Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMapCoder: Multi-Agent Code Generation for Competitive Problem Solving
Code synthesis, which requires a deep understanding of complex natural language problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. While large language models (LLMs) demonstrate impressive proficiency in natural language processing, their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLM ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks, MapCoder showcases remarkable code generation capabilities, achieving new state-of-the-art results (pass@1) on HumanEval (93.9%), MBPP (83.1%), APPS (22.0%), CodeContests (28.5%), and xCodeEval (45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.
Synthesizing mixed-integer linear programming models from natural language descriptions
Numerous real-world decision-making problems can be formulated and solved using Mixed-Integer Linear Programming (MILP) models. However, the transformation of these problems into MILP models heavily relies on expertise in operations research and mathematical optimization, which restricts non-experts' accessibility to MILP. To address this challenge, we propose a framework for automatically formulating MILP models from unstructured natural language descriptions of decision problems, which integrates Large Language Models (LLMs) and mathematical modeling techniques. This framework consists of three phases: i) identification of decision variables, ii) classification of objective and constraints, and iii) finally, generation of MILP models. In this study, we present a constraint classification scheme and a set of constraint templates that can guide the LLMs in synthesizing a complete MILP model. After fine-tuning LLMs, our approach can identify and synthesize logic constraints in addition to classic demand and resource constraints. The logic constraints have not been studied in existing work. To evaluate the performance of the proposed framework, we extend the NL4Opt dataset with more problem descriptions and constraint types, and with the new dataset, we compare our framework with one-step model generation methods offered by LLMs. The experimental results reveal that with respect to the accuracies of generating the correct model, objective, and constraints, our method which integrates constraint classification and templates with LLMs significantly outperforms the others. The prototype system that we developed has a great potential to capture more constraints for more complex MILPs. It opens up opportunities for developing training tools for operations research practitioners and has the potential to be a powerful tool for automatic decision problem modeling and solving in practice.
LocAgent: Graph-Guided LLM Agents for Code Localization
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
Planetarium: A Rigorous Benchmark for Translating Text to Structured Planning Languages
Many recent works have explored using language models for planning problems. One line of research focuses on translating natural language descriptions of planning tasks into structured planning languages, such as the planning domain definition language (PDDL). While this approach is promising, accurately measuring the quality of generated PDDL code continues to pose significant challenges. First, generated PDDL code is typically evaluated using planning validators that check whether the problem can be solved with a planner. This method is insufficient because a language model might generate valid PDDL code that does not align with the natural language description of the task. Second, existing evaluation sets often have natural language descriptions of the planning task that closely resemble the ground truth PDDL, reducing the challenge of the task. To bridge this gap, we introduce \benchmarkName, a benchmark designed to evaluate language models' ability to generate PDDL code from natural language descriptions of planning tasks. We begin by creating a PDDL equivalence algorithm that rigorously evaluates the correctness of PDDL code generated by language models by flexibly comparing it against a ground truth PDDL. Then, we present a dataset of 132,037 text-to-PDDL pairs across 13 different tasks, with varying levels of difficulty. Finally, we evaluate several API-access and open-weight language models that reveal this task's complexity. For example, 87.6% of the PDDL problem descriptions generated by GPT-4o are syntactically parseable, 82.2% are valid, solve-able problems, but only 35.1% are semantically correct, highlighting the need for a more rigorous benchmark for this problem.
MultiAIGCD: A Comprehensive dataset for AI Generated Code Detection Covering Multiple Languages, Models,Prompts, and Scenarios
As large language models (LLMs) rapidly advance, their role in code generation has expanded significantly. While this offers streamlined development, it also creates concerns in areas like education and job interviews. Consequently, developing robust systems to detect AI-generated code is imperative to maintain academic integrity and ensure fairness in hiring processes. In this study, we introduce MultiAIGCD, a dataset for AI-generated code detection for Python, Java, and Go. From the CodeNet dataset's problem definitions and human-authored codes, we generate several code samples in Java, Python, and Go with six different LLMs and three different prompts. This generation process covered three key usage scenarios: (i) generating code from problem descriptions, (ii) fixing runtime errors in human-written code, and (iii) correcting incorrect outputs. Overall, MultiAIGCD consists of 121,271 AI-generated and 32,148 human-written code snippets. We also benchmark three state-of-the-art AI-generated code detection models and assess their performance in various test scenarios such as cross-model and cross-language. We share our dataset and codes to support research in this field.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
VERINA: Benchmarking Verifiable Code Generation
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
CoCoEvo: Co-Evolution of Programs and Test Cases to Enhance Code Generation
Large Language Models (LLMs) have shown remarkable performance in automated code generation. However, existing approaches often rely heavily on pre-defined test cases, which become impractical in scenarios where such cases are unavailable. While prior works explore filtering techniques between programs and test cases, they overlook the refinement of test cases. To address this limitation, we introduce CoCoEvo, a novel LLM-based co-evolution framework that simultaneously evolves programs and test cases. CoCoEvo eliminates the dependency on pre-defined test cases by generating both programs and test cases directly from natural language problem descriptions and function headers. The framework employs specialized evolutionary operators, including LLM-based crossover and mutation operators for program evolution, along with a test case generation operator for test case evolution. Additionally, we propose optimization strategies such as a crossover rate scheduler to balance exploration and convergence, and a multi-objective optimization method for test case selection. Experimental results on multiple state-of-the-art LLMs demonstrate that CoCoEvo surpasses existing methods, achieving state-of-the-art performance in automated code generation and testing. These results underscore the potential of co-evolutionary techniques in advancing the field of automated programming.
Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant Information
In recent years, Large language models (LLMs) have garnered significant attention due to their superior performance in complex reasoning tasks. However, recent studies may diminish their reasoning capabilities markedly when problem descriptions contain irrelevant information, even with the use of advanced prompting techniques. To further investigate this issue, a dataset of primary school mathematics problems containing irrelevant information, named GSMIR, was constructed. Testing prominent LLMs and prompting techniques on this dataset revealed that while LLMs can identify irrelevant information, they do not effectively mitigate the interference it causes once identified. A novel automatic construction method, ATF, which enhances the ability of LLMs to identify and self-mitigate the influence of irrelevant information, is proposed to address this shortcoming. This method operates in two steps: first, analysis of irrelevant information, followed by its filtering. The ATF method, as demonstrated by experimental results, significantly improves the reasoning performance of LLMs and prompting techniques, even in the presence of irrelevant information on the GSMIR dataset.
Benchmarking the Communication Competence of Code Generation for LLMs and LLM Agent
Large language models (LLMs) have significantly improved their ability to perform tasks in the field of code generation. However, there is still a gap between LLMs being capable coders and being top-tier software engineers. Based on the observation that top-level software engineers often ask clarifying questions to reduce ambiguity in both requirements and coding solutions, we argue that the same should be applied to LLMs for code generation tasks. In this work, we conducted an empirical study on the benchmark and analysis of the communication skills of LLMs for code generation. We define communication skills of LLMs as ``being able to ask clarifying questions when the description of the code generation problem has issues''. We created a new benchmark, HumanEvalComm, by modifying problem descriptions according to three issues: inconsistency, ambiguity, incompleteness. We defined new evaluation metrics such as Communication Rate and Good Question Rate, and then experimented on HumanEvalComm with different Code LLMs, and a new LLM agent approach, Okanagan, to identify and ask questions in ambiguous parts from code and descriptions for further refining the generated code. Finally, we discussed evaluation results by comparing Code LLMs and Okanagan with our findings.
Fully Autonomous Programming with Large Language Models
Current approaches to program synthesis with Large Language Models (LLMs) exhibit a "near miss syndrome": they tend to generate programs that semantically resemble the correct answer (as measured by text similarity metrics or human evaluation), but achieve a low or even zero accuracy as measured by unit tests due to small imperfections, such as the wrong input or output format. This calls for an approach known as Synthesize, Execute, Debug (SED), whereby a draft of the solution is generated first, followed by a program repair phase addressing the failed tests. To effectively apply this approach to instruction-driven LLMs, one needs to determine which prompts perform best as instructions for LLMs, as well as strike a balance between repairing unsuccessful programs and replacing them with newly generated ones. We explore these trade-offs empirically, comparing replace-focused, repair-focused, and hybrid debug strategies, as well as different template-based and model-based prompt-generation techniques. We use OpenAI Codex as the LLM and Program Synthesis Benchmark 2 as a database of problem descriptions and tests for evaluation. The resulting framework outperforms both conventional usage of Codex without the repair phase and traditional genetic programming approaches.
Synthetic Dialogue Dataset Generation using LLM Agents
Linear programming (LP) problems are pervasive in real-life applications. However, despite their apparent simplicity, an untrained user may find it difficult to determine the linear model of their specific problem. We envisage the creation of a goal-oriented conversational agent that will engage in conversation with the user to elicit all information required so that a subsequent agent can generate the linear model. In this paper, we present an approach for the generation of sample dialogues that can be used to develop and train such a conversational agent. Using prompt engineering, we develop two agents that "talk" to each other, one acting as the conversational agent, and the other acting as the user. Using a set of text descriptions of linear problems from NL4Opt available to the user only, the agent and the user engage in conversation until the agent has retrieved all key information from the original problem description. We also propose an extrinsic evaluation of the dialogues by assessing how well the summaries generated by the dialogues match the original problem descriptions. We conduct human and automatic evaluations, including an evaluation approach that uses GPT-4 to mimic the human evaluation metrics. The evaluation results show an overall good quality of the dialogues, though research is still needed to improve the quality of the GPT-4 evaluation metrics. The resulting dialogues, including the human annotations of a subset, are available to the research community. The conversational agent used for the generation of the dialogues can be used as a baseline.
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent "unseen" cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. Additionally, we test the recently released OpenAI o1 model and find that human-like `slow thinking' helps improve the compositionality of LLMs. Overall, systematic compositionality remains an open challenge for large language models.
CP-Bench: Evaluating Large Language Models for Constraint Modelling
Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.
