking datasets.
LRQ: Optimizing Post-Training Quantization for Large Language Models by Learning Low-Rank Weight-Scaling Matrices
With the commercialization of large language models (LLMs), weight-activation quantization has emerged to compress and accelerate LLMs, achieving high throughput while reducing inference costs. However, existing post-training quantization (PTQ) techniques for quantizing weights and activations of LLMs still suffer from non-negligible accuracy drops, especially on massive multitask language understanding. To address this issue, we propose Low-Rank Quantization (LRQ) - a simple yet effective post-training weight quantization method for LLMs that reconstructs the outputs of an intermediate Transformer block by leveraging low-rank weight-scaling matrices, replacing the conventional full weight-scaling matrices that entail as many learnable scales as their associated weights. Thanks to parameter sharing via low-rank structure, LRQ only needs to learn significantly fewer parameters while enabling the individual scaling of weights, thus boosting the generalization capability of quantized LLMs. We show the superiority of LRQ over prior LLM PTQ works under (i) 8-bit weight and per-tensor activation quantization, (ii) 4-bit weight and 8-bit per-token activation quantization, and (iii) low-bit weight-only quantization schemes. Our code is available at https://github.com/onliwad101/FlexRound_LRQ to inspire LLM researchers and engineers.
Large-scale Transfer Learning for Low-resource Spoken Language Understanding
End-to-end Spoken Language Understanding (SLU) models are made increasingly large and complex to achieve the state-ofthe-art accuracy. However, the increased complexity of a model can also introduce high risk of over-fitting, which is a major challenge in SLU tasks due to the limitation of available data. In this paper, we propose an attention-based SLU model together with three encoder enhancement strategies to overcome data sparsity challenge. The first strategy focuses on the transferlearning approach to improve feature extraction capability of the encoder. It is implemented by pre-training the encoder component with a quantity of Automatic Speech Recognition annotated data relying on the standard Transformer architecture and then fine-tuning the SLU model with a small amount of target labelled data. The second strategy adopts multitask learning strategy, the SLU model integrates the speech recognition model by sharing the same underlying encoder, such that improving robustness and generalization ability. The third strategy, learning from Component Fusion (CF) idea, involves a Bidirectional Encoder Representation from Transformer (BERT) model and aims to boost the capability of the decoder with an auxiliary network. It hence reduces the risk of over-fitting and augments the ability of the underlying encoder, indirectly. Experiments on the FluentAI dataset show that cross-language transfer learning and multi-task strategies have been improved by up to 4:52% and 3:89% respectively, compared to the baseline.
SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection
We present the results and the main findings of SemEval-2024 Task 8: Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection. The task featured three subtasks. Subtask A is a binary classification task determining whether a text is written by a human or generated by a machine. This subtask has two tracks: a monolingual track focused solely on English texts and a multilingual track. Subtask B is to detect the exact source of a text, discerning whether it is written by a human or generated by a specific LLM. Subtask C aims to identify the changing point within a text, at which the authorship transitions from human to machine. The task attracted a large number of participants: subtask A monolingual (126), subtask A multilingual (59), subtask B (70), and subtask C (30). In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For all subtasks, the best systems used LLMs.
Task-aware Retrieval with Instructions
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
Towards Few-Shot Adaptation of Foundation Models via Multitask Finetuning
Foundation models have emerged as a powerful tool for many AI problems. Despite the tremendous success of foundation models, effective adaptation to new tasks, particularly those with limited labels, remains an open question and lacks theoretical understanding. An emerging solution with recent success in vision and NLP involves finetuning a foundation model on a selection of relevant tasks, before its adaptation to a target task with limited labeled samples. In this paper, we study the theoretical justification of this multitask finetuning approach. Our theoretical analysis reveals that with a diverse set of related tasks, this multitask finetuning leads to reduced error in the target task, in comparison to directly adapting the same pretrained model. We quantify the relationship between finetuning tasks and target tasks by diversity and consistency metrics, and further propose a practical task selection algorithm. We substantiate our theoretical claims with extensive empirical evidence. Further, we present results affirming our task selection algorithm adeptly chooses related finetuning tasks, providing advantages to the model performance on target tasks. We believe our study shed new light on the effective adaptation of foundation models to new tasks that lack abundant labels. Our code is available at https://github.com/OliverXUZY/Foudation-Model_Multitask.
MultiTab: A Scalable Foundation for Multitask Learning on Tabular Data
Tabular data is the most abundant data type in the world, powering systems in finance, healthcare, e-commerce, and beyond. As tabular datasets grow and span multiple related targets, there is an increasing need to exploit shared task information for improved multitask generalization. Multitask learning (MTL) has emerged as a powerful way to improve generalization and efficiency, yet most existing work focuses narrowly on large-scale recommendation systems, leaving its potential in broader tabular domains largely underexplored. Also, existing MTL approaches for tabular data predominantly rely on multi-layer perceptron-based backbones, which struggle to capture complex feature interactions and often fail to scale when data is abundant, a limitation that transformer architectures have overcome in other domains. Motivated by this, we introduce MultiTab-Net, the first multitask transformer architecture specifically designed for large tabular data. MultiTab-Net employs a novel multitask masked-attention mechanism that dynamically models feature-feature dependencies while mitigating task competition. Through extensive experiments, we show that MultiTab-Net consistently achieves higher multitask gain than existing MTL architectures and single-task transformers across diverse domains including large-scale recommendation data, census-like socioeconomic data, and physics datasets, spanning a wide range of task counts, task types, and feature modalities. In addition, we contribute MultiTab-Bench, a generalized multitask synthetic dataset generator that enables systematic evaluation of multitask dynamics by tuning task count, task correlations, and relative task complexity. Our code is publicly available at https://github.com/Armanfard-Lab/MultiTab.
Conversion Prediction Using Multi-task Conditional Attention Networks to Support the Creation of Effective Ad Creative
Accurately predicting conversions in advertisements is generally a challenging task, because such conversions do not occur frequently. In this paper, we propose a new framework to support creating high-performing ad creatives, including the accurate prediction of ad creative text conversions before delivering to the consumer. The proposed framework includes three key ideas: multi-task learning, conditional attention, and attention highlighting. Multi-task learning is an idea for improving the prediction accuracy of conversion, which predicts clicks and conversions simultaneously, to solve the difficulty of data imbalance. Furthermore, conditional attention focuses attention of each ad creative with the consideration of its genre and target gender, thus improving conversion prediction accuracy. Attention highlighting visualizes important words and/or phrases based on conditional attention. We evaluated the proposed framework with actual delivery history data (14,000 creatives displayed more than a certain number of times from Gunosy Inc.), and confirmed that these ideas improve the prediction performance of conversions, and visualize noteworthy words according to the creatives' attributes.
Divergence-Based Domain Transferability for Zero-Shot Classification
Transferring learned patterns from pretrained neural language models has been shown to significantly improve effectiveness across a variety of language-based tasks, meanwhile further tuning on intermediate tasks has been demonstrated to provide additional performance benefits, provided the intermediate task is sufficiently related to the target task. However, how to identify related tasks is an open problem, and brute-force searching effective task combinations is prohibitively expensive. Hence, the question arises, are we able to improve the effectiveness and efficiency of tasks with no training examples through selective fine-tuning? In this paper, we explore statistical measures that approximate the divergence between domain representations as a means to estimate whether tuning using one task pair will exhibit performance benefits over tuning another. This estimation can then be used to reduce the number of task pairs that need to be tested by eliminating pairs that are unlikely to provide benefits. Through experimentation over 58 tasks and over 6,600 task pair combinations, we demonstrate that statistical measures can distinguish effective task pairs, and the resulting estimates can reduce end-to-end runtime by up to 40%.
Multi-Task Inference: Can Large Language Models Follow Multiple Instructions at Once?
