new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

CacheBlend: Fast Large Language Model Serving for RAG with Cached Knowledge Fusion

Large language models (LLMs) often incorporate multiple text chunks in their inputs to provide the necessary contexts. To speed up the prefill of the long LLM inputs, one can pre-compute the KV cache of a text and re-use the KV cache when the context is reused as the prefix of another LLM input. However, the reused text chunks are not always the input prefix, and when they are not, their precomputed KV caches cannot be directly used since they ignore the text's cross-attention with the preceding text in the LLM input. Thus, the benefits of reusing KV caches remain largely unrealized. This paper tackles just one question: when an LLM input contains multiple text chunks, how to quickly combine their precomputed KV caches in order to achieve the same generation quality as the expensive full prefill (i.e., without reusing KV cache)? We present CacheBlend, a scheme that reuses the pre-computed KV caches, regardless prefix or not, and selectively recomputes the KV values of a small subset of tokens to partially update each reused KV cache. In the meantime,the small extra delay for recomputing some tokens can be pipelined with the retrieval of KV caches within the same job,allowing CacheBlend to store KV caches in slower devices with more storage capacity while retrieving them without increasing the inference delay. By comparing CacheBlend with the state-of-the-art KV cache reusing schemes on three open-source LLMs of various sizes and four popular benchmark datasets of different tasks, we show that CacheBlend reduces time-to-first-token (TTFT) by 2.2-3.3X and increases the inference throughput by 2.8-5X, compared with full KV recompute, without compromising generation quality or incurring more storage cost.

  • 9 authors
·
May 26, 2024

EpiCache: Episodic KV Cache Management for Long Conversational Question Answering

Recent advances in large language models (LLMs) have extended context lengths, enabling assistants to sustain long histories for coherent, personalized responses. This ability, however, hinges on Key-Value (KV) caching, whose memory grows linearly with dialogue length and quickly dominates under strict resource constraints. An active line of research for reducing this overhead is KV cache compression, which seeks to limit cache size while preserving accuracy. Yet existing methods face two major limitations: (i) evicting entries after full-context prefill causes unbounded peak memory, and (ii) query-dependent eviction narrows the cache to a single query, leading to degraded accuracy in multi-turn conversations. We introduce EpiCache, a training-free KV cache management framework for long conversational question answering (LongConvQA) under fixed memory budgets. EpiCache bounds cache growth through block-wise prefill and preserves topic-relevant context via episodic KV compression, which clusters conversation history into coherent episodes and applies episode-specific KV cache eviction. We further design an adaptive layer-wise budget allocation strategy that measures each layer's sensitivity to eviction and distributes the memory budget across layers accordingly. Across three LongConvQA benchmarks, EpiCache improves accuracy by up to 40% over recent baselines, sustains near-full KV accuracy under 4-6x compression, and reduces latency and memory by up to 2.4x and 3.5x, thereby enabling efficient multi-turn interaction under strict resource constraints.

  • 5 authors
·
Sep 22 4

LOOK-M: Look-Once Optimization in KV Cache for Efficient Multimodal Long-Context Inference

Long-context Multimodal Large Language Models (MLLMs) demand substantial computational resources for inference as the growth of their multimodal Key-Value (KV) cache, in response to increasing input lengths, challenges memory and time efficiency. Unlike single-modality LLMs that manage only textual contexts, the KV cache of long-context MLLMs includes representations from multiple images with temporal and spatial relationships and related textual contexts. The predominance of image tokens means traditional optimizations for LLMs' KV caches are unsuitable for multimodal long-context settings, and no prior works have addressed this challenge. In this work, we introduce LOOK-M, a pioneering, fine-tuning-free approach that efficiently reduces the multimodal KV cache size while maintaining performance comparable to a full cache. We observe that during prompt prefill, the model prioritizes more textual attention over image features, and based on the multimodal interaction observation, a new proposed text-prior method is explored to compress the KV cache. Furthermore, to mitigate the degradation of image contextual information, we propose several compensatory strategies using KV pairs merging. LOOK-M demonstrates that with a significant reduction in KV Cache memory usage, such as reducing it by 80% in some cases, it not only achieves up to 1.5x faster decoding but also maintains or even enhances performance across a variety of long context multimodal tasks.