Lifecycle-Aware code generation: Leveraging Software Engineering Phases in LLMs
Recent progress in large language models (LLMs) has advanced automatic code generation, yet most approaches rely on direct, single-step translation from problem descriptions to code, disregarding structured software engineering practices. We introduce a lifecycle-aware framework that systematically incorporates intermediate artifacts such as requirements analysis, state machine modeling, and pseudocode into both the training and inference stages. This design aligns code generation with standard software development phases and enables more structured reasoning. Experiments show that lifecycle-level fine-tuning improves code correctness by up to 75% over the same model before fine-tuning, with performance gains compounding across intermediate stages. Multi-step inference consistently surpasses single-step generation, demonstrating the effectiveness of intermediate scaffolding. Notably, open-source LLMs, once fine-tuned under our framework, match or slightly outperform models pretrained on code. When applied to DeepSeek-Coder-1.3B, our framework yields relative CodeBLEU improvements of 34.3%, 20.0%, 11.2%, and 22.3% over ChatGPT-3.5, ChatGPT-4o-mini, DeepSeek-R1, and LLaMA-8B, respectively. Our pipeline also proves robust with up to 80\% less training data, confirming its resilience. Ablation studies further reveal that each intermediate artifact contributes distinctly to final code quality, with state machine modeling yielding the most substantial impact. Our source code and detailed experimental data are available at https://anonymous.4open.science/r/Lifecycle-Aware-3CCB.
FEABench: Evaluating Language Models on Multiphysics Reasoning Ability
Building precise simulations of the real world and invoking numerical solvers to answer quantitative problems is an essential requirement in engineering and science. We present FEABench, a benchmark to evaluate the ability of large language models (LLMs) and LLM agents to simulate and solve physics, mathematics and engineering problems using finite element analysis (FEA). We introduce a comprehensive evaluation scheme to investigate the ability of LLMs to solve these problems end-to-end by reasoning over natural language problem descriptions and operating COMSOL Multiphysics^circledR, an FEA software, to compute the answers. We additionally design a language model agent equipped with the ability to interact with the software through its Application Programming Interface (API), examine its outputs and use tools to improve its solutions over multiple iterations. Our best performing strategy generates executable API calls 88% of the time. LLMs that can successfully interact with and operate FEA software to solve problems such as those in our benchmark would push the frontiers of automation in engineering. Acquiring this capability would augment LLMs' reasoning skills with the precision of numerical solvers and advance the development of autonomous systems that can tackle complex problems in the real world. The code is available at https://github.com/google/feabench
Holy Grail 2.0: From Natural Language to Constraint Models
Twenty-seven years ago, E. Freuder highlighted that "Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it". Nowadays, CP users have great modeling tools available (like Minizinc and CPMpy), allowing them to formulate the problem and then let a solver do the rest of the job, getting closer to the stated goal. However, this still requires the CP user to know the formalism and respect it. Another significant challenge lies in the expertise required to effectively model combinatorial problems. All this limits the wider adoption of CP. In this position paper, we investigate a possible approach to leverage pre-trained Large Language Models to extract models from textual problem descriptions. More specifically, we take inspiration from the Natural Language Processing for Optimization (NL4OPT) challenge and present early results with a decomposition-based prompting approach to GPT Models.
Analyzing and Mitigating Object Hallucination in Large Vision-Language Models
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages. However, LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images. This can negatively impact many vision-language tasks, such as visual summarization and reasoning. To address this issue, we propose a simple yet powerful algorithm, LVLM Hallucination Revisor (LURE), to post-hoc rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions. LURE is grounded in a rigorous statistical analysis of the key factors underlying object hallucination, including co-occurrence (the frequent appearance of certain objects alongside others in images), uncertainty (objects with higher uncertainty during LVLM decoding), and object position (hallucination often appears in the later part of the generated text). LURE can also be seamlessly integrated with any LVLMs. We evaluate LURE on six open-source LVLMs, achieving a 23% improvement in general object hallucination evaluation metrics over the previous best approach. In both GPT and human evaluations, LURE consistently ranks at the top. Our data and code are available at https://github.com/YiyangZhou/LURE.
Forensic Self-Descriptions Are All You Need for Zero-Shot Detection, Open-Set Source Attribution, and Clustering of AI-generated Images
The emergence of advanced AI-based tools to generate realistic images poses significant challenges for forensic detection and source attribution, especially as new generative techniques appear rapidly. Traditional methods often fail to generalize to unseen generators due to reliance on features specific to known sources during training. To address this problem, we propose a novel approach that explicitly models forensic microstructures - subtle, pixel-level patterns unique to the image creation process. Using only real images in a self-supervised manner, we learn a set of diverse predictive filters to extract residuals that capture different aspects of these microstructures. By jointly modeling these residuals across multiple scales, we obtain a compact model whose parameters constitute a unique forensic self-description for each image. This self-description enables us to perform zero-shot detection of synthetic images, open-set source attribution of images, and clustering based on source without prior knowledge. Extensive experiments demonstrate that our method achieves superior accuracy and adaptability compared to competing techniques, advancing the state of the art in synthetic media forensics.
Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce
In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.
Cluster Explanation via Polyhedral Descriptions
Clustering is an unsupervised learning problem that aims to partition unlabelled data points into groups with similar features. Traditional clustering algorithms provide limited insight into the groups they find as their main focus is accuracy and not the interpretability of the group assignments. This has spurred a recent line of work on explainable machine learning for clustering. In this paper we focus on the cluster description problem where, given a dataset and its partition into clusters, the task is to explain the clusters. We introduce a new approach to explain clusters by constructing polyhedra around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description. We formulate the cluster description problem as an integer program and present a column generation approach to search over an exponential number of candidate half-spaces that can be used to build the polyhedra. To deal with large datasets, we introduce a novel grouping scheme that first forms smaller groups of data points and then builds the polyhedra around the grouped data, a strategy which out-performs simply sub-sampling data. Compared to state of the art cluster description algorithms, our approach is able to achieve competitive interpretability with improved description accuracy.
TEMOS: Generating diverse human motions from textual descriptions
We address the problem of generating diverse 3D human motions from textual descriptions. This challenging task requires joint modeling of both modalities: understanding and extracting useful human-centric information from the text, and then generating plausible and realistic sequences of human poses. In contrast to most previous work which focuses on generating a single, deterministic, motion from a textual description, we design a variational approach that can produce multiple diverse human motions. We propose TEMOS, a text-conditioned generative model leveraging variational autoencoder (VAE) training with human motion data, in combination with a text encoder that produces distribution parameters compatible with the VAE latent space. We show the TEMOS framework can produce both skeleton-based animations as in prior work, as well more expressive SMPL body motions. We evaluate our approach on the KIT Motion-Language benchmark and, despite being relatively straightforward, demonstrate significant improvements over the state of the art. Code and models are available on our webpage.
Embodied Image Captioning: Self-supervised Learning Agents for Spatially Coherent Image Descriptions
We present a self-supervised method to improve an agent's abilities in describing arbitrary objects while actively exploring a generic environment. This is a challenging problem, as current models struggle to obtain coherent image captions due to different camera viewpoints and clutter. We propose a three-phase framework to fine-tune existing captioning models that enhances caption accuracy and consistency across views via a consensus mechanism. First, an agent explores the environment, collecting noisy image-caption pairs. Then, a consistent pseudo-caption for each object instance is distilled via consensus using a large language model. Finally, these pseudo-captions are used to fine-tune an off-the-shelf captioning model, with the addition of contrastive learning. We analyse the performance of the combination of captioning models, exploration policies, pseudo-labeling methods, and fine-tuning strategies, on our manually labeled test set. Results show that a policy can be trained to mine samples with higher disagreement compared to classical baselines. Our pseudo-captioning method, in combination with all policies, has a higher semantic similarity compared to other existing methods, and fine-tuning improves caption accuracy and consistency by a significant margin. Code and test set annotations available at https://hsp-iit.github.io/embodied-captioning/
Text2FaceGAN: Face Generation from Fine Grained Textual Descriptions
Powerful generative adversarial networks (GAN) have been developed to automatically synthesize realistic images from text. However, most existing tasks are limited to generating simple images such as flowers from captions. In this work, we extend this problem to the less addressed domain of face generation from fine-grained textual descriptions of face, e.g., "A person has curly hair, oval face, and mustache". We are motivated by the potential of automated face generation to impact and assist critical tasks such as criminal face reconstruction. Since current datasets for the task are either very small or do not contain captions, we generate captions for images in the CelebA dataset by creating an algorithm to automatically convert a list of attributes to a set of captions. We then model the highly multi-modal problem of text to face generation as learning the conditional distribution of faces (conditioned on text) in same latent space. We utilize the current state-of-the-art GAN (DC-GAN with GAN-CLS loss) for learning conditional multi-modality. The presence of more fine-grained details and variable length of the captions makes the problem easier for a user but more difficult to handle compared to the other text-to-image tasks. We flipped the labels for real and fake images and added noise in discriminator. Generated images for diverse textual descriptions show promising results. In the end, we show how the widely used inceptions score is not a good metric to evaluate the performance of generative models used for synthesizing faces from text.
FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving
This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Towards Generating Functionally Correct Code Edits from Natural Language Issue Descriptions
Large language models (LLMs), such as OpenAI's Codex, have demonstrated their potential to generate code from natural language descriptions across a wide range of programming tasks. Several benchmarks have recently emerged to evaluate the ability of LLMs to generate functionally correct code from natural language intent with respect to a set of hidden test cases. This has enabled the research community to identify significant and reproducible advancements in LLM capabilities. However, there is currently a lack of benchmark datasets for assessing the ability of LLMs to generate functionally correct code edits based on natural language descriptions of intended changes. This paper aims to address this gap by motivating the problem NL2Fix of translating natural language descriptions of code changes (namely bug fixes described in Issue reports in repositories) into correct code fixes. To this end, we introduce Defects4J-NL2Fix, a dataset of 283 Java programs from the popular Defects4J dataset augmented with high-level descriptions of bug fixes, and empirically evaluate the performance of several state-of-the-art LLMs for the this task. Results show that these LLMS together are capable of generating plausible fixes for 64.6% of the bugs, and the best LLM-based technique can achieve up to 21.20% top-1 and 35.68% top-5 accuracy on this benchmark.