Large language models (LLMs) are typically prompted to follow a single instruction per inference call. In this work, we analyze whether LLMs also hold the capability to handle multiple instructions simultaneously, denoted as Multi-Task Inference. For this purpose, we introduce the MTI Bench(Multi-Task Inference Benchmark), a comprehensive evaluation benchmark encompassing 5,000 instances across 25 tasks. Each task in the MTI Bench involves 2 to 3 sub-tasks. As expected, we first demonstrate that Multi-Task Inference reduces the total inference time by 1.46 times in average since it does not require multiple inference calls. Interestingly, contrary to the expectation that LLMs would perform better when tasks are divided, we find that state-of-the-art LLMs, such as Llama-2-Chat-70B and GPT-4, show up to 7.3% and 12.4% improved performance with Multi-Task Inference compared to Single-Task Inference on the MTI Bench. We release the MTI Bench dataset and our code at this link https://github.com/guijinSON/MTI-Bench.
Understanding and Improving Information Transfer in Multi-Task Learning
We investigate multi-task learning approaches that use a shared feature representation for all tasks. To better understand the transfer of task information, we study an architecture with a shared module for all tasks and a separate output module for each task. We study the theory of this setting on linear and ReLU-activated models. Our key observation is that whether or not tasks' data are well-aligned can significantly affect the performance of multi-task learning. We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer. Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning on the GLUE benchmark and sentiment analysis tasks; for example, we obtain a 2.35% GLUE score average improvement on 5 GLUE tasks over BERT-LARGE using our alignment method. We also design an SVD-based task reweighting scheme and show that it improves the robustness of multi-task training on a multi-label image dataset.
Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting
In this paper, we introduce a novel theoretical framework for multi-task regression, applying random matrix theory to provide precise performance estimations, under high-dimensional, non-Gaussian data distributions. We formulate a multi-task optimization problem as a regularization technique to enable single-task models to leverage multi-task learning information. We derive a closed-form solution for multi-task optimization in the context of linear models. Our analysis provides valuable insights by linking the multi-task learning performance to various model statistics such as raw data covariances, signal-generating hyperplanes, noise levels, as well as the size and number of datasets. We finally propose a consistent estimation of training and testing errors, thereby offering a robust foundation for hyperparameter optimization in multi-task regression scenarios. Experimental validations on both synthetic and real-world datasets in regression and multivariate time series forecasting demonstrate improvements on univariate models, incorporating our method into the training loss and thus leveraging multivariate information.
Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
MultiChallenge: A Realistic Multi-Turn Conversation Evaluation Benchmark Challenging to Frontier LLMs
We present MultiChallenge, a pioneering benchmark evaluating large language models (LLMs) on conducting multi-turn conversations with human users, a crucial yet underexamined capability for their applications. MultiChallenge identifies four categories of challenges in multi-turn conversations that are not only common and realistic among current human-LLM interactions, but are also challenging to all current frontier LLMs. All 4 challenges require accurate instruction-following, context allocation, and in-context reasoning at the same time. We also develop LLM as judge with instance-level rubrics to facilitate an automatic evaluation method with fair agreement with experienced human raters. Despite achieving near-perfect scores on existing multi-turn evaluation benchmarks, all frontier models have less than 50% accuracy on MultiChallenge, with the top-performing Claude 3.5 Sonnet (June 2024) achieving just a 41.4% average accuracy.
FonMTL: Towards Multitask Learning for the Fon Language
The Fon language, spoken by an average 2 million of people, is a truly low-resourced African language, with a limited online presence, and existing datasets (just to name but a few). Multitask learning is a learning paradigm that aims to improve the generalization capacity of a model by sharing knowledge across different but related tasks: this could be prevalent in very data-scarce scenarios. In this paper, we present the first explorative approach to multitask learning, for model capabilities enhancement in Natural Language Processing for the Fon language. Specifically, we explore the tasks of Named Entity Recognition (NER) and Part of Speech Tagging (POS) for Fon. We leverage two language model heads as encoders to build shared representations for the inputs, and we use linear layers blocks for classification relative to each task. Our results on the NER and POS tasks for Fon, show competitive (or better) performances compared to several multilingual pretrained language models finetuned on single tasks. Additionally, we perform a few ablation studies to leverage the efficiency of two different loss combination strategies and find out that the equal loss weighting approach works best in our case. Our code is open-sourced at https://github.com/bonaventuredossou/multitask_fon.
Efficient Controllable Multi-Task Architectures
We aim to train a multi-task model such that users can adjust the desired compute budget and relative importance of task performances after deployment, without retraining. This enables optimizing performance for dynamically varying user needs, without heavy computational overhead to train and save models for various scenarios. To this end, we propose a multi-task model consisting of a shared encoder and task-specific decoders where both encoder and decoder channel widths are slimmable. Our key idea is to control the task importance by varying the capacities of task-specific decoders, while controlling the total computational cost by jointly adjusting the encoder capacity. This improves overall accuracy by allowing a stronger encoder for a given budget, increases control over computational cost, and delivers high-quality slimmed sub-architectures based on user's constraints. Our training strategy involves a novel 'Configuration-Invariant Knowledge Distillation' loss that enforces backbone representations to be invariant under different runtime width configurations to enhance accuracy. Further, we present a simple but effective search algorithm that translates user constraints to runtime width configurations of both the shared encoder and task decoders, for sampling the sub-architectures. The key rule for the search algorithm is to provide a larger computational budget to the higher preferred task decoder, while searching a shared encoder configuration that enhances the overall MTL performance. Various experiments on three multi-task benchmarks (PASCALContext, NYUDv2, and CIFAR100-MTL) with diverse backbone architectures demonstrate the advantage of our approach. For example, our method shows a higher controllability by ~33.5% in the NYUD-v2 dataset over prior methods, while incurring much less compute cost.
Learning from Failures in Multi-Attempt Reinforcement Learning
Recent advancements in reinforcement learning (RL) for large language models (LLMs), exemplified by DeepSeek R1, have shown that even a simple question-answering task can substantially improve an LLM's reasoning capabilities. In this work, we extend this approach by modifying the task into a multi-attempt setting. Instead of generating a single response per question, the model is given multiple attempts, with feedback provided after incorrect responses. The multi-attempt task encourages the model to refine its previous attempts and improve search efficiency. Experimental results show that even a small LLM trained on a multi-attempt task achieves significantly higher accuracy when evaluated with more attempts, improving from 45.6% with 1 attempt to 52.5% with 2 attempts on the math benchmark. In contrast, the same LLM trained on a standard single-turn task exhibits only a marginal improvement, increasing from 42.3% to 43.2% when given more attempts during evaluation. The results indicate that, compared to the standard single-turn task, an LLM trained on a multi-attempt task achieves slightly better performance on math benchmarks while also learning to refine its responses more effectively based on user feedback. Full code is available at https://github.com/DualityRL/multi-attempt
SPT: Semi-Parametric Prompt Tuning for Multitask Prompted Learning
Pre-trained large language models can efficiently interpolate human-written prompts in a natural way. Multitask prompted learning can help generalization through a diverse set of tasks at once, thus enhancing the potential for more effective downstream fine-tuning. To perform efficient multitask-inference in the same batch, parameter-efficient fine-tuning methods such as prompt tuning have been proposed. However, the existing prompt tuning methods may lack generalization. We propose SPT, a semi-parametric prompt tuning method for multitask prompted learning. The novel component of SPT is a memory bank from where memory prompts are retrieved based on discrete prompts. Extensive experiments, such as (i) fine-tuning a full language model with SPT on 31 different tasks from 8 different domains and evaluating zero-shot generalization on 9 heldout datasets under 5 NLP task categories and (ii) pretraining SPT on the GLUE datasets and evaluating fine-tuning on the SuperGLUE datasets, demonstrate effectiveness of SPT.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co/datasets/Qwen/P-MMEval.
Advacheck at GenAI Detection Task 1: AI Detection Powered by Domain-Aware Multi-Tasking
The paper describes a system designed by Advacheck team to recognise machine-generated and human-written texts in the monolingual subtask of GenAI Detection Task 1 competition. Our developed system is a multi-task architecture with shared Transformer Encoder between several classification heads. One head is responsible for binary classification between human-written and machine-generated texts, while the other heads are auxiliary multiclass classifiers for texts of different domains from particular datasets. As multiclass heads were trained to distinguish the domains presented in the data, they provide a better understanding of the samples. This approach led us to achieve the first place in the official ranking with 83.07% macro F1-score on the test set and bypass the baseline by 10%. We further study obtained system through ablation, error and representation analyses, finding that multi-task learning outperforms single-task mode and simultaneous tasks form a cluster structure in embeddings space.