  • 8 authors
·
Jun 26, 2024

LMCache: An Efficient KV Cache Layer for Enterprise-Scale LLM Inference

KV cache has traditionally been stored in GPU memory to accelerate the decoding phase of large language model (LLM) inference. However, it is increasingly necessary to move KV caches outside GPU devices, to enable cache reuse across different queries and inference engines. Our real-world usage statistics confirm this trend: over time, the total KV cache stored by users has grown rapidly, far exceeding the capacity of GPU memory. Despite this need, there lacks an efficient solution for offloading and transferring KV caches. We present LMCACHE, the first and so far the most efficient open-source KV caching solution, which extracts and stores KV caches generated by modern LLM engines (vLLM and SGLang) out of the GPU memory and shares them across engines and queries. LMCACHE supports both cache offloading (prefix reuse across queries) and prefill-decode (PD) disaggregation (cross-engine/GPU cache transfer). LMCACHE's high performance and wide adoption stem from the following contributions: (1) highly optimized KV cache data movement powered by batched data movement operations, compute and I/O pipelining; (2) a modular KV cache connector component, decoupling LMCACHE from the rapid evolution of inference engines; (3) a first-class control API for flexible cache orchestration across GPU, CPU, storage, and network layers. Our evaluation shows that combining LMCACHE with vLLM achieves up to 15x improvement in throughput across workloads such as multi-round question answering and document analysis. Large-scale adoption of LMCACHE in enterprise settings provides us valuable insights, for example, fetching KV cache from remote storage has unsurprisingly benefits to prefill delay, and that context truncation, which is a widely applied technique in industry, can greatly reduce prefix cache hit ratio by half. The source code of LMCACHE is at: https://github.com/LMCache/LMCache.

  • 11 authors
·
Oct 7

TPLA: Tensor Parallel Latent Attention for Efficient Disaggregated Prefill \& Decode Inference

Multi-Head Latent Attention (MLA), introduced in DeepSeek-V2, compresses key-value states into a low-rank latent vector, caching only this vector to reduce memory. In tensor parallelism (TP), however, attention heads are computed across multiple devices, and each device must load the full cache, eroding the advantage of MLA over Grouped Query Attention (GQA). We propose Tensor-Parallel Latent Attention (TPLA): a scheme that partitions both the latent representation and each head's input dimension across devices, performs attention independently per shard, and then combines results with an all-reduce. TPLA preserves the benefits of a compressed KV cache while unlocking TP efficiency. Unlike Grouped Latent Attention (GLA), every head in TPLA still leverages the full latent representation, maintaining stronger representational capacity. TPLA is drop-in compatible with models pre-trained using MLA: it supports MLA-style prefilling and enables efficient tensor-parallel decoding without retraining. Applying simple orthogonal transforms -- e.g., the Hadamard transform or PCA -- before TP slicing further mitigates cross-shard interference, yielding minimal accuracy degradation. By reducing the per-device KV cache for DeepSeek-V3 and Kimi-K2, we achieve 1.79x and 1.93x speedups, respectively, at a 32K-token context length while maintaining performance on commonsense and LongBench benchmarks. TPLA can be implemented with FlashAttention-3, enabling practical end-to-end acceleration.

  • 7 authors
·
Aug 21 2

HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference

The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33times in the prefill stage and 1.70times in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.

  • 6 authors
·
Apr 8 2

ZipVL: Efficient Large Vision-Language Models with Dynamic Token Sparsification and KV Cache Compression

The efficiency of large vision-language models (LVLMs) is constrained by the computational bottleneck of the attention mechanism during the prefill phase and the memory bottleneck of fetching the key-value (KV) cache in the decoding phase, particularly in scenarios involving high-resolution images or videos. Visual content often exhibits substantial redundancy, resulting in highly sparse attention maps within LVLMs. This sparsity can be leveraged to accelerate attention computation or compress the KV cache through various approaches. However, most studies focus on addressing only one of these bottlenecks and do not adequately support dynamic adjustment of sparsity concerning distinct layers or tasks. In this paper, we present ZipVL, an efficient inference framework designed for LVLMs that resolves both computation and memory bottlenecks through a dynamic ratio allocation strategy of important tokens. This ratio is adaptively determined based on the layer-specific distribution of attention scores, rather than fixed hyper-parameters, thereby improving efficiency for less complex tasks while maintaining high performance for more challenging ones. Then we select important tokens based on their normalized attention scores and perform attention mechanism solely on those important tokens to accelerate the prefill phase. To mitigate the memory bottleneck in the decoding phase, we employ mixed-precision quantization to the KV cache, where high-bit quantization is used for caches of important tokens, while low-bit quantization is applied to those of less importance. Our experiments demonstrate that ZipVL can accelerate the prefill phase by 2.6times and reduce GPU memory usage by 50.0%, with a minimal accuracy reduction of only 0.2% on Video-MME benchmark over LongVA-7B model, effectively enhancing the generation efficiency of LVLMs.