Context Matters for Image Descriptions for Accessibility: Challenges for Referenceless Evaluation Metrics
Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics -- those that don't rely on human-generated ground-truth descriptions -- on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they do not take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility. As a proof-of-concept, we provide a contextual version of the referenceless metric CLIPScore which begins to address the disconnect to the BLV data. An accessible HTML version of this paper is available at https://elisakreiss.github.io/contextual-description-evaluation/paper/reflessmetrics.html
NL4Opt Competition: Formulating Optimization Problems Based on Their Natural Language Descriptions
The Natural Language for Optimization (NL4Opt) Competition was created to investigate methods of extracting the meaning and formulation of an optimization problem based on its text description. Specifically, the goal of the competition is to increase the accessibility and usability of optimization solvers by allowing non-experts to interface with them using natural language. We separate this challenging goal into two sub-tasks: (1) recognize and label the semantic entities that correspond to the components of the optimization problem; (2) generate a meaning representation (i.e., a logical form) of the problem from its detected problem entities. The first task aims to reduce ambiguity by detecting and tagging the entities of the optimization problems. The second task creates an intermediate representation of the linear programming (LP) problem that is converted into a format that can be used by commercial solvers. In this report, we present the LP word problem dataset and shared tasks for the NeurIPS 2022 competition. Furthermore, we investigate and compare the performance of the ChatGPT large language model against the winning solutions. Through this competition, we hope to bring interest towards the development of novel machine learning applications and datasets for optimization modeling.
R-CoT: Reverse Chain-of-Thought Problem Generation for Geometric Reasoning in Large Multimodal Models
Existing Large Multimodal Models (LMMs) struggle with mathematical geometric reasoning due to a lack of high-quality image-text paired data. Current geometric data generation approaches, which apply preset templates to generate geometric data or use Large Language Models (LLMs) to rephrase questions and answers (Q&A), unavoidably limit data accuracy and diversity. To synthesize higher-quality data, we propose a two-stage Reverse Chain-of-Thought (R-CoT) geometry problem generation pipeline. First, we introduce GeoChain to produce high-fidelity geometric images and corresponding descriptions highlighting relations among geometric elements. We then design a Reverse A&Q method that reasons step-by-step based on the descriptions and generates questions in reverse from the reasoning results. Experiments demonstrate that the proposed method brings significant and consistent improvements on multiple LMM baselines, achieving new performance records in the 2B, 7B, and 8B settings. Notably, R-CoT-8B significantly outperforms previous state-of-the-art open-source mathematical models by 16.6% on MathVista and 9.2% on GeoQA, while also surpassing the closed-source model GPT-4o by an average of 13% across both datasets. The code is available at https://github.com/dle666/R-CoT.
NL2Plan: Robust LLM-Driven Planning from Minimal Text Descriptions
Today's classical planners are powerful, but modeling input tasks in formats such as PDDL is tedious and error-prone. In contrast, planning with Large Language Models (LLMs) allows for almost any input text, but offers no guarantees on plan quality or even soundness. In an attempt to merge the best of these two approaches, some work has begun to use LLMs to automate parts of the PDDL creation process. However, these methods still require various degrees of expert input. We present NL2Plan, the first domain-agnostic offline LLM-driven planning system. NL2Plan uses an LLM to incrementally extract the necessary information from a short text prompt before creating a complete PDDL description of both the domain and the problem, which is finally solved by a classical planner. We evaluate NL2Plan on four planning domains and find that it solves 10 out of 15 tasks - a clear improvement over a plain chain-of-thought reasoning LLM approach, which only solves 2 tasks. Moreover, in two out of the five failure cases, instead of returning an invalid plan, NL2Plan reports that it failed to solve the task. In addition to using NL2Plan in end-to-end mode, users can inspect and correct all of its intermediate results, such as the PDDL representation, increasing explainability and making it an assistive tool for PDDL creation.
WikiDes: A Wikipedia-Based Dataset for Generating Short Descriptions from Paragraphs
As free online encyclopedias with massive volumes of content, Wikipedia and Wikidata are key to many Natural Language Processing (NLP) tasks, such as information retrieval, knowledge base building, machine translation, text classification, and text summarization. In this paper, we introduce WikiDes, a novel dataset to generate short descriptions of Wikipedia articles for the problem of text summarization. The dataset consists of over 80k English samples on 6987 topics. We set up a two-phase summarization method - description generation (Phase I) and candidate ranking (Phase II) - as a strong approach that relies on transfer and contrastive learning. For description generation, T5 and BART show their superiority compared to other small-scale pre-trained models. By applying contrastive learning with the diverse input from beam search, the metric fusion-based ranking models outperform the direct description generation models significantly up to 22 ROUGE in topic-exclusive split and topic-independent split. Furthermore, the outcome descriptions in Phase II are supported by human evaluation in over 45.33% chosen compared to 23.66% in Phase I against the gold descriptions. In the aspect of sentiment analysis, the generated descriptions cannot effectively capture all sentiment polarities from paragraphs while doing this task better from the gold descriptions. The automatic generation of new descriptions reduces the human efforts in creating them and enriches Wikidata-based knowledge graphs. Our paper shows a practical impact on Wikipedia and Wikidata since there are thousands of missing descriptions. Finally, we expect WikiDes to be a useful dataset for related works in capturing salient information from short paragraphs. The curated dataset is publicly available at: https://github.com/declare-lab/WikiDes.
Zero-Shot Entity Linking by Reading Entity Descriptions
We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.
TrustGeoGen: Scalable and Formal-Verified Data Engine for Trustworthy Multi-modal Geometric Problem Solving
Mathematical geometric problem solving (GPS) often requires effective integration of multimodal information and verifiable logical coherence. Despite the fast development of large language models in general problem solving, it remains unresolved regarding with both methodology and benchmarks, especially given the fact that exiting synthetic GPS benchmarks are often not self-verified and contain noise and self-contradicted information due to the illusion of LLMs. In this paper, we propose a scalable data engine called TrustGeoGen for problem generation, with formal verification to provide a principled benchmark, which we believe lays the foundation for the further development of methods for GPS. The engine synthesizes geometric data through four key innovations: 1) multimodal-aligned generation of diagrams, textual descriptions, and stepwise solutions; 2) formal verification ensuring rule-compliant reasoning paths; 3) a bootstrapping mechanism enabling complexity escalation via recursive state generation and 4) our devised GeoExplore series algorithms simultaneously produce multi-solution variants and self-reflective backtracking traces. By formal logical verification, TrustGeoGen produces GeoTrust-200K dataset with guaranteed modality integrity, along with GeoTrust-test testset. Experiments reveal the state-of-the-art models achieve only 49.17\% accuracy on GeoTrust-test, demonstrating its evaluation stringency. Crucially, models trained on GeoTrust achieve OOD generalization on GeoQA, significantly reducing logical inconsistencies relative to pseudo-label annotated by OpenAI-o1. Our code is available at https://github.com/Alpha-Innovator/TrustGeoGen
Learning Semantic Correspondences in Technical Documentation
We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals.
Geometry Image Diffusion: Fast and Data-Efficient Text-to-3D with Image-Based Surface Representation
Generating high-quality 3D objects from textual descriptions remains a challenging problem due to computational cost, the scarcity of 3D data, and complex 3D representations. We introduce Geometry Image Diffusion (GIMDiffusion), a novel Text-to-3D model that utilizes geometry images to efficiently represent 3D shapes using 2D images, thereby avoiding the need for complex 3D-aware architectures. By integrating a Collaborative Control mechanism, we exploit the rich 2D priors of existing Text-to-Image models such as Stable Diffusion. This enables strong generalization even with limited 3D training data (allowing us to use only high-quality training data) as well as retaining compatibility with guidance techniques such as IPAdapter. In short, GIMDiffusion enables the generation of 3D assets at speeds comparable to current Text-to-Image models. The generated objects consist of semantically meaningful, separate parts and include internal structures, enhancing both usability and versatility.
AnyMorph: Learning Transferable Polices By Inferring Agent Morphology
The prototypical approach to reinforcement learning involves training policies tailored to a particular agent from scratch for every new morphology. Recent work aims to eliminate the re-training of policies by investigating whether a morphology-agnostic policy, trained on a diverse set of agents with similar task objectives, can be transferred to new agents with unseen morphologies without re-training. This is a challenging problem that required previous approaches to use hand-designed descriptions of the new agent's morphology. Instead of hand-designing this description, we propose a data-driven method that learns a representation of morphology directly from the reinforcement learning objective. Ours is the first reinforcement learning algorithm that can train a policy to generalize to new agent morphologies without requiring a description of the agent's morphology in advance. We evaluate our approach on the standard benchmark for agent-agnostic control, and improve over the current state of the art in zero-shot generalization to new agents. Importantly, our method attains good performance without an explicit description of morphology.
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
Synthesizing high-quality images from text descriptions is a challenging problem in computer vision and has many practical applications. Samples generated by existing text-to-image approaches can roughly reflect the meaning of the given descriptions, but they fail to contain necessary details and vivid object parts. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) to generate 256x256 photo-realistic images conditioned on text descriptions. We decompose the hard problem into more manageable sub-problems through a sketch-refinement process. The Stage-I GAN sketches the primitive shape and colors of the object based on the given text description, yielding Stage-I low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. It is able to rectify defects in Stage-I results and add compelling details with the refinement process. To improve the diversity of the synthesized images and stabilize the training of the conditional-GAN, we introduce a novel Conditioning Augmentation technique that encourages smoothness in the latent conditioning manifold. Extensive experiments and comparisons with state-of-the-arts on benchmark datasets demonstrate that the proposed method achieves significant improvements on generating photo-realistic images conditioned on text descriptions.
