Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAMSP: Super-Scaling LLM Training via Advanced Model States Partitioning
Large Language Models (LLMs) have demonstrated impressive performance across various downstream tasks. When training these models, there is a growing inclination to process more tokens on larger training scales but with relatively smaller model sizes. Zero Redundancy Optimizer (ZeRO), although effective in conventional training environments, grapples with scaling challenges when confronted with this emerging paradigm. To this end, we propose a novel LLM training framework AMSP, which undertakes a granular partitioning of model states, encompassing parameters (P), gradient (G), and optimizer states (OS). Specifically, AMSP(1) builds a unified partitioning space, enabling independent partitioning strategies for P, G, and OS; (2) incorporates a scale-aware partitioner to autonomously search for optimal partitioning strategies: (3) designs a dedicated communication optimizer to ensure proficient management of data placement discrepancies arising from diverse partitioning strategies. Our evaluations show that AMSP achieves up to 90.3% scaling efficiency across 1024 GPUs.
Zeppelin: Balancing Variable-length Workloads in Data Parallel Large Model Training
Training large language models (LLMs) with increasingly long and varying sequence lengths introduces severe load imbalance challenges in large-scale data-parallel training. Recent frameworks attempt to mitigate these issues through data reorganization or hybrid parallel strategies. However, they often overlook how computational and communication costs scale with sequence length, resulting in suboptimal performance. We identify three critical challenges: (1) varying computation-to-communication ratios across sequences of different lengths in distributed attention, (2) mismatch between static NIC-GPU affinity and dynamic parallel workloads, and (3) distinct optimal partitioning strategies required for quadratic attention versus linear components. To address these challenges, we present Zeppelin, a novel training system that integrates three key techniques: (1) a hierarchical sequence partitioning method for the attention module that reduces communication overhead and balances computation, supported by an efficient attention engine that applies divergent parallel strategies; (2) a routing layer that orchestrates inter-node transfers to fully utilize NIC bandwidth; and (3) a remapping layer that transforms sequence layouts between attention and linear modules, ensuring high computational efficiency across both. Comprehensive evaluations across diverse configurations show that Zeppelin delivers an average 2.80x speedup over state-of-the-art methods.
DiffusionPipe: Training Large Diffusion Models with Efficient Pipelines
Diffusion models have emerged as dominant performers for image generation. To support training large diffusion models, this paper studies pipeline parallel training of diffusion models and proposes DiffusionPipe, a synchronous pipeline training system that advocates innovative pipeline bubble filling technique, catering to structural characteristics of diffusion models. State-of-the-art diffusion models typically include trainable (the backbone) and non-trainable (e.g., frozen input encoders) parts. We first unify optimal stage partitioning and pipeline scheduling of single and multiple backbones in representative diffusion models with a dynamic programming approach. We then propose to fill the computation of non-trainable model parts into idle periods of the pipeline training of the backbones by an efficient greedy algorithm, thus achieving high training throughput. Extensive experiments show that DiffusionPipe can achieve up to 1.41x speedup over pipeline parallel methods and 1.28x speedup over data parallel training on popular diffusion models.
Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves
Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.
Treemaps with Bounded Aspect Ratio
Treemaps are a popular technique to visualize hierarchical data. The input is a weighted tree tree where the weight of each node is the sum of the weights of its children. A treemap for tree is a hierarchical partition of a rectangle into simply connected regions, usually rectangles. Each region represents a node of tree and its area is proportional to the weight of the corresponding node. An important quality criterion for treemaps is the aspect ratio of its regions. One cannot bound the aspect ratio if the regions are restricted to be rectangles. In contrast, polygonal partitions, that use convex polygons, have bounded aspect ratio. We are the first to obtain convex partitions with optimal aspect ratio O(depth(tree)). However, depth(tree) still depends on the input tree. Hence we introduce a new type of treemaps, namely orthoconvex treemaps, where regions representing leaves are rectangles, L-, and S-shapes, and regions representing internal nodes are orthoconvex polygons. We prove that any input tree, irrespective of the weights of the nodes and the depth of the tree, admits an orthoconvex treemap of constant aspect ratio. We also obtain several specialized results for single-level treemaps, that is, treemaps where the input tree has depth~1.