Performance-aware Approximation of Global Channel Pruning for Multitask CNNs
Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.
STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL). However, MTL is often challenging because there is an exponential number of possible task groupings, which can make it difficult to choose the best one, and some groupings might produce performance degradation due to negative interference between tasks. Furthermore, existing solutions are severely suffering from scalability issues, limiting any practical application. In our paper, we propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping based on hand-crafted features, specifically Data Maps, which capture the training behavior for each classification task during the MTL training. We experiment with the method demonstrating its effectiveness, even on an unprecedented number of tasks (up to 100).
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Cross-Task Affinity Learning for Multitask Dense Scene Predictions
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly, achieving better per-task performance with fewer parameters than single-task learning. Recently, decoder-focused architectures have significantly improved multitask performance by refining task predictions using features from related tasks. However, most refinement methods struggle to efficiently capture both local and long-range dependencies between task-specific representations and cross-task patterns. In this paper, we introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks. CTAL effectively captures local and long-range cross-task interactions by optimizing task affinity matrices for parameter-efficient grouped convolutions without concern for information loss. Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning. Our code is publicly available at https://github.com/Armanfard-Lab/EMA-Net.
Improving Metacognition and Uncertainty Communication in Language Models
Large language models (LLMs) are increasingly used in decision-making contexts, but when they present answers without signaling low confidence, users may unknowingly act on erroneous outputs. Prior work shows that LLMs maintain internal uncertainty signals, yet their expressed confidence is often miscalibrated and poorly discriminates between correct and incorrect answers. We investigate whether supervised fine-tuning can improve models' ability to communicate uncertainty and whether such improvements generalize across tasks and domains. We fine-tune LLMs on datasets spanning general knowledge, mathematics, and open-ended trivia, and evaluate two metacognitive tasks: (1) single-question confidence estimation, where the model assigns a numeric certainty to its answer, and (2) pairwise confidence comparison, where the model selects which of two answers it is more likely to answer correctly. We assess generalization to unseen domains, including medical and legal reasoning. Results show that fine-tuning improves calibration (alignment between stated confidence and accuracy) and discrimination (higher confidence for correct vs. incorrect responses) within and across domains. However, gains are task-specific: training on single-question calibration does not transfer to pairwise comparison, and vice versa. Multitask fine-tuning yields broader gains, lowering calibration error and strengthening discrimination in out-of-domain evaluations. This suggests that uncertainty communication in LLMs is trainable but requires multitask training to generalize effectively.
Learning Compact Representations of LLM Abilities via Item Response Theory
Recent years have witnessed a surge in the number of large language models (LLMs), yet efficiently managing and utilizing these vast resources remains a significant challenge. In this work, we explore how to learn compact representations of LLM abilities that can facilitate downstream tasks, such as model routing and performance prediction on new benchmarks. We frame this problem as estimating the probability that a given model will correctly answer a specific query. Inspired by the item response theory (IRT) in psychometrics, we model this probability as a function of three key factors: (i) the model's multi-skill ability vector, (2) the query's discrimination vector that separates models of differing skills, and (3) the query's difficulty scalar. To learn these parameters jointly, we introduce a Mixture-of-Experts (MoE) network that couples model- and query-level embeddings. Extensive experiments demonstrate that our approach leads to state-of-the-art performance in both model routing and benchmark accuracy prediction. Moreover, analysis validates that the learned parameters encode meaningful, interpretable information about model capabilities and query characteristics.
Multitask Prompted Training Enables Zero-Shot Task Generalization
Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020). It has been hypothesized that this is a consequence of implicit multitask learning in language models' pretraining (Radford et al., 2019). Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping any natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts with diverse wording. These prompted datasets allow for benchmarking the ability of a model to perform completely held-out tasks. We fine-tune a pretrained encoder-decoder model (Raffel et al., 2020; Lester et al., 2021) on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several standard datasets, often outperforming models up to 16x its size. Further, our approach attains strong performance on a subset of tasks from the BIG-bench benchmark, outperforming models up to 6x its size. All trained models are available at https://github.com/bigscience-workshop/t-zero and all prompts are available at https://github.com/bigscience-workshop/promptsource.
Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task
We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points.
Exploring the Benefits of Training Expert Language Models over Instruction Tuning
Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown the capability to generalize to unseen tasks. Previous work has shown that scaling the number of training tasks is the key component in making stronger MT LMs. In this work, we report an unexpected finding that an expert LM fine-tuned on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by a mean accuracy of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training a separate expert LM per training task instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together. The code is available at https://github.com/joeljang/ELM.
Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking
Neural information retrieval (IR) systems have progressed rapidly in recent years, in large part due to the release of publicly available benchmarking tasks. Unfortunately, some dimensions of this progress are illusory: the majority of the popular IR benchmarks today focus exclusively on downstream task accuracy and thus conceal the costs incurred by systems that trade away efficiency for quality. Latency, hardware cost, and other efficiency considerations are paramount to the deployment of IR systems in user-facing settings. We propose that IR benchmarks structure their evaluation methodology to include not only metrics of accuracy, but also efficiency considerations such as a query latency and the corresponding cost budget for a reproducible hardware setting. For the popular IR benchmarks MS MARCO and XOR-TyDi, we show how the best choice of IR system varies according to how these efficiency considerations are chosen and weighed. We hope that future benchmarks will adopt these guidelines toward more holistic IR evaluation.
12-in-1: Multi-Task Vision and Language Representation Learning
Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task training regime. Our approach culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multi-modal verification. Compared to independently trained single-task models, this represents a reduction from approximately 3 billion parameters to 270 million while simultaneously improving performance by 2.05 points on average across tasks. We use our multi-task framework to perform in-depth analysis of the effect of joint training diverse tasks. Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art.
Muppet: Massive Multi-task Representations with Pre-Finetuning
We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g.~RoBERTa) and generation models (e.g.~BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
Order Matters in the Presence of Dataset Imbalance for Multilingual Learning
In this paper, we empirically study the optimization dynamics of multi-task learning, particularly focusing on those that govern a collection of tasks with significant data imbalance. We present a simple yet effective method of pre-training on high-resource tasks, followed by fine-tuning on a mixture of high/low-resource tasks. We provide a thorough empirical study and analysis of this method's benefits showing that it achieves consistent improvements relative to the performance trade-off profile of standard static weighting. We analyze under what data regimes this method is applicable and show its improvements empirically in neural machine translation (NMT) and multi-lingual language modeling.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Joint Speech Translation and Named Entity Recognition
Modern automatic translation systems aim at place the human at the center by providing contextual support and knowledge. In this context, a critical task is enriching the output with information regarding the mentioned entities, which is currently achieved processing the generated translation with named entity recognition (NER) and entity linking systems. In light of the recent promising results shown by direct speech translation (ST) models and the known weaknesses of cascades (error propagation and additional latency), in this paper we propose multitask models that jointly perform ST and NER, and compare them with a cascade baseline. The experimental results show that our models significantly outperform the cascade on the NER task (by 0.4-1.0 F1), without degradation in terms of translation quality, and with the same computational efficiency of a plain direct ST model.
Efficient Task-Oriented Dialogue Systems with Response Selection as an Auxiliary Task
The adoption of pre-trained language models in task-oriented dialogue systems has resulted in significant enhancements of their text generation abilities. However, these architectures are slow to use because of the large number of trainable parameters and can sometimes fail to generate diverse responses. To address these limitations, we propose two models with auxiliary tasks for response selection - (1) distinguishing distractors from ground truth responses and (2) distinguishing synthetic responses from ground truth labels. They achieve state-of-the-art results on the MultiWOZ 2.1 dataset with combined scores of 107.5 and 108.3 and outperform a baseline with three times more parameters. We publish reproducible code and checkpoints and discuss the effects of applying auxiliary tasks to T5-based architectures.