AvatarStudio: High-fidelity and Animatable 3D Avatar Creation from Text
We study the problem of creating high-fidelity and animatable 3D avatars from only textual descriptions. Existing text-to-avatar methods are either limited to static avatars which cannot be animated or struggle to generate animatable avatars with promising quality and precise pose control. To address these limitations, we propose AvatarStudio, a coarse-to-fine generative model that generates explicit textured 3D meshes for animatable human avatars. Specifically, AvatarStudio begins with a low-resolution NeRF-based representation for coarse generation, followed by incorporating SMPL-guided articulation into the explicit mesh representation to support avatar animation and high resolution rendering. To ensure view consistency and pose controllability of the resulting avatars, we introduce a 2D diffusion model conditioned on DensePose for Score Distillation Sampling supervision. By effectively leveraging the synergy between the articulated mesh representation and the DensePose-conditional diffusion model, AvatarStudio can create high-quality avatars from text that are ready for animation, significantly outperforming previous methods. Moreover, it is competent for many applications, e.g., multimodal avatar animations and style-guided avatar creation. For more results, please refer to our project page: http://jeff95.me/projects/avatarstudio.html
Prototypical Extreme Multi-label Classification with a Dynamic Margin Loss
Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations
A fundamental problem in combinatorial optimization is identifying equivalent formulations, which can lead to more efficient solution strategies and deeper insights into a problem's computational complexity. The need to automatically identify equivalence between problem formulations has grown as optimization copilots--systems that generate problem formulations from natural language descriptions--have proliferated. However, existing approaches to checking formulation equivalence lack grounding, relying on simple heuristics which are insufficient for rigorous validation. Inspired by Karp reductions, in this work we introduce quasi-Karp equivalence, a formal criterion for determining when two optimization formulations are equivalent based on the existence of a mapping between their decision variables. We propose EquivaMap, a framework that leverages large language models to automatically discover such mappings, enabling scalable and reliable equivalence verification. To evaluate our approach, we construct the first open-source dataset of equivalent optimization formulations, generated by applying transformations such as adding slack variables or valid inequalities to existing formulations. Empirically, EquivaMap significantly outperforms existing methods, achieving substantial improvements in correctly identifying formulation equivalence.
NEUSIS: A Compositional Neuro-Symbolic Framework for Autonomous Perception, Reasoning, and Planning in Complex UAV Search Missions
This paper addresses the problem of autonomous UAV search missions, where a UAV must locate specific Entities of Interest (EOIs) within a time limit, based on brief descriptions in large, hazard-prone environments with keep-out zones. The UAV must perceive, reason, and make decisions with limited and uncertain information. We propose NEUSIS, a compositional neuro-symbolic system designed for interpretable UAV search and navigation in realistic scenarios. NEUSIS integrates neuro-symbolic visual perception, reasoning, and grounding (GRiD) to process raw sensory inputs, maintains a probabilistic world model for environment representation, and uses a hierarchical planning component (SNaC) for efficient path planning. Experimental results from simulated urban search missions using AirSim and Unreal Engine show that NEUSIS outperforms a state-of-the-art (SOTA) vision-language model and a SOTA search planning model in success rate, search efficiency, and 3D localization. These results demonstrate the effectiveness of our compositional neuro-symbolic approach in handling complex, real-world scenarios, making it a promising solution for autonomous UAV systems in search missions.
KARRIEREWEGE: A Large Scale Career Path Prediction Dataset
Accurate career path prediction can support many stakeholders, like job seekers, recruiters, HR, and project managers. However, publicly available data and tools for career path prediction are scarce. In this work, we introduce KARRIEREWEGE, a comprehensive, publicly available dataset containing over 500k career paths, significantly surpassing the size of previously available datasets. We link the dataset to the ESCO taxonomy to offer a valuable resource for predicting career trajectories. To tackle the problem of free-text inputs typically found in resumes, we enhance it by synthesizing job titles and descriptions resulting in KARRIEREWEGE+. This allows for accurate predictions from unstructured data, closely aligning with real-world application challenges. We benchmark existing state-of-the-art (SOTA) models on our dataset and a prior benchmark and observe improved performance and robustness, particularly for free-text use cases, due to the synthesized data.
LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
PRIME: Prioritizing Interpretability in Failure Mode Extraction
In this work, we study the challenge of providing human-understandable descriptions for failure modes in trained image classification models. Existing works address this problem by first identifying clusters (or directions) of incorrectly classified samples in a latent space and then aiming to provide human-understandable text descriptions for them. We observe that in some cases, describing text does not match well with identified failure modes, partially owing to the fact that shared interpretable attributes of failure modes may not be captured using clustering in the feature space. To improve on these shortcomings, we propose a novel approach that prioritizes interpretability in this problem: we start by obtaining human-understandable concepts (tags) of images in the dataset and then analyze the model's behavior based on the presence or absence of combinations of these tags. Our method also ensures that the tags describing a failure mode form a minimal set, avoiding redundant and noisy descriptions. Through several experiments on different datasets, we show that our method successfully identifies failure modes and generates high-quality text descriptions associated with them. These results highlight the importance of prioritizing interpretability in understanding model failures.
Information Theory and Statistical Mechanics Revisited
The statistical mechanics of Gibbs is a juxtaposition of subjective, probabilistic ideas on the one hand and objective, mechanical ideas on the other. In this paper, we follow the path set out by Jaynes, including elements added subsequently to that original work, to explore the consequences of the purely statistical point of view. We show how standard methods in the equilibrium theory could have been derived simply from a description of the available problem information. In addition, our presentation leads to novel insights into questions associated with symmetry and non-equilibrium statistical mechanics. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a quantity related to the thermodynamic entropy production is found by considering information loss in non-equilibrium processes. Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complexity by successively adding information to create progressively more complex descriptions of a physical system. Our result is that such statistical mechanical descriptions can be used to create transparent, computable, experimentally-relevant models that may be informed by more detailed atomistic simulations. We also derive a theory for the kinetic behavior of this system, identifying the nonequilibrium `process' free energy functional. The Gibbs relation for this functional is a fluctuation-dissipation theorem applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient driving forces. Based on this work, it is clear that statistical mechanics is a general tool for constructing the relationships between constraints on system information.
Language-Guided Music Recommendation for Video via Prompt Analogies
We propose a method to recommend music for an input video while allowing a user to guide music selection with free-form natural language. A key challenge of this problem setting is that existing music video datasets provide the needed (video, music) training pairs, but lack text descriptions of the music. This work addresses this challenge with the following three contributions. First, we propose a text-synthesis approach that relies on an analogy-based prompting procedure to generate natural language music descriptions from a large-scale language model (BLOOM-176B) given pre-trained music tagger outputs and a small number of human text descriptions. Second, we use these synthesized music descriptions to train a new trimodal model, which fuses text and video input representations to query music samples. For training, we introduce a text dropout regularization mechanism which we show is critical to model performance. Our model design allows for the retrieved music audio to agree with the two input modalities by matching visual style depicted in the video and musical genre, mood, or instrumentation described in the natural language query. Third, to evaluate our approach, we collect a testing dataset for our problem by annotating a subset of 4k clips from the YT8M-MusicVideo dataset with natural language music descriptions which we make publicly available. We show that our approach can match or exceed the performance of prior methods on video-to-music retrieval while significantly improving retrieval accuracy when using text guidance.
Large Language Models are Pretty Good Zero-Shot Video Game Bug Detectors
Video game testing requires game-specific knowledge as well as common sense reasoning about the events in the game. While AI-driven agents can satisfy the first requirement, it is not yet possible to meet the second requirement automatically. Therefore, video game testing often still relies on manual testing, and human testers are required to play the game thoroughly to detect bugs. As a result, it is challenging to fully automate game testing. In this study, we explore the possibility of leveraging the zero-shot capabilities of large language models for video game bug detection. By formulating the bug detection problem as a question-answering task, we show that large language models can identify which event is buggy in a sequence of textual descriptions of events from a game. To this end, we introduce the GameBugDescriptions benchmark dataset, which consists of 167 buggy gameplay videos and a total of 334 question-answer pairs across 8 games. We extensively evaluate the performance of six models across the OPT and InstructGPT large language model families on our benchmark dataset. Our results show promising results for employing language models to detect video game bugs. With the proper prompting technique, we could achieve an accuracy of 70.66%, and on some video games, up to 78.94%. Our code, evaluation data and the benchmark can be found on https://asgaardlab.github.io/LLMxBugs
Bootstrap Latent Representations for Multi-modal Recommendation
This paper studies the multi-modal recommendation problem, where the item multi-modality information (e.g., images and textual descriptions) is exploited to improve the recommendation accuracy. Besides the user-item interaction graph, existing state-of-the-art methods usually use auxiliary graphs (e.g., user-user or item-item relation graph) to augment the learned representations of users and/or items. These representations are often propagated and aggregated on auxiliary graphs using graph convolutional networks, which can be prohibitively expensive in computation and memory, especially for large graphs. Moreover, existing multi-modal recommendation methods usually leverage randomly sampled negative examples in Bayesian Personalized Ranking (BPR) loss to guide the learning of user/item representations, which increases the computational cost on large graphs and may also bring noisy supervision signals into the training process. To tackle the above issues, we propose a novel self-supervised multi-modal recommendation model, dubbed BM3, which requires neither augmentations from auxiliary graphs nor negative samples. Specifically, BM3 first bootstraps latent contrastive views from the representations of users and items with a simple dropout augmentation. It then jointly optimizes three multi-modal objectives to learn the representations of users and items by reconstructing the user-item interaction graph and aligning modality features under both inter- and intra-modality perspectives. BM3 alleviates both the need for contrasting with negative examples and the complex graph augmentation from an additional target network for contrastive view generation. We show BM3 outperforms prior recommendation models on three datasets with number of nodes ranging from 20K to 200K, while achieving a 2-9X reduction in training time. Our code is available at https://github.com/enoche/BM3.