Shortcut Partitions in Minor-Free Graphs: Steiner Point Removal, Distance Oracles, Tree Covers, and More
The notion of shortcut partition, introduced recently by Chang, Conroy, Le, Milenkovi\'c, Solomon, and Than [CCLMST23], is a new type of graph partition into low-diameter clusters. Roughly speaking, the shortcut partition guarantees that for every two vertices u and v in the graph, there exists a path between u and v that intersects only a few clusters. They proved that any planar graph admits a shortcut partition and gave several applications, including a construction of tree cover for arbitrary planar graphs with stretch 1+varepsilon and O(1) many trees for any fixed varepsilon in (0,1). However, the construction heavily exploits planarity in multiple steps, and is thus inherently limited to planar graphs. In this work, we breach the "planarity barrier" to construct a shortcut partition for K_r-minor-free graphs for any r. To this end, we take a completely different approach -- our key contribution is a novel deterministic variant of the cop decomposition in minor-free graphs [And86, AGG14]. Our shortcut partition for K_r-minor-free graphs yields several direct applications. Most notably, we construct the first optimal distance oracle for K_r-minor-free graphs, with 1+varepsilon stretch, linear space, and constant query time for any fixed varepsilon in (0,1). The previous best distance oracle [AG06] uses O(nlog n) space and O(log n) query time, and its construction relies on Robertson-Seymour structural theorem and other sophisticated tools. We also obtain the first tree cover of O(1) size for minor-free graphs with stretch 1+varepsilon, while the previous best (1+varepsilon)-tree cover has size O(log^2 n) [BFN19].
Probabilistic Partitive Partitioning (PPP)
Clustering is a NP-hard problem. Thus, no optimal algorithm exists, heuristics are applied to cluster the data. Heuristics can be very resource-intensive, if not applied properly. For substantially large data sets computational efficiencies can be achieved by reducing the input space if a minimal loss of information can be achieved. Clustering algorithms, in general, face two common problems: 1) these converge to different settings with different initial conditions and; 2) the number of clusters has to be arbitrarily decided beforehand. This problem has become critical in the realm of big data. Recently, clustering algorithms have emerged which can speedup computations using parallel processing over the grid but face the aforementioned problems. Goals: Our goals are to find methods to cluster data which: 1) guarantee convergence to the same settings irrespective of the initial conditions; 2) eliminate the need to establish the number of clusters beforehand, and 3) can be applied to cluster large datasets. Methods: We introduce a method that combines probabilistic and combinatorial clustering methods to produce repeatable and compact clusters that are not sensitive to initial conditions. This method harnesses the power of k-means (a combinatorial clustering method) to cluster/partition very large dimensional datasets and uses the Gaussian Mixture Model (a probabilistic clustering method) to validate the k-means partitions. Results: We show that this method produces very compact clusters that are not sensitive to initial conditions. This method can be used to identify the most 'separable' set in a dataset which increases the 'clusterability' of a dataset. This method also eliminates the need to specify the number of clusters in advance.
Reevaluating Data Partitioning for Emotion Detection in EmoWOZ
This paper focuses on the EmoWoz dataset, an extension of MultiWOZ that provides emotion labels for the dialogues. MultiWOZ was partitioned initially for another purpose, resulting in a distributional shift when considering the new purpose of emotion recognition. The emotion tags in EmoWoz are highly imbalanced and unevenly distributed across the partitions, which causes sub-optimal performance and poor comparison of models. We propose a stratified sampling scheme based on emotion tags to address this issue, improve the dataset's distribution, and reduce dataset shift. We also introduce a special technique to handle conversation (sequential) data with many emotional tags. Using our proposed sampling method, models built upon EmoWoz can perform better, making it a more reliable resource for training conversational agents with emotional intelligence. We recommend that future researchers use this new partitioning to ensure consistent and accurate performance evaluations.
NanoFlow: Towards Optimal Large Language Model Serving Throughput
The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.
FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models
Recent large language models (LLMs) have tended to leverage sparsity to reduce computations, employing the sparsely activated mixture-of-experts (MoE) technique. MoE introduces four modules, including token routing, token communication, expert computation, and expert parallelism, that impact model quality and training efficiency. To enable versatile usage of MoE models, we introduce FSMoE, a flexible training system optimizing task scheduling with three novel techniques: 1) Unified abstraction and online profiling of MoE modules for task scheduling across various MoE implementations. 2) Co-scheduling intra-node and inter-node communications with computations to minimize communication overheads. 3) To support near-optimal task scheduling, we design an adaptive gradient partitioning method for gradient aggregation and a schedule to adaptively pipeline communications and computations. We conduct extensive experiments with configured MoE layers and real-world MoE models on two GPU clusters. Experimental results show that 1) our FSMoE supports four popular types of MoE routing functions and is more efficient than existing implementations (with up to a 1.42times speedup), and 2) FSMoE outperforms the state-of-the-art MoE training systems (DeepSpeed-MoE and Tutel) by 1.18times-1.22times on 1458 MoE layers and 1.19times-3.01times on real-world MoE models based on GPT-2 and Mixtral using a popular routing function.
SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models
Large language models (LLMs) achieve remarkable performance in natural language understanding but require substantial computation and memory resources. Post-training quantization (PTQ) is a powerful compression technique extensively investigated in LLMs. However, existing PTQ methods are still not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths. Standard PTQ methods using group-wise quantization suffer difficulties in quantizing LLMs accurately to such low-bit, but advanced methods remaining high-precision weights element-wisely are hard to realize their theoretical hardware efficiency. This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM. The scheme exploits the salience distribution of weights to determine optimal bit-width and quantizers for accurate LLM quantization, while aligning bit-width partition to groups for compact memory usage and fast integer inference. Specifically, the proposed SliM-LLM mainly relies on two novel techniques: (1) Salience-Determined Bit Allocation utilizes the clustering characteristics of salience distribution to allocate the bit-widths of each group, increasing the accuracy of quantized LLMs and maintaining the inference efficiency; (2) Salience-Weighted Quantizer Calibration optimizes the parameters of the quantizer by considering the element-wise salience within the group, balancing the maintenance of salient information and minimization of errors. Comprehensive experiments show that SliM-LLM significantly improves the accuracy of LLMs at ultra-low bits, e.g., 2-bit LLaMA-7B achieves a 5.5-times memory-saving than original model on NVIDIA A800 GPUs, and 48% decrease of perplexity compared to the state-of-the-art gradient-free PTQ method. Moreover, SliM-LLM+, which is integrated from the extension of SliM-LLM with gradient-based quantizers, further reduces perplexity by 35.1%.
DLFR-VAE: Dynamic Latent Frame Rate VAE for Video Generation
In this paper, we propose the Dynamic Latent Frame Rate VAE (DLFR-VAE), a training-free paradigm that can make use of adaptive temporal compression in latent space. While existing video generative models apply fixed compression rates via pretrained VAE, we observe that real-world video content exhibits substantial temporal non-uniformity, with high-motion segments containing more information than static scenes. Based on this insight, DLFR-VAE dynamically adjusts the latent frame rate according to the content complexity. Specifically, DLFR-VAE comprises two core innovations: (1) A Dynamic Latent Frame Rate Scheduler that partitions videos into temporal chunks and adaptively determines optimal frame rates based on information-theoretic content complexity, and (2) A training-free adaptation mechanism that transforms pretrained VAE architectures into a dynamic VAE that can process features with variable frame rates. Our simple but effective DLFR-VAE can function as a plug-and-play module, seamlessly integrating with existing video generation models and accelerating the video generation process.
Differentiable Entropy Regularization for Geometry and Neural Networks
We introduce a differentiable estimator of range-partition entropy, a recent concept from computational geometry that enables algorithms to adapt to the "sortedness" of their input. While range-partition entropy provides strong guarantees in algorithm design, it has not yet been made accessible to deep learning. In this work, we (i) propose the first differentiable approximation of range-partition entropy, enabling its use as a trainable loss or regularizer; (ii) design EntropyNet, a neural module that restructures data into low-entropy forms to accelerate downstream instance-optimal algorithms; and (iii) extend this principle beyond geometry by applying entropy regularization directly to Transformer attention. Across tasks, we demonstrate that differentiable entropy improves efficiency without degrading correctness: in geometry, our method achieves up to 4.1times runtime speedups with negligible error (<0.2%); in deep learning, it induces structured attention patterns that yield 6% higher accuracy at 80% sparsity compared to L1 baselines. Our theoretical analysis provides approximation bounds for the estimator, and extensive ablations validate design choices. These results suggest that entropy-bounded computation is not only theoretically elegant but also a practical mechanism for adaptive learning, efficiency, and structured representation.
AutoDistil: Few-shot Task-agnostic Neural Architecture Search for Distilling Large Language Models
Knowledge distillation (KD) methods compress large models into smaller students with manually-designed student architectures given pre-specified computational cost. This requires several trials to find a viable student, and further repeating the process for each student or computational budget change. We use Neural Architecture Search (NAS) to automatically distill several compressed students with variable cost from a large model. Current works train a single SuperLM consisting of millions of subnetworks with weight-sharing, resulting in interference between subnetworks of different sizes. Our framework AutoDistil addresses above challenges with the following steps: (a) Incorporates inductive bias and heuristics to partition Transformer search space into K compact sub-spaces (K=3 for typical student sizes of base, small and tiny); (b) Trains one SuperLM for each sub-space using task-agnostic objective (e.g., self-attention distillation) with weight-sharing of students; (c) Lightweight search for the optimal student without re-training. Fully task-agnostic training and search allow students to be reused for fine-tuning on any downstream task. Experiments on GLUE benchmark against state-of-the-art KD and NAS methods demonstrate AutoDistil to outperform leading compression techniques with upto 2.7x reduction in computational cost and negligible loss in task performance.