  • 7 authors
·
Oct 11, 2024 3

SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving Model Transformation

LLM inference for popular enterprise use cases, such as summarization, RAG, and code-generation, typically observes orders of magnitude longer prompt lengths than generation lengths. This characteristic leads to high cost of prefill and increased response latency. In this paper, we present SwiftKV, a novel model transformation and distillation procedure specifically designed to reduce the time and cost of processing prompt tokens while preserving high quality of generated tokens. SwiftKV combines three key mechanisms: i) SingleInputKV, which prefills later layers' KV cache using a much earlier layer's output, allowing prompt tokens to skip much of the model computation, ii) AcrossKV, which merges the KV caches of neighboring layers to reduce the memory footprint and support larger batch size for higher throughput, and iii) a knowledge-preserving distillation procedure that can adapt existing LLMs for SwiftKV with minimal accuracy impact and low compute and data requirement. For Llama-3.1-8B and 70B, SwiftKV reduces the compute requirement of prefill by 50% and the memory requirement of the KV cache by 62.5% while incurring minimum quality degradation across a wide range of tasks. In the end-to-end inference serving using an optimized vLLM implementation, SwiftKV realizes up to 2x higher aggregate throughput and 60% lower time per output token. It can achieve a staggering 560 TFlops/GPU of normalized inference throughput, which translates to 16K tokens/s for Llama-3.1-70B in 16-bit precision on 4x H100 GPUs.

  • 4 authors
·
Oct 4, 2024 2

ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification

KV cache stores key and value states from previous tokens to avoid re-computation, yet it demands substantial storage space, especially for long sequences. Adaptive KV cache compression seeks to discern the saliency of tokens, preserving vital information while aggressively compressing those of less importance. However, previous methods of this approach exhibit significant performance degradation at high compression ratios due to inaccuracies in identifying salient tokens. In this paper, we present ZipCache, an accurate and efficient KV cache quantization method for LLMs. First, we construct a strong baseline for quantizing KV cache. Through the proposed channel-separable tokenwise quantization scheme, the memory overhead of quantization parameters are substantially reduced compared to fine-grained groupwise quantization. To enhance the compression ratio, we propose normalized attention score as an effective metric for identifying salient tokens by considering the lower triangle characteristics of the attention matrix. Moreover, we develop an efficient approximation method that decouples the saliency metric from full attention scores, enabling compatibility with fast attention implementations like FlashAttention. Extensive experiments demonstrate that ZipCache achieves superior compression ratios, fast generation speed and minimal performance losses compared with previous KV cache compression methods. For instance, when evaluating Mistral-7B model on GSM8k dataset, ZipCache is capable of compressing the KV cache by 4.98times, with only a 0.38% drop in accuracy. In terms of efficiency, ZipCache also showcases a 37.3% reduction in prefill-phase latency, a 56.9% reduction in decoding-phase latency, and a 19.8% reduction in GPU memory usage when evaluating LLaMA3-8B model with a input length of 4096.

  • 6 authors
·
May 23, 2024

KVCOMM: Online Cross-context KV-cache Communication for Efficient LLM-based Multi-agent Systems

Multi-agent large language model (LLM) systems are increasingly adopted for complex language processing tasks that require communication and coordination among agents. However, these systems often suffer substantial overhead from repeated reprocessing of overlapping contexts across agents. In typical pipelines, once an agent receives a message from its predecessor, the full context-including prior turns-must be reprocessed from scratch, leading to inefficient processing. While key-value (KV) caching is an effective solution for avoiding redundant computation in single-agent settings where prefixes remain unchanged, it cannot be directly reused in multi-agent scenarios due to diverging prefixes introduced by agent-specific context extensions. We identify that the core challenge lies in the offset variance of KV-caches across agents. To address this, we propose KVCOMM, a training-free framework that enables efficient prefilling in multi-agent inference by reusing KV-caches and aligning cache offsets of overlapping contexts under diverse prefix contexts. KVCOMM estimates and adjusts KV-caches for shared content by referencing a pool of cached examples-termed anchors-that store observed cache deviations under varying prefixes. The anchor pool is maintained and updated online, allowing dynamic adaptation to distinct user requests and context structures. KVCOMM achieves over 70% reuse rate across diverse multi-agent workloads, including retrieval-augmented generation, math reasoning, and collaborative coding tasks, all without quality degradation. Particularly, when each fully-connected agent receives 1K input tokens with 512 prefix tokens and 512 output tokens under a five-agent setting, KVCOMM achieves up to 7.8x speedup compared to the standard prefill pipeline, reducing TTFT from ~430 ms to ~55 ms.