Automatic Prompt Optimization with "Gradient Descent" and Beam Search
Large Language Models (LLMs) have shown impressive performance as general purpose agents, but their abilities remain highly dependent on prompts which are hand written with onerous trial-and-error effort. We propose a simple and nonparametric solution to this problem, Automatic Prompt Optimization (APO), which is inspired by numerical gradient descent to automatically improve prompts, assuming access to training data and an LLM API. The algorithm uses minibatches of data to form natural language ``gradients'' that criticize the current prompt. The gradients are then ``propagated'' into the prompt by editing the prompt in the opposite semantic direction of the gradient. These gradient descent steps are guided by a beam search and bandit selection procedure which significantly improves algorithmic efficiency. Preliminary results across three benchmark NLP tasks and the novel problem of LLM jailbreak detection suggest that Automatic Prompt Optimization can outperform prior prompt editing techniques and improve an initial prompt's performance by up to 31\%, by using data to rewrite vague task descriptions into more precise annotation instructions.
Controllable Human-Object Interaction Synthesis
Synthesizing semantic-aware, long-horizon, human-object interaction is critical to simulate realistic human behaviors. In this work, we address the challenging problem of generating synchronized object motion and human motion guided by language descriptions in 3D scenes. We propose Controllable Human-Object Interaction Synthesis (CHOIS), an approach that generates object motion and human motion simultaneously using a conditional diffusion model given a language description, initial object and human states, and sparse object waypoints. While language descriptions inform style and intent, waypoints ground the motion in the scene and can be effectively extracted using high-level planning methods. Naively applying a diffusion model fails to predict object motion aligned with the input waypoints and cannot ensure the realism of interactions that require precise hand-object contact and appropriate contact grounded by the floor. To overcome these problems, we introduce an object geometry loss as additional supervision to improve the matching between generated object motion and input object waypoints. In addition, we design guidance terms to enforce contact constraints during the sampling process of the trained diffusion model.
Increasing Coverage and Precision of Textual Information in Multilingual Knowledge Graphs
Recent work in Natural Language Processing and Computer Vision has been using textual information -- e.g., entity names and descriptions -- available in knowledge graphs to ground neural models to high-quality structured data. However, when it comes to non-English languages, the quantity and quality of textual information are comparatively scarce. To address this issue, we introduce the novel task of automatic Knowledge Graph Enhancement (KGE) and perform a thorough investigation on bridging the gap in both the quantity and quality of textual information between English and non-English languages. More specifically, we: i) bring to light the problem of increasing multilingual coverage and precision of entity names and descriptions in Wikidata; ii) demonstrate that state-of-the-art methods, namely, Machine Translation (MT), Web Search (WS), and Large Language Models (LLMs), struggle with this task; iii) present M-NTA, a novel unsupervised approach that combines MT, WS, and LLMs to generate high-quality textual information; and, iv) study the impact of increasing multilingual coverage and precision of non-English textual information in Entity Linking, Knowledge Graph Completion, and Question Answering. As part of our effort towards better multilingual knowledge graphs, we also introduce WikiKGE-10, the first human-curated benchmark to evaluate KGE approaches in 10 languages across 7 language families.
Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction
Non-Fungible Tokens (NFTs) represent deeds of ownership, based on blockchain technologies and smart contracts, of unique crypto assets on digital art forms (e.g., artworks or collectibles). In the spotlight after skyrocketing in 2021, NFTs have attracted the attention of crypto enthusiasts and investors intent on placing promising investments in this profitable market. However, the NFT financial performance prediction has not been widely explored to date. In this work, we address the above problem based on the hypothesis that NFT images and their textual descriptions are essential proxies to predict the NFT selling prices. To this purpose, we propose MERLIN, a novel multimodal deep learning framework designed to train Transformer-based language and visual models, along with graph neural network models, on collections of NFTs' images and texts. A key aspect in MERLIN is its independence on financial features, as it exploits only the primary data a user interested in NFT trading would like to deal with, i.e., NFT images and textual descriptions. By learning dense representations of such data, a price-category classification task is performed by MERLIN models, which can also be tuned according to user preferences in the inference phase to mimic different risk-return investment profiles. Experimental evaluation on a publicly available dataset has shown that MERLIN models achieve significant performances according to several financial assessment criteria, fostering profitable investments, and also beating baseline machine-learning classifiers based on financial features.
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Program synthesis strives to generate a computer program as a solution to a given problem specification, expressed with input-output examples or natural language descriptions. The prevalence of large language models advances the state-of-the-art for program synthesis, though limited training resources and data impede open access to such models. To democratize this, we train and release a family of large language models up to 16.1B parameters, called CODEGEN, on natural language and programming language data, and open source the training library JAXFORMER. We show the utility of the trained model by demonstrating that it is competitive with the previous state-of-the-art on zero-shot Python code generation on HumanEval. We further investigate the multi-step paradigm for program synthesis, where a single program is factorized into multiple prompts specifying subproblems. To this end, we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB), consisting of 115 diverse problem sets that are factorized into multi-turn prompts. Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-turn fashion significantly improves program synthesis over that provided as a single turn. We make the training library JAXFORMER and model checkpoints available as open source contribution: https://github.com/salesforce/CodeGen.
Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding
In this work, we address the problem of grounding abnormalities in medical images, where the goal is to localize clinical findings based on textual descriptions. While generalist Vision-Language Models (VLMs) excel in natural grounding tasks, they often struggle in the medical domain due to rare, compositional, and domain-specific terms that are poorly aligned with visual patterns. Specialized medical VLMs address this challenge via large-scale domain pretraining, but at the cost of substantial annotation and computational resources. To overcome these limitations, we propose Knowledge to Sight (K2Sight), a framework that introduces structured semantic supervision by decomposing clinical concepts into interpretable visual attributes, such as shape, density, and anatomical location. These attributes are distilled from domain ontologies and encoded into concise instruction-style prompts, which guide region-text alignment during training. Unlike conventional report-level supervision, our approach explicitly bridges domain knowledge and spatial structure, enabling data-efficient training of compact models. We train compact models with 0.23B and 2B parameters using only 1.5\% of the data required by state-of-the-art medical VLMs. Despite their small size and limited training data, these models achieve performance on par with or better than 7B+ medical VLMs, with up to 9.82\% improvement in mAP_{50}. Code and models: https://lijunrio.github.io/K2Sight/{SOTAPink{https://lijunrio.github.io/K2Sight/}}.
FigGen: Text to Scientific Figure Generation
The generative modeling landscape has experienced tremendous growth in recent years, particularly in generating natural images and art. Recent techniques have shown impressive potential in creating complex visual compositions while delivering impressive realism and quality. However, state-of-the-art methods have been focusing on the narrow domain of natural images, while other distributions remain unexplored. In this paper, we introduce the problem of text-to-figure generation, that is creating scientific figures of papers from text descriptions. We present FigGen, a diffusion-based approach for text-to-figure as well as the main challenges of the proposed task. Code and models are available at https://github.com/joanrod/figure-diffusion
Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.
DreamMat: High-quality PBR Material Generation with Geometry- and Light-aware Diffusion Models
2D diffusion model, which often contains unwanted baked-in shading effects and results in unrealistic rendering effects in the downstream applications. Generating Physically Based Rendering (PBR) materials instead of just RGB textures would be a promising solution. However, directly distilling the PBR material parameters from 2D diffusion models still suffers from incorrect material decomposition, such as baked-in shading effects in albedo. We introduce DreamMat, an innovative approach to resolve the aforementioned problem, to generate high-quality PBR materials from text descriptions. We find out that the main reason for the incorrect material distillation is that large-scale 2D diffusion models are only trained to generate final shading colors, resulting in insufficient constraints on material decomposition during distillation. To tackle this problem, we first finetune a new light-aware 2D diffusion model to condition on a given lighting environment and generate the shading results on this specific lighting condition. Then, by applying the same environment lights in the material distillation, DreamMat can generate high-quality PBR materials that are not only consistent with the given geometry but also free from any baked-in shading effects in albedo. Extensive experiments demonstrate that the materials produced through our methods exhibit greater visual appeal to users and achieve significantly superior rendering quality compared to baseline methods, which are preferable for downstream tasks such as game and film production.
Beyond Hallucinations: Enhancing LVLMs through Hallucination-Aware Direct Preference Optimization
Multimodal large language models have made significant advancements in recent years, yet they still suffer from a common issue known as the "hallucination problem" where the models generate textual descriptions that contain inaccurate or non-existent content from the image. To address this issue, this paper introduces a novel strategy: Hallucination-Aware Direct Preference Optimization (HA-DPO). Our approach treats the hallucination problem as a unique preference selection issue, where the model is trained to favor the non-hallucinating response when presented with two responses of the same image (one accurate and one hallucinating). This paper also presents an efficient process for constructing hallucination sample pairs to ensure high-quality, style-consistent pairs for stable HA-DPO training. We applied this strategy to two mainstream multimodal models, and the results showed a significant reduction in the hallucination problem and an enhancement in the models' generalization capabilities. With HA-DPO, the MiniGPT-4 model demonstrates significant advancements: POPE accuracy increases from 51.13% to 85.66% (34.5% absolute improvement), and the MME score escalates from 968.58 to 1365.76 (41% relative improvement). The code, models, and datasets will be made publicly available.
Animate124: Animating One Image to 4D Dynamic Scene
We introduce Animate124 (Animate-one-image-to-4D), the first work to animate a single in-the-wild image into 3D video through textual motion descriptions, an underexplored problem with significant applications. Our 4D generation leverages an advanced 4D grid dynamic Neural Radiance Field (NeRF) model, optimized in three distinct stages using multiple diffusion priors. Initially, a static model is optimized using the reference image, guided by 2D and 3D diffusion priors, which serves as the initialization for the dynamic NeRF. Subsequently, a video diffusion model is employed to learn the motion specific to the subject. However, the object in the 3D videos tends to drift away from the reference image over time. This drift is mainly due to the misalignment between the text prompt and the reference image in the video diffusion model. In the final stage, a personalized diffusion prior is therefore utilized to address the semantic drift. As the pioneering image-text-to-4D generation framework, our method demonstrates significant advancements over existing baselines, evidenced by comprehensive quantitative and qualitative assessments.