Multi-Step Dialogue Workflow Action Prediction
In task-oriented dialogue, a system often needs to follow a sequence of actions, called a workflow, that complies with a set of guidelines in order to complete a task. In this paper, we propose the novel problem of multi-step workflow action prediction, in which the system predicts multiple future workflow actions. Accurate prediction of multiple steps allows for multi-turn automation, which can free up time to focus on more complex tasks. We propose three modeling approaches that are simple to implement yet lead to more action automation: 1) fine-tuning on a training dataset, 2) few-shot in-context learning leveraging retrieval and large language model prompting, and 3) zero-shot graph traversal, which aggregates historical action sequences into a graph for prediction. We show that multi-step action prediction produces features that improve accuracy on downstream dialogue tasks like predicting task success, and can increase automation of steps by 20% without requiring as much feedback from a human overseeing the system.
SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities.
What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering
Large Language Models (LLMs) changed the way we design and interact with software systems. Their ability to process and extract information from text has drastically improved productivity in a number of routine tasks. Developers that want to include these models in their software stack, however, face a dreadful challenge: debugging LLMs' inconsistent behavior across minor variations of the prompt. We therefore introduce two metrics for classification tasks, namely sensitivity and consistency, which are complementary to task performance. First, sensitivity measures changes of predictions across rephrasings of the prompt, and does not require access to ground truth labels. Instead, consistency measures how predictions vary across rephrasings for elements of the same class. We perform an empirical comparison of these metrics on text classification tasks, using them as guideline for understanding failure modes of the LLM. Our hope is that sensitivity and consistency will be helpful to guide prompt engineering and obtain LLMs that balance robustness with performance.
Adaptive Pattern Extraction Multi-Task Learning for Multi-Step Conversion Estimations
Multi-task learning (MTL) has been successfully used in many real-world applications, which aims to simultaneously solve multiple tasks with a single model. The general idea of multi-task learning is designing kinds of global parameter sharing mechanism and task-specific feature extractor to improve the performance of all tasks. However, challenge still remains in balancing the trade-off of various tasks since model performance is sensitive to the relationships between them. Less correlated or even conflict tasks will deteriorate the performance by introducing unhelpful or negative information. Therefore, it is important to efficiently exploit and learn fine-grained feature representation corresponding to each task. In this paper, we propose an Adaptive Pattern Extraction Multi-task (APEM) framework, which is adaptive and flexible for large-scale industrial application. APEM is able to fully utilize the feature information by learning the interactions between the input feature fields and extracted corresponding tasks-specific information. We first introduce a DeepAuto Group Transformer module to automatically and efficiently enhance the feature expressivity with a modified set attention mechanism and a Squeeze-and-Excitation operation. Second, explicit Pattern Selector is introduced to further enable selectively feature representation learning by adaptive task-indicator vectors. Empirical evaluations show that APEM outperforms the state-of-the-art MTL methods on public and real-world financial services datasets. More importantly, we explore the online performance of APEM in a real industrial-level recommendation scenario.
Multi-task Active Learning for Pre-trained Transformer-based Models
Multi-task learning, in which several tasks are jointly learned by a single model, allows NLP models to share information from multiple annotations and may facilitate better predictions when the tasks are inter-related. This technique, however, requires annotating the same text with multiple annotation schemes which may be costly and laborious. Active learning (AL) has been demonstrated to optimize annotation processes by iteratively selecting unlabeled examples whose annotation is most valuable for the NLP model. Yet, multi-task active learning (MT-AL) has not been applied to state-of-the-art pre-trained Transformer-based NLP models. This paper aims to close this gap. We explore various multi-task selection criteria in three realistic multi-task scenarios, reflecting different relations between the participating tasks, and demonstrate the effectiveness of multi-task compared to single-task selection. Our results suggest that MT-AL can be effectively used in order to minimize annotation efforts for multi-task NLP models.
Overcoming Common Flaws in the Evaluation of Selective Classification Systems
Selective Classification, wherein models can reject low-confidence predictions, promises reliable translation of machine-learning based classification systems to real-world scenarios such as clinical diagnostics. While current evaluation of these systems typically assumes fixed working points based on pre-defined rejection thresholds, methodological progress requires benchmarking the general performance of systems akin to the AUROC in standard classification. In this work, we define 5 requirements for multi-threshold metrics in selective classification regarding task alignment, interpretability, and flexibility, and show how current approaches fail to meet them. We propose the Area under the Generalized Risk Coverage curve (AUGRC), which meets all requirements and can be directly interpreted as the average risk of undetected failures. We empirically demonstrate the relevance of AUGRC on a comprehensive benchmark spanning 6 data sets and 13 confidence scoring functions. We find that the proposed metric substantially changes metric rankings on 5 out of the 6 data sets.
MultiConIR: Towards multi-condition Information Retrieval
In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
Bio-SIEVE: Exploring Instruction Tuning Large Language Models for Systematic Review Automation
Medical systematic reviews can be very costly and resource intensive. We explore how Large Language Models (LLMs) can support and be trained to perform literature screening when provided with a detailed set of selection criteria. Specifically, we instruction tune LLaMA and Guanaco models to perform abstract screening for medical systematic reviews. Our best model, Bio-SIEVE, outperforms both ChatGPT and trained traditional approaches, and generalises better across medical domains. However, there remains the challenge of adapting the model to safety-first scenarios. We also explore the impact of multi-task training with Bio-SIEVE-Multi, including tasks such as PICO extraction and exclusion reasoning, but find that it is unable to match single-task Bio-SIEVE's performance. We see Bio-SIEVE as an important step towards specialising LLMs for the biomedical systematic review process and explore its future developmental opportunities. We release our models, code and a list of DOIs to reconstruct our dataset for reproducibility.
Never Lost in the Middle: Improving Large Language Models via Attention Strengthening Question Answering
While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community.
Beyond Document Page Classification: Design, Datasets, and Challenges
This paper highlights the need to bring document classification benchmarking closer to real-world applications, both in the nature of data tested (X: multi-channel, multi-paged, multi-industry; Y: class distributions and label set variety) and in classification tasks considered (f: multi-page document, page stream, and document bundle classification, ...). We identify the lack of public multi-page document classification datasets, formalize different classification tasks arising in application scenarios, and motivate the value of targeting efficient multi-page document representations. An experimental study on proposed multi-page document classification datasets demonstrates that current benchmarks have become irrelevant and need to be updated to evaluate complete documents, as they naturally occur in practice. This reality check also calls for more mature evaluation methodologies, covering calibration evaluation, inference complexity (time-memory), and a range of realistic distribution shifts (e.g., born-digital vs. scanning noise, shifting page order). Our study ends on a hopeful note by recommending concrete avenues for future improvements.}
FAME-ViL: Multi-Tasking Vision-Language Model for Heterogeneous Fashion Tasks
In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically in each individual input/output format and dataset size. It has been common to design a task-specific model and fine-tune it independently from a pre-trained V+L model (e.g., CLIP). This results in parameter inefficiency and inability to exploit inter-task relatedness. To address such issues, we propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL) in this work. Compared with existing approaches, FAME-ViL applies a single model for multiple heterogeneous fashion tasks, therefore being much more parameter-efficient. It is enabled by two novel components: (1) a task-versatile architecture with cross-attention adapters and task-specific adapters integrated into a unified V+L model, and (2) a stable and effective multi-task training strategy that supports learning from heterogeneous data and prevents negative transfer. Extensive experiments on four fashion tasks show that our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models. Code is available at https://github.com/BrandonHanx/FAME-ViL.