Continuum: Efficient and Robust Multi-Turn LLM Agent Scheduling with KV Cache Time-to-Live

Agentic LLM applications interleave LLM generation requests with tool calls. These tool calls break the continuity of the workflow by creating pauses between LLM requests, bringing many challenges for the serving system, especially under multi-turn scenarios. Each pause potentially causes KV cache eviction and extra waiting time before entering the continuous batch for the following LLM request. Since these pauses happen for each call, this problem becomes increasingly severe as turn number grow for agentic programs. Previous works either fail to incorporate information from the tool call, evicting KV cache that leads to repetitive prefill or loading, or ignore the continuity of a multi-turn program, creating waiting time between turns that increases per-request latency. We present Continuum, a serving system to optimize job completion time for multi-turn agent workloads by combining tool-aware KV cache timeout with program-level scheduling. By predicting tool call durations in agentic workflows, Continuum selectively pins the KV cache in GPU memory with a time-to-live value based on total turn number. When combined with program-level first-come-first-serve, Continuum prevents scheduling bubbles, preserves multi-turn continuity, and optimizes for throughput for complex agentic workflows. By modeling the variability of tool call and agent program continuity, Continuum outperforms state-of-the-art baselines. Our evaluation on real-world agentic workloads (SWE-Bench and BFCL) with Llama-3.1 8B/70B models shows that Continuum significantly improves the average job completion times, and remains performant across different hardware setups and DRAM offloading schemes. Preview code is available at: https://github.com/Hanchenli/vllm-continuum

  • 9 authors
·
Nov 3

KVShare: An LLM Service System with Efficient and Effective Multi-Tenant KV Cache Reuse

Recent advances in long-text understanding have pushed the context length of large language models (LLMs) up to one million tokens. It boosts LLMs's accuracy and reasoning capacity but causes exorbitant computational costs and unsatisfactory Time to First Token (TTFT). KV cache reuse, which reuses the exact same KV cache of prefixes and templates or shares similar ones but with extra selective recomputation, offers a promising way to tackle this issue. However, prior studies overlook the cross-request KV reuse and the attention deviations introduced by new tokens during the decoding stage. In this paper, we present a KV cache management module that shares the KV cache across requests under multi-tenant scenarios without sacrificing model accuracy. Our system, KVShare, enables accurate and efficient LLM serving by 1) a Dual-Stage High Deviation algorithm (DHD) that conditionally selects a small portion of KV cache to be recomputed during both prefill and decode phases, and 2) a cache-aware scheduler that prioritizes requests based on their KV cache hit rates and orchestrates continuous batching to achieve enhanced system efficiency and faster TTFT. Multi-task experiments conducted on models such as Qwen2.5-7B,Llama3.1-8B and Yi1.5-9B demonstrate that KVShare reduces TTFT by up to 9.39x and increases 1.2x of the throughput compared to the full KV recompute. Moreover, KVShare achieves 20.38% boost in terms of accuracy compared to SOTA methods.

  • 8 authors
·
Mar 17

Locret: Enhancing Eviction in Long-Context LLM Inference with Trained Retaining Heads

Large language models (LLMs) have shown remarkable advances in supporting long-context comprehension and processing tasks. However, scaling the generation inference of LLMs to such long contexts incurs significant additional computation load, and demands a substantial GPU memory footprint to maintain the key-value (KV) cache of transformer-based LLMs. Existing KV cache compression methods, such as quantization, face memory bottlenecks as context length increases, while static-sized caches, such as eviction, suffer from inefficient policies. These limitations restrict deployment on consumer-grade devices like a single Nvidia 4090 GPU. To overcome this, we propose Locret, a framework for long-context LLM inference that introduces retaining heads to evaluate the causal importance of KV cache units, allowing for more accurate eviction within a fixed cache size. Locret is fine-tuned on top of the frozen backbone LLM using a minimal amount of data from standard long-context SFT datasets. During inference, we evict low-importance cache units along with a chunked prefill pattern, significantly reducing peak GPU memory usage. We conduct an extensive empirical study to evaluate Locret, where the experimental results show that Locret outperforms the recent competitive approaches, including InfLLM, Quantization, SirLLM, and MInference, in terms of memory efficiency and the quality of generated contents -- Locret achieves over a 20x and 8x KV cache compression ratio compared to the full KV cache for Phi-3-mini-128K and Llama-3.1-8B-instruct. Additionally, Locret can be combined with other methods, such as quantization and token merging. To our knowledge, Locret is the first framework capable of deploying Llama-3.1-8B or similar models on a single Nvidia 4090 GPU, enabling 128K long-context inference without compromising generation quality, and requiring little additional system optimizations.