From Vision To Language through Graph of Events in Space and Time: An Explainable Self-supervised Approach
The task of describing video content in natural language is commonly referred to as video captioning. Unlike conventional video captions, which are typically brief and widely available, long-form paragraph descriptions in natural language are scarce. This limitation of current datasets is due to the expensive human manual annotation required and to the highly challenging task of explaining the language formation process from the perspective of the underlying story, as a complex system of interconnected events in space and time. Through a thorough analysis of recently published methods and available datasets, we identify a general lack of published resources dedicated to the problem of describing videos in complex language, beyond the level of descriptions in the form of enumerations of simple captions. Furthermore, while state-of-the-art methods produce impressive results on the task of generating shorter captions from videos by direct end-to-end learning between the videos and text, the problem of explaining the relationship between vision and language is still beyond our reach. In this work, we propose a shared representation between vision and language, based on graphs of events in space and time, which can be obtained in an explainable and analytical way, to integrate and connect multiple vision tasks to produce the final natural language description. Moreover, we also demonstrate how our automated and explainable video description generation process can function as a fully automatic teacher to effectively train direct, end-to-end neural student pathways, within a self-supervised neuro-analytical system. We validate that our explainable neuro-analytical approach generates coherent, rich and relevant textual descriptions on videos collected from multiple varied datasets, using both standard evaluation metrics, human annotations and consensus from ensembles of state-of-the-art VLMs.
CoAct: A Global-Local Hierarchy for Autonomous Agent Collaboration
Existing LLMs exhibit remarkable performance on various NLP tasks, but still struggle with complex real-world tasks, even equipped with advanced strategies like CoT and ReAct. In this work, we propose the CoAct framework, which transfers the hierarchical planning and collaboration patterns in human society to LLM systems. Specifically, our CoAct framework involves two agents: (1) A global planning agent, to comprehend the problem scope, formulate macro-level plans and provide detailed sub-task descriptions to local execution agents, which serves as the initial rendition of a global plan. (2) A local execution agent, to operate within the multi-tier task execution structure, focusing on detailed execution and implementation of specific tasks within the global plan. Experimental results on the WebArena benchmark show that CoAct can re-arrange the process trajectory when facing failures, and achieves superior performance over baseline methods on long-horizon web tasks. Code is available at https://github.com/xmhou2002/CoAct.
ClarifyCoder: Clarification-Aware Fine-Tuning for Programmatic Problem Solving
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, a significant gap remains between their current performance and that of expert software engineers. A key differentiator is that human engineers actively seek clarification when faced with ambiguous requirements, while LLMs typically generate code regardless of uncertainties in the problem description. We present ClarifyCoder, a novel framework with synthetic data generation and instruction-tuning that enables LLMs to identify ambiguities and request clarification before proceeding with code generation. While recent work has focused on LLM-based agents for iterative code generation, we argue that the fundamental ability to recognize and query ambiguous requirements should be intrinsic to the models themselves. Our approach consists of two main components: (1) a data synthesis technique that augments existing programming datasets with scenarios requiring clarification to generate clarification-aware training data, and (2) a fine-tuning strategy that teaches models to prioritize seeking clarification over immediate code generation when faced with incomplete or ambiguous requirements. We further provide an empirical analysis of integrating ClarifyCoder with standard fine-tuning for a joint optimization of both clarify-awareness and coding ability. Experimental results demonstrate that ClarifyCoder significantly improves the communication capabilities of Code LLMs through meaningful clarification dialogues while maintaining code generation capabilities.
Ten Hard Problems in Artificial Intelligence We Must Get Right
We explore the AI2050 "hard problems" that block the promise of AI and cause AI risks: (1) developing general capabilities of the systems; (2) assuring the performance of AI systems and their training processes; (3) aligning system goals with human goals; (4) enabling great applications of AI in real life; (5) addressing economic disruptions; (6) ensuring the participation of all; (7) at the same time ensuring socially responsible deployment; (8) addressing any geopolitical disruptions that AI causes; (9) promoting sound governance of the technology; and (10) managing the philosophical disruptions for humans living in the age of AI. For each problem, we outline the area, identify significant recent work, and suggest ways forward. [Note: this paper reviews literature through January 2023.]
Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective
Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at https://github.com/pppa2019/Mango.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
PanGu-Coder: Program Synthesis with Function-Level Language Modeling
We present PanGu-Coder, a pretrained decoder-only language model adopting the PanGu-Alpha architecture for text-to-code generation, i.e. the synthesis of programming language solutions given a natural language problem description. We train PanGu-Coder using a two-stage strategy: the first stage employs Causal Language Modelling (CLM) to pre-train on raw programming language data, while the second stage uses a combination of Causal Language Modelling and Masked Language Modelling (MLM) training objectives that focus on the downstream task of text-to-code generation and train on loosely curated pairs of natural language program definitions and code functions. Finally, we discuss PanGu-Coder-FT, which is fine-tuned on a combination of competitive programming problems and code with continuous integration tests. We evaluate PanGu-Coder with a focus on whether it generates functionally correct programs and demonstrate that it achieves equivalent or better performance than similarly sized models, such as CodeX, while attending a smaller context window and training on less data.
Evaluating Language Model Math Reasoning via Grounding in Educational Curricula
Our work presents a novel angle for evaluating language models' (LMs) mathematical abilities, by investigating whether they can discern skills and concepts enabled by math content. We contribute two datasets: one consisting of 385 fine-grained descriptions of K-12 math skills and concepts, or standards, from Achieve the Core (ATC), and another of 9.9K problems labeled with these standards (MathFish). Working with experienced teachers, we find that LMs struggle to tag and verify standards linked to problems, and instead predict labels that are close to ground truth, but differ in subtle ways. We also show that LMs often generate problems that do not fully align with standards described in prompts. Finally, we categorize problems in GSM8k using math standards, allowing us to better understand why some problems are more difficult to solve for models than others.
Arithmetic Reasoning with LLM: Prolog Generation & Permutation
Instructing large language models (LLMs) to solve elementary school math problems has shown great success using Chain of Thought (CoT). However, the CoT approach relies on an LLM to generate a sequence of arithmetic calculations which can be prone to cascaded calculation errors. We hypothesize that an LLM should focus on extracting predicates and generating symbolic formulas from the math problem description so that the underlying calculation can be done via an external code interpreter. We investigate using LLM to generate Prolog programs to solve mathematical questions. Experimental results show that our Prolog-based arithmetic problem-solving outperforms CoT generation in the GSM8K benchmark across three distinct LLMs. In addition, given the insensitive ordering of predicates and symbolic formulas in Prolog, we propose to permute the ground truth predicates for more robust LLM training via data augmentation.
Competition-Level Problems are Effective LLM Evaluators
Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered. Surprisingly, the peiceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification, unfortunately none of them is able to consistently mitigate the challenges. Through our work, we emphasis the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.
Thinking Aloud: Dynamic Context Generation Improves Zero-Shot Reasoning Performance of GPT-2
Thinking aloud is an effective meta-cognitive strategy human reasoners apply to solve difficult problems. We suggest to improve the reasoning ability of pre-trained neural language models in a similar way, namely by expanding a task's context with problem elaborations that are dynamically generated by the language model itself. Our main result is that dynamic problem elaboration significantly improves the zero-shot performance of GPT-2 in a deductive reasoning and natural language inference task: While the model uses a syntactic heuristic for predicting an answer, it is capable (to some degree) of generating reasoned additional context which facilitates the successful application of its heuristic. We explore different ways of generating elaborations, including fewshot learning, and find that their relative performance varies with the specific problem characteristics (such as problem difficulty). Moreover, the effectiveness of an elaboration can be explained in terms of the degree to which the elaboration semantically coheres with the corresponding problem. In particular, elaborations that are most faithful to the original problem description may boost accuracy by up to 24%.
PAL: Program-aided Language Models
Large language models (LLMs) have recently demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few examples at test time ("few-shot prompting"). Much of this success can be attributed to prompting methods such as "chain-of-thought'', which employ LLMs for both understanding the problem description by decomposing it into steps, as well as solving each step of the problem. While LLMs seem to be adept at this sort of step-by-step decomposition, LLMs often make logical and arithmetic mistakes in the solution part, even when the problem is decomposed correctly. In this paper, we present Program-Aided Language models (PAL): a novel approach that uses the LLM to read natural language problems and generate programs as the intermediate reasoning steps, but offloads the solution step to a runtime such as a Python interpreter. With PAL, decomposing the natural language problem into runnable steps remains the only learning task for the LLM, while solving is delegated to the interpreter. We demonstrate this synergy between a neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all these natural language reasoning tasks, generating code using an LLM and reasoning using a Python interpreter leads to more accurate results than much larger models. For example, PAL using Codex achieves state-of-the-art few-shot accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B which uses chain-of-thought by absolute 15% top-1. Our code and data are publicly available at http://reasonwithpal.com/ .