ExAct: A Video-Language Benchmark for Expert Action Analysis
We present ExAct, a new video-language benchmark for expert-level understanding of skilled physical human activities. Our new benchmark contains 3521 expert-curated video question-answer pairs spanning 11 physical activities in 6 domains: Sports, Bike Repair, Cooking, Health, Music, and Dance. ExAct requires the correct answer to be selected from five carefully designed candidate options, thus necessitating a nuanced, fine-grained, expert-level understanding of physical human skills. Evaluating the recent state-of-the-art VLMs on ExAct reveals a substantial performance gap relative to human expert performance. Specifically, the best-performing GPT-4o model achieves only 44.70% accuracy, well below the 82.02% attained by trained human specialists/experts. We believe that ExAct will be beneficial for developing and evaluating VLMs capable of precise understanding of human skills in various physical and procedural domains. Dataset and code are available at https://texaser.github.io/exact_project_page/
MISMATCH: Fine-grained Evaluation of Machine-generated Text with Mismatch Error Types
With the growing interest in large language models, the need for evaluating the quality of machine text compared to reference (typically human-generated) text has become focal attention. Most recent works focus either on task-specific evaluation metrics or study the properties of machine-generated text captured by the existing metrics. In this work, we propose a new evaluation scheme to model human judgments in 7 NLP tasks, based on the fine-grained mismatches between a pair of texts. Inspired by the recent efforts in several NLP tasks for fine-grained evaluation, we introduce a set of 13 mismatch error types such as spatial/geographic errors, entity errors, etc, to guide the model for better prediction of human judgments. We propose a neural framework for evaluating machine texts that uses these mismatch error types as auxiliary tasks and re-purposes the existing single-number evaluation metrics as additional scalar features, in addition to textual features extracted from the machine and reference texts. Our experiments reveal key insights about the existing metrics via the mismatch errors. We show that the mismatch errors between the sentence pairs on the held-out datasets from 7 NLP tasks align well with the human evaluation.
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Numerous deep learning applications benefit from multi-task learning with multiple regression and classification objectives. In this paper we make the observation that the performance of such systems is strongly dependent on the relative weighting between each task's loss. Tuning these weights by hand is a difficult and expensive process, making multi-task learning prohibitive in practice. We propose a principled approach to multi-task deep learning which weighs multiple loss functions by considering the homoscedastic uncertainty of each task. This allows us to simultaneously learn various quantities with different units or scales in both classification and regression settings. We demonstrate our model learning per-pixel depth regression, semantic and instance segmentation from a monocular input image. Perhaps surprisingly, we show our model can learn multi-task weightings and outperform separate models trained individually on each task.
TartuNLP @ AXOLOTL-24: Leveraging Classifier Output for New Sense Detection in Lexical Semantics
We present our submission to the AXOLOTL-24 shared task. The shared task comprises two subtasks: identifying new senses that words gain with time (when comparing newer and older time periods) and producing the definitions for the identified new senses. We implemented a conceptually simple and computationally inexpensive solution to both subtasks. We trained adapter-based binary classification models to match glosses with usage examples and leveraged the probability output of the models to identify novel senses. The same models were used to match examples of novel sense usages with Wiktionary definitions. Our submission attained third place on the first subtask and the first place on the second subtask.
NADI 2025: The First Multidialectal Arabic Speech Processing Shared Task
We present the findings of the sixth Nuanced Arabic Dialect Identification (NADI 2025) Shared Task, which focused on Arabic speech dialect processing across three subtasks: spoken dialect identification (Subtask 1), speech recognition (Subtask 2), and diacritic restoration for spoken dialects (Subtask 3). A total of 44 teams registered, and during the testing phase, 100 valid submissions were received from eight unique teams. The distribution was as follows: 34 submissions for Subtask 1 "five teams{\ae}, 47 submissions for Subtask 2 "six teams", and 19 submissions for Subtask 3 "two teams". The best-performing systems achieved 79.8% accuracy on Subtask 1, 35.68/12.20 WER/CER (overall average) on Subtask 2, and 55/13 WER/CER on Subtask 3. These results highlight the ongoing challenges of Arabic dialect speech processing, particularly in dialect identification, recognition, and diacritic restoration. We also summarize the methods adopted by participating teams and briefly outline directions for future editions of NADI.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs
People increasingly search online for answers to their medical questions but the rate at which medical questions are asked online significantly exceeds the capacity of qualified people to answer them. This leaves many questions unanswered or inadequately answered. Many of these questions are not unique, and reliable identification of similar questions would enable more efficient and effective question answering schema. COVID-19 has only exacerbated this problem. Almost every government agency and healthcare organization has tried to meet the informational need of users by building online FAQs, but there is no way for people to ask their question and know if it is answered on one of these pages. While many research efforts have focused on the problem of general question similarity, these approaches do not generalize well to domains that require expert knowledge to determine semantic similarity, such as the medical domain. In this paper, we show how a double fine-tuning approach of pretraining a neural network on medical question-answer pairs followed by fine-tuning on medical question-question pairs is a particularly useful intermediate task for the ultimate goal of determining medical question similarity. While other pretraining tasks yield an accuracy below 78.7% on this task, our model achieves an accuracy of 82.6% with the same number of training examples, an accuracy of 80.0% with a much smaller training set, and an accuracy of 84.5% when the full corpus of medical question-answer data is used. We also describe a currently live system that uses the trained model to match user questions to COVID-related FAQs.
Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following
Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.
Multi-Token Attention
Soft attention is a critical mechanism powering LLMs to locate relevant parts within a given context. However, individual attention weights are determined by the similarity of only a single query and key token vector. This "single token attention" bottlenecks the amount of information used in distinguishing a relevant part from the rest of the context. To address this issue, we propose a new attention method, Multi-Token Attention (MTA), which allows LLMs to condition their attention weights on multiple query and key vectors simultaneously. This is achieved by applying convolution operations over queries, keys and heads, allowing nearby queries and keys to affect each other's attention weights for more precise attention. As a result, our method can locate relevant context using richer, more nuanced information that can exceed a single vector's capacity. Through extensive evaluations, we demonstrate that MTA achieves enhanced performance on a range of popular benchmarks. Notably, it outperforms Transformer baseline models on standard language modeling tasks, and on tasks that require searching for information within long contexts, where our method's ability to leverage richer information proves particularly beneficial.
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
A Survey of Multi-task Learning in Natural Language Processing: Regarding Task Relatedness and Training Methods
Multi-task learning (MTL) has become increasingly popular in natural language processing (NLP) because it improves the performance of related tasks by exploiting their commonalities and differences. Nevertheless, it is still not understood very well how multi-task learning can be implemented based on the relatedness of training tasks. In this survey, we review recent advances of multi-task learning methods in NLP, with the aim of summarizing them into two general multi-task training methods based on their task relatedness: (i) joint training and (ii) multi-step training. We present examples in various NLP downstream applications, summarize the task relationships and discuss future directions of this promising topic.
Identifying Suitable Tasks for Inductive Transfer Through the Analysis of Feature Attributions
Transfer learning approaches have shown to significantly improve performance on downstream tasks. However, it is common for prior works to only report where transfer learning was beneficial, ignoring the significant trial-and-error required to find effective settings for transfer. Indeed, not all task combinations lead to performance benefits, and brute-force searching rapidly becomes computationally infeasible. Hence the question arises, can we predict whether transfer between two tasks will be beneficial without actually performing the experiment? In this paper, we leverage explainability techniques to effectively predict whether task pairs will be complementary, through comparison of neural network activation between single-task models. In this way, we can avoid grid-searches over all task and hyperparameter combinations, dramatically reducing the time needed to find effective task pairs. Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
FACT: Examining the Effectiveness of Iterative Context Rewriting for Multi-fact Retrieval
Large Language Models (LLMs) are proficient at retrieving single facts from extended contexts, yet they struggle with tasks requiring the simultaneous retrieval of multiple facts, especially during generation. This paper identifies a novel "lost-in-the-middle" phenomenon, where LLMs progressively lose track of critical information throughout the generation process, resulting in incomplete or inaccurate retrieval. To address this challenge, we introduce Find All Crucial Texts (FACT), an iterative retrieval method that refines context through successive rounds of rewriting. This approach enables models to capture essential facts incrementally, which are often overlooked in single-pass retrieval. Experiments demonstrate that FACT substantially enhances multi-fact retrieval performance across various tasks, though improvements are less notable in general-purpose QA scenarios. Our findings shed light on the limitations of LLMs in multi-fact retrieval and underscore the need for more resilient long-context retrieval strategies.