  • 5 authors
·
Oct 2, 2024

Compressed Convolutional Attention: Efficient Attention in a Compressed Latent Space

Multi-headed Attention's (MHA) quadratic compute and linearly growing KV-cache make long-context transformers expensive to train and serve. Prior works such as Grouped Query Attention (GQA) and Multi-Latent Attention (MLA) shrink the cache, speeding decode, but leave compute, which determines prefill and training speed, largely unchanged. We introduce Compressed Convolutional Attention (CCA), a novel attention method which down-projects queries, keys, and values and performs the entire attention operation inside the shared latent space. This simple design dramatically cuts parameters, KV-cache, and FLOPs all at once by the desired compression factor. Because CCA is orthogonal to head-sharing, we combine the two to form Compressed Convolutional Grouped Query Attention (CCGQA), which further tightens the compute-bandwidth Pareto frontier so that users can tune compression toward either FLOP or memory limits without sacrificing quality. Experiments show that CCGQA consistently outperforms both GQA and MLA at equal KV-cache compression on dense and MoE models. Additionally, we show that CCGQA outperforms all other attention methods on MoE models with half the KV-cache of GQA and MLA, achieving an 8x KV-cache compression with no drop in performance compared to standard MHA. CCA and CCGQA also dramatically reduce the FLOP cost of attention which leads to substantially faster training and prefill than existing methods. On H100 GPUs, our fused CCA/CCGQA kernel reduces prefill latency by about 1.7x at a sequence length of 16k relative to MHA, and accelerates backward by about 1.3x.

  • 5 authors
·
Oct 6

UNComp: Can Matrix Entropy Uncover Sparsity? -- A Compressor Design from an Uncertainty-Aware Perspective

Deploying large language models (LLMs) for long-context inference remains challenging due to their substantial memory and computational demands. While techniques such as Key-Value (KV) cache compression are designed to reduce memory usage, they often neglect the structured sparsity inherent in the relationship between hidden states and their corresponding KV cache. In this work, we explore the role of uncertainty as a potential indicator of sparsity within LLMs. We propose UNComp, an uncertainty-aware framework that leverages truncated matrix entropy to identify areas of low information content, thereby revealing sparsity patterns that can be used for adaptive compression. Unlike traditional methods that apply uniform compression, UNComp dynamically adjusts its approach to compression, guided by uncertainty measures that reflect the importance of various model components. Our analysis shows that sparsity patterns, when derived from uncertainty estimates, can be exploited to reveal special long-range dependencies, such as retrieval heads and retrieval layers. This perspective not only enhances our understanding of how compression can be optimized but also provides new insights into the inherent sparsity of LLMs during long-context inference. By focusing on uncertainty to analyze the sparsity pattern in detail, UNComp reduces the KV cache size to 4.74% of the original, achieves a 6% prefill speedup, and improves throughput by 6.4x - not only delivering strong lossless compression performance, but also validating the effectiveness of the underlying theoretical tool. We release the code at https://github.com/menik1126/UNComp.

  • 12 authors
·
Oct 3, 2024

Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification

Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by sim75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the sim50\% computation consumption under decoding without KV cache, while saving sim50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .

  • 8 authors
·
Dec 1, 2024

InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models

Window attention and linear attention represent two principal strategies for mitigating the quadratic complexity and ever-growing KV cache in Vision-Language Models (VLMs). However, we observe that window-based VLMs suffer performance degradation when sequence length exceeds the window size, while linear attention underperforms on information-intensive tasks such as OCR and document understanding. To overcome these limitations, we propose InfiniteVL, a linear-complexity VLM architecture that synergizes sliding window attention (SWA) with Gated DeltaNet. For achieving competitive multimodal performance under constrained resources, we design a three-stage training strategy comprising distillation pretraining, instruction tuning, and long-sequence SFT. Remarkably, using less than 2\% of the training data required by leading VLMs, InfiniteVL not only substantially outperforms previous linear-complexity VLMs but also matches the performance of leading Transformer-based VLMs, while demonstrating effective long-term memory retention. Compared to similar-sized Transformer-based VLMs accelerated by FlashAttention-2, InfiniteVL achieves over 3.6\times inference speedup while maintaining constant latency and memory footprint. In streaming video understanding scenarios, it sustains a stable 24 FPS real-time prefill speed while preserving long-term memory cache. Code and models are available at https://github.com/hustvl/InfiniteVL.

SpecVLM: Fast Speculative Decoding in Vision-Language Models

Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.

  • 7 authors
·
Sep 15