A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT and Automated Program Repair
Large Language Models (LLMs) have been gaining increasing attention and demonstrated promising performance across a variety of Software Engineering (SE) tasks, such as Automated Program Repair (APR), code summarization, and code completion. For example, ChatGPT, the latest black-box LLM, has been investigated by numerous recent research studies and has shown impressive performance in various tasks. However, there exists a potential risk of data leakage since these LLMs are usually close-sourced with unknown specific training details, e.g., pre-training datasets. In this paper, we seek to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark with different research objectives. We first introduce {\benchmark}, a new benchmark with buggy and the corresponding fixed programs from competitive programming problems starting from 2023, after the training cutoff point of ChatGPT. The results on {\benchmark} show that ChatGPT is able to fix 109 out of 151 buggy programs using the basic prompt within 35 independent rounds, outperforming state-of-the-art LLMs CodeT5 and PLBART by 27.5\% and 62.4\% prediction accuracy. We also investigate the impact of three types of prompts, i.e., problem description, error feedback, and bug localization, leading to additional 34 fixed bugs. Besides, we provide additional discussion from the interactive nature of ChatGPT to illustrate the capacity of a dialog-based repair workflow with 9 additional fixed bugs. Inspired by the findings, we further pinpoint various challenges and opportunities for advanced SE study equipped with such LLMs (e.g.,~ChatGPT) in the near future. More importantly, our work calls for more research on the reevaluation of the achievements obtained by existing black-box LLMs across various SE tasks, not limited to ChatGPT on APR.
Large Language Models Can Be Easily Distracted by Irrelevant Context
Large language models have achieved impressive performance on various natural language processing tasks. However, so far they have been evaluated primarily on benchmarks where all information in the input context is relevant for solving the task. In this work, we investigate the distractibility of large language models, i.e., how the model problem-solving accuracy can be influenced by irrelevant context. In particular, we introduce Grade-School Math with Irrelevant Context (GSM-IC), an arithmetic reasoning dataset with irrelevant information in the problem description. We use this benchmark to measure the distractibility of cutting-edge prompting techniques for large language models, and find that the model performance is dramatically decreased when irrelevant information is included. We also identify several approaches for mitigating this deficiency, such as decoding with self-consistency and adding to the prompt an instruction that tells the language model to ignore the irrelevant information.
A Causal Framework to Quantify the Robustness of Mathematical Reasoning with Language Models
We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when generating a solution. Building on the idea of behavioral testing, we propose a novel framework, which pins down the causal effect of various factors in the input, e.g., the surface form of the problem text, the operands, and math operators on the output solution. By grounding the behavioral analysis in a causal graph describing an intuitive reasoning process, we study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space. We apply our framework on a test bed of math word problems. Our analysis shows that robustness does not appear to continuously improve as a function of size, but the GPT-3 Davinci models (175B) achieve a dramatic improvement in both robustness and sensitivity compared to all other GPT variants.
Is this bug severe? A text-cum-graph based model for bug severity prediction
Repositories of large software systems have become commonplace. This massive expansion has resulted in the emergence of various problems in these software platforms including identification of (i) bug-prone packages, (ii) critical bugs, and (iii) severity of bugs. One of the important goals would be to mine these bugs and recommend them to the developers to resolve them. The first step to this is that one has to accurately detect the extent of severity of the bugs. In this paper, we take up this task of predicting the severity of bugs in the near future. Contextualized neural models built on the text description of a bug and the user comments about the bug help to achieve reasonably good performance. Further information on how the bugs are related to each other in terms of the ways they affect packages can be summarised in the form of a graph and used along with the text to get additional benefits.
Creative Problem Solving in Large Language and Vision Models -- What Would it Take?
We advocate for a strong integration of Computational Creativity (CC) with research in large language and vision models (LLVMs) to address a key limitation of these models, i.e., creative problem solving. We present preliminary experiments showing how CC principles can be applied to address this limitation. Our goal is to foster discussions on creative problem solving in LLVMs and CC at prestigious ML venues. Our code is available at: https://github.com/lnairGT/creative-problem-solving-LLMs
Impact of Corpora Quality on Neural Machine Translation
Large parallel corpora that are automatically obtained from the web, documents or elsewhere often exhibit many corrupted parts that are bound to negatively affect the quality of the systems and models that learn from these corpora. This paper describes frequent problems found in data and such data affects neural machine translation systems, as well as how to identify and deal with them. The solutions are summarised in a set of scripts that remove problematic sentences from input corpora.
Teaching LLMs at Charles University: Assignments and Activities
This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers.
A Search Engine for Discovery of Scientific Challenges and Directions
Keeping track of scientific challenges, advances and emerging directions is a fundamental part of research. However, researchers face a flood of papers that hinders discovery of important knowledge. In biomedicine, this directly impacts human lives. To address this problem, we present a novel task of extraction and search of scientific challenges and directions, to facilitate rapid knowledge discovery. We construct and release an expert-annotated corpus of texts sampled from full-length papers, labeled with novel semantic categories that generalize across many types of challenges and directions. We focus on a large corpus of interdisciplinary work relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI and economics. We apply a model trained on our data to identify challenges and directions across the corpus and build a dedicated search engine. In experiments with 19 researchers and clinicians using our system, we outperform a popular scientific search engine in assisting knowledge discovery. Finally, we show that models trained on our resource generalize to the wider biomedical domain and to AI papers, highlighting its broad utility. We make our data, model and search engine publicly available. https://challenges.apps.allenai.org/
Language Models Can Teach Themselves to Program Better
Recent Language Models (LMs) achieve breakthrough performance in code generation when trained on human-authored problems, even solving some competitive-programming problems. Self-play has proven useful in games such as Go, and thus it is natural to ask whether LMs can generate their own instructive programming problems to improve their performance. We show that it is possible for an LM to synthesize programming problems and solutions, which are filtered for correctness by a Python interpreter. The LM's performance is then seen to improve when it is fine-tuned on its own synthetic problems and verified solutions; thus the model 'improves itself' using the Python interpreter. Problems are specified formally as programming puzzles [Schuster et al., 2021], a code-based problem format where solutions can easily be verified for correctness by execution. In experiments on publicly-available LMs, test accuracy more than doubles. This work demonstrates the potential for code LMs, with an interpreter, to generate instructive problems and improve their own performance.
Prompt Design and Engineering: Introduction and Advanced Methods
Prompt design and engineering has become an important discipline in just the past few months. In this paper, we provide an introduction to the main concepts and design approaches. We also provide more advanced techniques all the way to those needed to design LLM-based agents. We finish by providing a list of existing tools for prompt engineering.
Challenges and Applications of Large Language Models
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify the remaining challenges and already fruitful application areas. In this paper, we aim to establish a systematic set of open problems and application successes so that ML researchers can comprehend the field's current state more quickly and become productive.
SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
We describe the SemEval task of extracting keyphrases and relations between them from scientific documents, which is crucial for understanding which publications describe which processes, tasks and materials. Although this was a new task, we had a total of 26 submissions across 3 evaluation scenarios. We expect the task and the findings reported in this paper to be relevant for researchers working on understanding scientific content, as well as the broader knowledge base population and information extraction communities.
Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
Stacking of Hyperparameter Tuned Models for Tagging Coding Problems
Coding problems are problems that require a solution in the form of a computer program. Coding problems are popular among students and professionals as it enhances their skills and career opportunities. An AI system that would help those who practice coding problems would be highly useful and there is a huge potential for such a system. In this work, we propose a model which uses stacking of hyperparameter tuned boosting models to achieve impressive metric scores of 77.8% accuracy and 0.815 PR-AUC on the dataset that was scraped from Codeforces and Leetcode. We open source the dataset and the models developed for this work.
Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4
This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work can provide a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.
Summarizing Patients Problems from Hospital Progress Notes Using Pre-trained Sequence-to-Sequence Models
Automatically summarizing patients' main problems from daily progress notes using natural language processing methods helps to battle against information and cognitive overload in hospital settings and potentially assists providers with computerized diagnostic decision support. Problem list summarization requires a model to understand, abstract, and generate clinical documentation. In this work, we propose a new NLP task that aims to generate a list of problems in a patient's daily care plan using input from the provider's progress notes during hospitalization. We investigate the performance of T5 and BART, two state-of-the-art seq2seq transformer architectures, in solving this problem. We provide a corpus built on top of progress notes from publicly available electronic health record progress notes in the Medical Information Mart for Intensive Care (MIMIC)-III. T5 and BART are trained on general domain text, and we experiment with a data augmentation method and a domain adaptation pre-training method to increase exposure to medical vocabulary and knowledge. Evaluation methods include ROUGE, BERTScore, cosine similarity on sentence embedding, and F-score on medical concepts. Results show that T5 with domain adaptive pre-training achieves significant performance gains compared to a rule-based system and general domain pre-trained language models, indicating a promising direction for tackling the problem summarization task.
ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles
We present the "Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles" (ABOUT ML) project as an initiative to operationalize ML transparency and work towards a standard ML documentation practice. We make the case for the project's relevance and effectiveness in consolidating disparate efforts across a variety of stakeholders, as well as bringing in the perspectives of currently missing voices that will be valuable in shaping future conversations. We describe the details of the initiative and the gaps we hope this project will help address.
ChatGPT Prompt Patterns for Improving Code Quality, Refactoring, Requirements Elicitation, and Software Design
This paper presents prompt design techniques for software engineering, in the form of patterns, to solve common problems when using large language models (LLMs), such as ChatGPT to automate common software engineering activities, such as ensuring code is decoupled from third-party libraries and simulating a web application API before it is implemented. This paper provides two contributions to research on using LLMs for software engineering. First, it provides a catalog of patterns for software engineering that classifies patterns according to the types of problems they solve. Second, it explores several prompt patterns that have been applied to improve requirements elicitation, rapid prototyping, code quality, refactoring, and system design.
VC Search: Bridging the Gap Between Well-Defined and Ill-Defined Problems in Mathematical Reasoning
Large language models (LLMs) have demonstrated impressive performance on reasoning tasks, including mathematical reasoning. However, the current evaluation mostly focuses on carefully constructed benchmarks and neglects the consideration of real-world reasoning problems that present missing or contradictory conditions, known as ill-defined problems. To further study this problem, we develop a largescale benchmark called Problems with Missing and Contradictory conditions ( PMC) containing over 5,000 validated ill-defined mathematical problems. Our preliminary experiments through PMC reveal two challenges about existing methods: (1) traditional methods exhibit a trade-off between solving accuracy and rejection capabilities, and (2) formal methods struggle with modeling complex problems. To address these challenges, We develop Variable-Constraint Search (VCSEARCH), a trainingfree framework that leverages formal language to detect ill-defined problems, where a variableconstraint pair search strategy is incorporated to improve the modeling capability of formal language. Extensive experiments demonstrate that VCSEARCH improves the accuracy of identifying unsolvable problems by at least 12% across different LLMs, thus achieving stronger robust mathematical reasoning ability.