Are We Done with MMLU?
Maybe not. We identify and analyse errors in the popular Massive Multitask Language Understanding (MMLU) benchmark. Even though MMLU is widely adopted, our analysis demonstrates numerous ground truth errors that obscure the true capabilities of LLMs. For example, we find that 57% of the analysed questions in the Virology subset contain errors. To address this issue, we introduce a comprehensive framework for identifying dataset errors using a novel error taxonomy. Then, we create MMLU-Redux, which is a subset of 3,000 manually re-annotated questions across 30 MMLU subjects. Using MMLU-Redux, we demonstrate significant discrepancies with the model performance metrics that were originally reported. Our results strongly advocate for revising MMLU's error-ridden questions to enhance its future utility and reliability as a benchmark. Therefore, we open up MMLU-Redux for additional annotation https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux.
ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization
We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting. While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has little impact on performance with an extremely large number of tasks. Our results show that task scaling can substantially improve training efficiency by 30 times in FLOPs. Moreover, we present a prompting method that incorporates a genetic algorithm to automatically search for the best prompt for unseen tasks, along with a few other improvements. Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.
Memory-assisted prompt editing to improve GPT-3 after deployment
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at https://www.memprompt.com/.
CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment
Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
Multi-task Retrieval for Knowledge-Intensive Tasks
Retrieving relevant contexts from a large corpus is a crucial step for tasks such as open-domain question answering and fact checking. Although neural retrieval outperforms traditional methods like tf-idf and BM25, its performance degrades considerably when applied to out-of-domain data. Driven by the question of whether a neural retrieval model can be universal and perform robustly on a wide variety of problems, we propose a multi-task trained model. Our approach not only outperforms previous methods in the few-shot setting, but also rivals specialised neural retrievers, even when in-domain training data is abundant. With the help of our retriever, we improve existing models for downstream tasks and closely match or improve the state of the art on multiple benchmarks.
HEAD-QA: A Healthcare Dataset for Complex Reasoning
We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.
Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.
In-BoXBART: Get Instructions into Biomedical Multi-Task Learning
Single-task models have proven pivotal in solving specific tasks; however, they have limitations in real-world applications where multi-tasking is necessary and domain shifts are exhibited. Recently, instructional prompts have shown significant improvement towards multi-task generalization; however, the effect of instructional prompts and Multi-Task Learning (MTL) has not been systematically studied in the biomedical domain. Motivated by this, this paper explores the impact of instructional prompts for biomedical MTL. We introduce the BoX, a collection of 32 instruction tasks for Biomedical NLP across (X) various categories. Using this meta-dataset, we propose a unified model termed In-BoXBART, that can jointly learn all tasks of the BoX without any task-specific modules. To the best of our knowledge, this is the first attempt to propose a unified model in the biomedical domain and use instructions to achieve generalization across several biomedical tasks. Experimental results indicate that the proposed model: 1) outperforms the single-task baseline by ~3% and multi-task (without instruction) baseline by ~18% on an average, and 2) shows ~23% improvement compared to the single-task baseline in few-shot learning (i.e., 32 instances per task) on an average. Our analysis indicates that there is significant room for improvement across tasks in the BoX, implying the scope for future research direction.
Localizing Task Information for Improved Model Merging and Compression
Model merging and task arithmetic have emerged as promising scalable approaches to merge multiple single-task checkpoints to one multi-task model, but their applicability is reduced by significant performance loss. Previous works have linked these drops to interference in the weight space and erasure of important task-specific features. Instead, in this work we show that the information required to solve each task is still preserved after merging as different tasks mostly use non-overlapping sets of weights. We propose TALL-masks, a method to identify these task supports given a collection of task vectors and show that one can retrieve >99% of the single task accuracy by applying our masks to the multi-task vector, effectively compressing the individual checkpoints. We study the statistics of intersections among constructed masks and reveal the existence of selfish and catastrophic weights, i.e., parameters that are important exclusively to one task and irrelevant to all tasks but detrimental to multi-task fusion. For this reason, we propose Consensus Merging, an algorithm that eliminates such weights and improves the general performance of existing model merging approaches. Our experiments in vision and NLP benchmarks with up to 20 tasks, show that Consensus Merging consistently improves existing approaches. Furthermore, our proposed compression scheme reduces storage from 57Gb to 8.2Gb while retaining 99.7% of original performance.
MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark
In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16% to 33% compared to MMLU but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5% in MMLU to just 2% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is a more discriminative benchmark to better track progress in the field.
Jointly Predicting Emotion, Age, and Country Using Pre-Trained Acoustic Embedding
In this paper, we demonstrated the benefit of using pre-trained model to extract acoustic embedding to jointly predict (multitask learning) three tasks: emotion, age, and native country. The pre-trained model was trained with wav2vec 2.0 large robust model on the speech emotion corpus. The emotion and age tasks were regression problems, while country prediction was a classification task. A single harmonic mean from three metrics was used to evaluate the performance of multitask learning. The classifier was a linear network with two independent layers and shared layers, including the output layers. This study explores multitask learning on different acoustic features (including the acoustic embedding extracted from a model trained on an affective speech dataset), seed numbers, batch sizes, and normalizations for predicting paralinguistic information from speech.
DivMerge: A divergence-based model merging method for multi-tasking
Multi-task learning (MTL) is often achieved by merging datasets before fine-tuning, but the growing availability of fine-tuned models has led to new approaches such as model merging via task arithmetic. A major challenge in this setting is task interference, which worsens as the number of tasks increases. We propose a method that merges models trained on different tasks into a single model, maintaining strong performance across all tasks. Our approach leverages Jensen-Shannon divergence to guide the merging process without requiring additional labelled data, and automatically balances task importance. Unlike existing methods, our approach remains robust as the number of tasks grows and consistently outperforms prior work.
AnyTaskTune: Advanced Domain-Specific Solutions through Task-Fine-Tuning
The pervasive deployment of Large Language Models-LLMs in various sectors often neglects the nuanced requirements of individuals and small organizations, who benefit more from models precisely tailored to their specific business contexts rather than those with broadly superior general capabilities. This work introduces AnyTaskTune, a novel fine-tuning methodology coined as Task-Fine-Tune, specifically developed to elevate model performance on a diverse array of domain-specific tasks. This method involves a meticulous process to identify and define targeted sub-tasks within a domain, followed by the creation of specialized enhancement datasets for fine-tuning, thereby optimizing task-specific model performance. We conducted comprehensive fine-tuning experiments not only in the legal domain for tasks such as keyword extraction and sentence prediction but across over twenty different sub-tasks derived from the domains of finance, healthcare, law, psychology, consumer services, and human resources. To substantiate our approach and facilitate community engagement, we will open-source these bilingual task datasets. Our findings demonstrate that models fine-tuned using the Task-Fine-Tune methodology not only achieve superior performance on these specific tasks but also significantly outperform models with higher general capabilities in their respective domains. Our work is publicly available at https://github.com/PandaVT/DataTager.
Zero-Shot Slot and Intent Detection in Low-Resource Languages
Intent detection and slot filling are critical tasks in spoken and natural language understanding for task-oriented dialog systems. In this work we describe our participation in the slot and intent detection for low-resource language varieties (SID4LR; Aepli et al. (2023)). We investigate the slot and intent detection (SID) tasks using a wide range of models and settings. Given the recent success of multitask-prompted finetuning of large language models, we also test the generalization capability of the recent encoder-decoder model mT0 (Muennighoff et al., 2022) on new tasks (i.e., SID) in languages they have never intentionally seen. We show that our best model outperforms the baseline by a large margin (up to +30 F1 points) in both SID tasks
Query-Response Interactions by Multi-tasks in Semantic Search for Chatbot Candidate Retrieval
Semantic search for candidate retrieval is an important yet neglected problem in retrieval-based Chatbots, which aims to select a bunch of candidate responses efficiently from a large pool. The existing bottleneck is to ensure the model architecture having two points: 1) rich interactions between a query and a response to produce query-relevant responses; 2) ability of separately projecting the query and the response into latent spaces to apply efficiently in semantic search during online inference. To tackle this problem, we propose a novel approach, called Multitask-based Semantic Search Neural Network (MSSNN) for candidate retrieval, which accomplishes query-response interactions through multi-tasks. The method employs a Seq2Seq modeling task to learn a good query encoder, and then performs a word prediction task to build response embeddings, finally conducts a simple matching model to form the dot-product scorer. Experimental studies have demonstrated the potential of the proposed approach.