ICLR 2021 Challenge for Computational Geometry & Topology: Design and Results
This paper presents the computational challenge on differential geometry and topology that happened within the ICLR 2021 workshop "Geometric and Topological Representation Learning". The competition asked participants to provide creative contributions to the fields of computational geometry and topology through the open-source repositories Geomstats and Giotto-TDA. The challenge attracted 16 teams in its two month duration. This paper describes the design of the challenge and summarizes its main findings.
Substance Beats Style: Why Beginning Students Fail to Code with LLMs
Although LLMs are increasing the productivity of professional programmers, existing work shows that beginners struggle to prompt LLMs to solve text-to-code tasks. Why is this the case? This paper explores two competing hypotheses about the cause of student-LLM miscommunication: (1) students simply lack the technical vocabulary needed to write good prompts, and (2) students do not understand the extent of information that LLMs need to solve code generation tasks. We study (1) with a causal intervention experiment on technical vocabulary and (2) by analyzing graphs that abstract how students edit prompts and the different failures that they encounter. We find that substance beats style: a poor grasp of technical vocabulary is merely correlated with prompt failure; that the information content of prompts predicts success; that students get stuck making trivial edits; and more. Our findings have implications for the use of LLMs in programming education, and for efforts to make computing more accessible with LLMs.
Query Understanding for Natural Language Enterprise Search
Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more "natural" language. The engine tries to understand the meaning of the queries and to map the query words to the symbols it supports like Persons, Organizations, Time Expressions etc.. It, then, retrieves the information that satisfies the user's need in different forms like an answer, a record or a list of records. We present an NLS system we implemented as part of the Search service of a major CRM platform. The system is currently in production serving thousands of customers. Our user studies showed that creating dynamic reports with NLS saved more than 50% of our user's time compared to achieving the same result with navigational search. We describe the architecture of the system, the particularities of the CRM domain as well as how they have influenced our design decisions. Among several submodules of the system we detail the role of a Deep Learning Named Entity Recognizer. The paper concludes with discussion over the lessons learned while developing this product.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges
Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies.
Introduction to Holographic Superconductors
These lectures give an introduction to the theory of holographic superconductors. These are superconductors that have a dual gravitational description using gauge/gravity duality. After introducing a suitable gravitational theory, we discuss its properties in various regimes: the probe limit, the effects of backreaction, the zero temperature limit, and the addition of magnetic fields. Using the gauge/gravity dictionary, these properties reproduce many of the standard features of superconductors. Some familiarity with gauge/gravity duality is assumed. A list of open problems is included at the end.
Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics
We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
PatentMatch: A Dataset for Matching Patent Claims & Prior Art
Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch.
Rethinking Explainability as a Dialogue: A Practitioner's Perspective
As practitioners increasingly deploy machine learning models in critical domains such as health care, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside these models. Explainability is one way to bridge the gap between human decision-makers and machine learning models. However, most of the existing work on explainability focuses on one-off, static explanations like feature importances or rule lists. These sorts of explanations may not be sufficient for many use cases that require dynamic, continuous discovery from stakeholders. In the literature, few works ask decision-makers about the utility of existing explanations and other desiderata they would like to see in an explanation going forward. In this work, we address this gap and carry out a study where we interview doctors, healthcare professionals, and policymakers about their needs and desires for explanations. Our study indicates that decision-makers would strongly prefer interactive explanations in the form of natural language dialogues. Domain experts wish to treat machine learning models as "another colleague", i.e., one who can be held accountable by asking why they made a particular decision through expressive and accessible natural language interactions. Considering these needs, we outline a set of five principles researchers should follow when designing interactive explanations as a starting place for future work. Further, we show why natural language dialogues satisfy these principles and are a desirable way to build interactive explanations. Next, we provide a design of a dialogue system for explainability and discuss the risks, trade-offs, and research opportunities of building these systems. Overall, we hope our work serves as a starting place for researchers and engineers to design interactive explainability systems.
Effects of Prompt Length on Domain-specific Tasks for Large Language Models
In recent years, Large Language Models have garnered significant attention for their strong performance in various natural language tasks, such as machine translation and question answering. These models demonstrate an impressive ability to generalize across diverse tasks. However, their effectiveness in tackling domain-specific tasks, such as financial sentiment analysis and monetary policy understanding, remains a topic of debate, as these tasks often require specialized knowledge and precise reasoning. To address such challenges, researchers design various prompts to unlock the models' abilities. By carefully crafting input prompts, researchers can guide these models to produce more accurate responses. Consequently, prompt engineering has become a key focus of study. Despite the advancements in both models and prompt engineering, the relationship between the two-specifically, how prompt design impacts models' ability to perform domain-specific tasks-remains underexplored. This paper aims to bridge this research gap.
Deep Reinforcement Learning: An Overview
We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.
Has It All Been Solved? Open NLP Research Questions Not Solved by Large Language Models
Recent progress in large language models (LLMs) has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that ``it's all been solved.'' Not surprisingly, this has, in turn, made many NLP researchers -- especially those at the beginning of their careers -- worry about what NLP research area they should focus on. Has it all been solved, or what remaining questions can we work on regardless of LLMs? To address this question, this paper compiles NLP research directions rich for exploration. We identify fourteen different research areas encompassing 45 research directions that require new research and are not directly solvable by LLMs. While we identify many research areas, many others exist; we do not cover areas currently addressed by LLMs, but where LLMs lag behind in performance or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm
Attribution-Scores in Data Management and Explainable Machine Learning
We describe recent research on the use of actual causality in the definition of responsibility scores as explanations for query answers in databases, and for outcomes from classification models in machine learning. In the case of databases, useful connections with database repairs are illustrated and exploited. Repairs are also used to give a quantitative measure of the consistency of a database. For classification models, the responsibility score is properly extended and illustrated. The efficient computation of Shap-score is also analyzed and discussed. The emphasis is placed on work done by the author and collaborators.
Challenges in Representation Learning: A report on three machine learning contests
The ICML 2013 Workshop on Challenges in Representation Learning focused on three challenges: the black box learning challenge, the facial expression recognition challenge, and the multimodal learning challenge. We describe the datasets created for these challenges and summarize the results of the competitions. We provide suggestions for organizers of future challenges and some comments on what kind of knowledge can be gained from machine learning competitions.
Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting
Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.
Auto-labelling of Bug Report using Natural Language Processing
The exercise of detecting similar bug reports in bug tracking systems is known as duplicate bug report detection. Having prior knowledge of a bug report's existence reduces efforts put into debugging problems and identifying the root cause. Rule and Query-based solutions recommend a long list of potential similar bug reports with no clear ranking. In addition, triage engineers are less motivated to spend time going through an extensive list. Consequently, this deters the use of duplicate bug report retrieval solutions. In this paper, we have proposed a solution using a combination of NLP techniques. Our approach considers unstructured and structured attributes of a bug report like summary, description and severity, impacted products, platforms, categories, etc. It uses a custom data transformer, a deep neural network, and a non-generalizing machine learning method to retrieve existing identical bug reports. We have performed numerous experiments with significant data sources containing thousands of bug reports and showcased that the proposed solution achieves a high retrieval accuracy of 70% for recall@5.
Customizing Language Model Responses with Contrastive In-Context Learning
Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting
Learning from Task Descriptions
Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this framework with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model's ability to solve each task. Moreover, the dataset's structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.
A Survey on Explainability in Machine Reading Comprehension
This paper presents a systematic review of benchmarks and approaches for explainability in Machine Reading Comprehension (MRC). We present how the representation and inference challenges evolved and the steps which were taken to tackle these challenges. We also present the evaluation methodologies to assess the performance of explainable systems. In addition, we identify persisting open research questions and highlight critical directions for future work.
The Code2Text Challenge: Text Generation in Source Code Libraries
We propose a new shared task for tactical data-to-text generation in the domain of source code libraries. Specifically, we focus on text generation of function descriptions from example software projects. Data is drawn from existing resources used for studying the related problem of semantic parser induction (Richardson and Kuhn, 2017b; Richardson and Kuhn, 2017a), and spans a wide variety of both natural languages and programming languages. In this paper, we describe these existing resources, which will serve as training and development data for the task, and discuss plans for building new independent test sets.
Transformation-based Feature Computation for Algorithm Portfolios
Instance-specific algorithm configuration and algorithm portfolios have been shown to offer significant improvements over single algorithm approaches in a variety of application domains. In the SAT and CSP domains algorithm portfolios have consistently dominated the main competitions in these fields for the past five years. For a portfolio approach to be effective there are two crucial conditions that must be met. First, there needs to be a collection of complementary solvers with which to make a portfolio. Second, there must be a collection of problem features that can accurately identify structural differences between instances. This paper focuses on the latter issue: feature representation, because, unlike SAT, not every problem has well-studied features. We employ the well-known SATzilla feature set, but compute alternative sets on different SAT encodings of CSPs. We show that regardless of what encoding is used to convert the instances, adequate structural information is maintained to differentiate between problem instances, and that this can be exploited to make an effective portfolio-based CSP solver.
For those who don't know (how) to ask: Building a dataset of technology questions for digital newcomers
While the rise of large language models (LLMs) has created rich new opportunities to learn about digital technology, many on the margins of this technology struggle to gain and maintain competency due to lexical or conceptual barriers that prevent them from asking appropriate questions. Although there have been many efforts to understand factuality of LLM-created content and ability of LLMs to answer questions, it is not well understood how unclear or nonstandard language queries affect the model outputs. We propose the creation of a dataset that captures questions of digital newcomers and outsiders, utilizing data we have compiled from a decade's worth of one-on-one tutoring. In this paper we lay out our planned efforts and some potential uses of this dataset.