Rethinking Reward Model Evaluation: Are We Barking up the Wrong Tree?
Reward Models (RMs) are crucial for aligning language models with human preferences. Currently, the evaluation of RMs depends on measuring accuracy against a validation set of manually annotated preference data. Although this method is straightforward and widely adopted, the relationship between RM accuracy and downstream policy performance remains under-explored. In this work, we conduct experiments in a synthetic setting to investigate how differences in RM measured by accuracy translate into gaps in optimized policy performance. Our findings reveal that while there is a weak positive correlation between accuracy and downstream performance, policies optimized towards RMs with similar accuracy can exhibit quite different performance. Moreover, we discover that the way of measuring accuracy significantly impacts its ability to predict the final policy performance. Through the lens of the Regressional Goodhart effect, we recognize that accuracy, when used for measuring RM quality, can fail to fully capture the potential RM overoptimization. This underscores the inadequacy of relying solely on accuracy to reflect their impact on policy optimization.
Smart Word Suggestions for Writing Assistance
Enhancing word usage is a desired feature for writing assistance. To further advance research in this area, this paper introduces "Smart Word Suggestions" (SWS) task and benchmark. Unlike other works, SWS emphasizes end-to-end evaluation and presents a more realistic writing assistance scenario. This task involves identifying words or phrases that require improvement and providing substitution suggestions. The benchmark includes human-labeled data for testing, a large distantly supervised dataset for training, and the framework for evaluation. The test data includes 1,000 sentences written by English learners, accompanied by over 16,000 substitution suggestions annotated by 10 native speakers. The training dataset comprises over 3.7 million sentences and 12.7 million suggestions generated through rules. Our experiments with seven baselines demonstrate that SWS is a challenging task. Based on experimental analysis, we suggest potential directions for future research on SWS. The dataset and related codes is available at https://github.com/microsoft/SmartWordSuggestions.
BnMMLU: Measuring Massive Multitask Language Understanding in Bengali
The Massive Multitask Language Understanding (MMLU) benchmark has been widely used to evaluate language models across various domains. However, existing MMLU datasets primarily focus on high-resource languages such as English, which leaves low-resource languages like Bengali underrepresented. In this paper, we introduce BnMMLU, a benchmark to evaluate the multitask language understanding capabilities of Bengali in language models. The dataset spans 23 domains, including science, humanities, mathematics and general knowledge and is structured in a multiple-choice format to assess factual knowledge, application-based problem-solving and reasoning abilities of language models. It consists of 138,949 question-option pairs. We benchmark several proprietary and open-source large language models (LLMs) on the BnMMLU test set. Additionally, we annotate the test set with three cognitive categories-factual knowledge, procedural application and reasoning-to gain deeper insights into model strengths and weaknesses across various cognitive tasks. The results reveal significant performance gaps, highlighting the need for improved pre-training and fine-tuning strategies tailored to Bengali data. We release the dataset and benchmark results to facilitate further research in this area.
Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding
Scientific literature understanding tasks have gained significant attention due to their potential to accelerate scientific discovery. Pre-trained language models (LMs) have shown effectiveness in these tasks, especially when tuned via contrastive learning. However, jointly utilizing pre-training data across multiple heterogeneous tasks (e.g., extreme classification, citation prediction, and literature search) remains largely unexplored. To bridge this gap, we propose a multi-task contrastive learning framework, SciMult, with a focus on facilitating common knowledge sharing across different scientific literature understanding tasks while preventing task-specific skills from interfering with each other. To be specific, we explore two techniques -- task-aware specialization and instruction tuning. The former adopts a Mixture-of-Experts Transformer architecture with task-aware sub-layers; the latter prepends task-specific instructions to the input text so as to produce task-aware outputs. Extensive experiments on a comprehensive collection of benchmark datasets verify the effectiveness of our task-aware specialization strategy in various tasks, where we outperform state-of-the-art scientific LMs.
TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish
Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU.
M2TRec: Metadata-aware Multi-task Transformer for Large-scale and Cold-start free Session-based Recommendations
Session-based recommender systems (SBRSs) have shown superior performance over conventional methods. However, they show limited scalability on large-scale industrial datasets since most models learn one embedding per item. This leads to a large memory requirement (of storing one vector per item) and poor performance on sparse sessions with cold-start or unpopular items. Using one public and one large industrial dataset, we experimentally show that state-of-the-art SBRSs have low performance on sparse sessions with sparse items. We propose M2TRec, a Metadata-aware Multi-task Transformer model for session-based recommendations. Our proposed method learns a transformation function from item metadata to embeddings, and is thus, item-ID free (i.e., does not need to learn one embedding per item). It integrates item metadata to learn shared representations of diverse item attributes. During inference, new or unpopular items will be assigned identical representations for the attributes they share with items previously observed during training, and thus will have similar representations with those items, enabling recommendations of even cold-start and sparse items. Additionally, M2TRec is trained in a multi-task setting to predict the next item in the session along with its primary category and subcategories. Our multi-task strategy makes the model converge faster and significantly improves the overall performance. Experimental results show significant performance gains using our proposed approach on sparse items on the two datasets.
Multi-Head Adapter Routing for Cross-Task Generalization
Parameter-efficient fine-tuning (PEFT) for cross-task generalization consists in pre-training adapters on a multi-task training set before few-shot adaptation to test tasks. Polytropon [Ponti et al., 2023] (Poly) jointly learns an inventory of adapters and a routing function that selects a (variable-size) subset of adapters for each task during both pre-training and few-shot adaptation. In this paper, we investigate the role that adapter routing plays in its success and design new variants based on our findings. First, we build on the intuition that finer-grained routing provides more expressivity. Hence, we propose MHR (Multi-Head Routing), which combines subsets of adapter parameters and outperforms Poly under a comparable parameter budget; by only fine-tuning the routing function and not the adapters (MHR-z), we achieve competitive performance with extreme parameter efficiency. Second, we find that Poly/MHR performance is a result of better multi-task optimization, rather than modular inductive biases that facilitate adapter recombination and local adaptation, as previously hypothesized. In fact, we find that MHR exhibits higher gradient alignment between tasks than any other method. Since this implies that routing is only crucial during multi-task pre-training, we propose MHR-mu, which discards routing and fine-tunes the average of the pre-trained adapters during few-shot adaptation. This establishes MHR-mu as an effective method for single-adapter fine-tuning.
LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild
Deep research -- producing comprehensive, citation-grounded reports by searching and synthesizing information from hundreds of live web sources -- marks an important frontier for agentic systems. To rigorously evaluate this ability, four principles are essential: tasks should be (1) user-centric, reflecting realistic information needs, (2) dynamic, requiring up-to-date information beyond parametric knowledge, (3) unambiguous, ensuring consistent interpretation across users, and (4) multi-faceted and search-intensive, requiring search over numerous web sources and in-depth analysis. Existing benchmarks fall short of these principles, often focusing on narrow domains or posing ambiguous questions that hinder fair comparison. Guided by these principles, we introduce LiveResearchBench, a benchmark of 100 expert-curated tasks spanning daily life, enterprise, and academia, each requiring extensive, dynamic, real-time web search and synthesis. Built with over 1,500 hours of human labor, LiveResearchBench provides a rigorous basis for systematic evaluation. To evaluate citation-grounded long-form reports, we introduce DeepEval, a comprehensive suite covering both content- and report-level quality, including coverage, presentation, citation accuracy and association, consistency and depth of analysis. DeepEval integrates four complementary evaluation protocols, each designed to ensure stable assessment and high agreement with human judgments. Using LiveResearchBench and DeepEval, we conduct a comprehensive evaluation of 17 frontier deep research systems, including single-agent web search, single-agent deep research, and multi-agent systems. Our analysis reveals current strengths, recurring failure modes, and key system components needed to advance reliable, insightful deep research.
MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks
We present MEGA-Bench, an evaluation suite that scales multimodal evaluation to over 500 real-world tasks, to address the highly heterogeneous daily use cases of end users. Our objective is to optimize for a set of high-quality data samples that cover a highly diverse and rich set of multimodal tasks, while enabling cost-effective and accurate model evaluation. In particular, we collected 505 realistic tasks encompassing over 8,000 samples from 16 expert annotators to extensively cover the multimodal task space. Instead of unifying these problems into standard multi-choice questions (like MMMU, MMBench, and MMT-Bench), we embrace a wide range of output formats like numbers, phrases, code, \LaTeX, coordinates, JSON, free-form, etc. To accommodate these formats, we developed over 40 metrics to evaluate these tasks. Unlike existing benchmarks, MEGA-Bench offers a fine-grained capability report across multiple dimensions (e.g., application, input type, output format, skill), allowing users to interact with and visualize model capabilities in depth. We evaluate a wide variety of frontier vision-language models on MEGA-Bench to understand their capabilities across these dimensions.
A Comprehensive Evaluation of Quantized Instruction-Tuned Large Language Models: An Experimental Analysis up to 405B
Prior research works have evaluated quantized LLMs using limited metrics such as perplexity or a few basic knowledge tasks and old datasets. Additionally, recent large-scale models such as Llama 3.1 with up to 405B have not been thoroughly examined. This paper evaluates the performance of instruction-tuned LLMs across various quantization methods (GPTQ, AWQ, SmoothQuant, and FP8) on models ranging from 7B to 405B. Using 13 benchmarks, we assess performance across six task types: commonsense Q\&A, knowledge and language understanding, instruction following, hallucination detection, mathematics, and dialogue. Our key findings reveal that (1) quantizing a larger LLM to a similar size as a smaller FP16 LLM generally performs better across most benchmarks, except for hallucination detection and instruction following; (2) performance varies significantly with different quantization methods, model size, and bit-width, with weight-only methods often yielding better results in larger models; (3) task difficulty does not significantly impact accuracy degradation due to quantization; and (4) the MT-Bench evaluation method has limited discriminatory power among recent high-performing LLMs.
Spanish and LLM Benchmarks: is MMLU Lost in Translation?
The evaluation of Large Language Models (LLMs) is a key element in their continuous improvement process and many benchmarks have been developed to assess the performance of LLMs in different tasks and topics. As LLMs become adopted worldwide, evaluating them in languages other than English is increasingly important. However, most LLM benchmarks are simply translated using an automated tool and then run in the target language. This means that the results depend not only on the LLM performance in that language but also on the quality of the translation. In this paper, we consider the case of the well-known Massive Multitask Language Understanding (MMLU) benchmark. Selected categories of the benchmark are translated into Spanish using Azure Translator and ChatGPT4 and run on ChatGPT4. Next, the results are processed to identify the test items that produce different answers in Spanish and English. Those are then analyzed manually to understand if the automatic translation caused the change. The results show that a significant fraction of the failing items can be attributed to mistakes in the translation of the benchmark. These results make a strong case for improving benchmarks in languages other than English by at least revising the translations of the items and preferably by adapting the tests to the target language by experts.
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
TaskExpert: Dynamically Assembling Multi-Task Representations with Memorial Mixture-of-Experts
Learning discriminative task-specific features simultaneously for multiple distinct tasks is a fundamental problem in multi-task learning. Recent state-of-the-art models consider directly decoding task-specific features from one shared task-generic feature (e.g., feature from a backbone layer), and utilize carefully designed decoders to produce multi-task features. However, as the input feature is fully shared and each task decoder also shares decoding parameters for different input samples, it leads to a static feature decoding process, producing less discriminative task-specific representations. To tackle this limitation, we propose TaskExpert, a novel multi-task mixture-of-experts model that enables learning multiple representative task-generic feature spaces and decoding task-specific features in a dynamic manner. Specifically, TaskExpert introduces a set of expert networks to decompose the backbone feature into several representative task-generic features. Then, the task-specific features are decoded by using dynamic task-specific gating networks operating on the decomposed task-generic features. Furthermore, to establish long-range modeling of the task-specific representations from different layers of TaskExpert, we design a multi-task feature memory that updates at each layer and acts as an additional feature expert for dynamic task-specific feature decoding. Extensive experiments demonstrate that our TaskExpert clearly outperforms previous best-performing methods on all 9 metrics of two competitive multi-task learning benchmarks for visual scene understanding (i.e., PASCAL-Context and NYUD-v2). Codes and models will be made publicly available at https://github.com/prismformore/Multi-Task-Transformer
Are Sixteen Heads Really Better than One?
Attention is a powerful and ubiquitous mechanism for allowing neural models to focus on particular salient pieces of information by taking their weighted average when making predictions. In particular, multi-headed attention is a driving force behind many recent state-of-the-art NLP models such as Transformer-based MT models and BERT. These models apply multiple attention mechanisms in parallel, with each attention "head" potentially focusing on different parts of the input, which makes it possible to express sophisticated functions beyond the simple weighted average. In this paper we make the surprising observation that even if models have been trained using multiple heads, in practice, a large percentage of attention heads can be removed at test time without significantly impacting performance. In fact, some layers can even be reduced to a single head. We further examine greedy algorithms for pruning down models, and the potential speed, memory efficiency, and accuracy improvements obtainable therefrom. Finally, we analyze the results with respect to which parts of the model are more reliant on having multiple heads, and provide precursory evidence that training dynamics play a role in the gains provided by multi-head attention.
Data-Efficiency with a Single GPU: An Exploration of Transfer Methods for Small Language Models
Multi-task learning (MTL), instruction tuning, and prompting have recently been shown to improve the generalizability of large language models to new tasks. However, the benefits of such methods are less well-documented in smaller language models, with some studies finding contradictory results. In this work, we explore and isolate the effects of (i) model size, (ii) general purpose MTL, (iii) in-domain MTL, (iv) instruction tuning, and (v) few-shot fine-tuning for models with fewer than 500 million parameters. Our experiments in the zero-shot setting demonstrate that models gain 31% relative improvement, on average, from general purpose MTL, with an additional 37.6% relative gain from in-domain MTL. Contradictory to prior works on large models, we find that instruction tuning provides a modest 2% performance improvement for small models.
Browsing Lost Unformed Recollections: A Benchmark for Tip-of-the-Tongue Search and Reasoning
We introduce Browsing Lost Unformed Recollections, a tip-of-the-tongue known-item search and reasoning benchmark for general AI assistants. BLUR introduces a set of 573 real-world validated questions that demand searching and reasoning across multi-modal and multilingual inputs, as well as proficient tool use, in order to excel on. Humans easily ace these questions (scoring on average 98%), while the best-performing system scores around 56%. To facilitate progress toward addressing this challenging and aspirational use case for general AI assistants, we release 350 questions through a public leaderboard, retain the answers to 250 of them, and have the rest as a private test set.
LLM In-Context Recall is Prompt Dependent
The proliferation of Large Language Models (LLMs) highlights the critical importance of conducting thorough evaluations to discern their comparative advantages, limitations, and optimal use cases. Particularly important is assessing their capacity to accurately retrieve information included in a given prompt. A model's ability to do this significantly influences how effectively it can utilize contextual details, thus impacting its practical efficacy and dependability in real-world applications. Our research analyzes the in-context recall performance of various LLMs using the needle-in-a-haystack method. In this approach, a factoid (the "needle") is embedded within a block of filler text (the "haystack"), which the model is asked to retrieve. We assess the recall performance of each model across various haystack lengths and with varying needle placements to identify performance patterns. This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data. Conversely, adjustments to model architecture, training strategy, or fine-tuning can improve performance. Our analysis provides insight into LLM behavior, offering direction for the development of more effective applications of LLMs.
