7 Spherical Leech Quantization for Visual Tokenization and Generation Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization (Λ_{24}-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks. 6 authors · Dec 16, 2025 2
- Lattice models of random advection and diffusion and their statistics We study in detail a one-dimensional lattice model of a continuum, conserved field (mass) that is transferred deterministically between neighbouring random sites. The model falls in a wider class of lattice models capturing the joint effect of random advection and diffusion and encompassing as specific cases, some models studied in the literature, like the Kang-Redner, Kipnis-Marchioro-Presutti, Takayasu-Taguchi, etc. The motivation for our setup comes from a straightforward interpretation as advection of particles in one-dimensional turbulence, but it is also related to a problem of synchronization of dynamical systems driven by common noise. For finite lattices, we study both the coalescence of an initially spread field (interpreted as roughening), and the statistical steady-state properties. We distinguish two main size-dependent regimes, depending on the strength of the diffusion term and on the lattice size. Using numerical simulations and mean-field approach, we study the statistics of the field. For weak diffusion, we unveil a characteristic hierarchical structure of the field. We also connect the model and the iterated function systems concept. 3 authors · Jun 1, 2023
- Out of equilibrium Phase Diagram of the Quantum Random Energy Model In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies. 5 authors · Sep 21, 2020
- QMCPy: A Python Software for Randomized Low-Discrepancy Sequences, Quasi-Monte Carlo, and Fast Kernel Methods Low-discrepancy (LD) sequences have been extensively used as efficient experimental designs across many scientific disciplines. QMCPy (https://qmcsoftware.github.io/QMCSoftware/) is an accessible Python library which provides a unified implementation of randomized LD sequences, automatic variable transformations, adaptive Quasi-Monte Carlo error estimation algorithms, and fast kernel methods. This article focuses on recent updates to QMCPy which broaden support for randomized LD sequences and add new tools to enable fast kernel methods using LD sequences. Specifically, we give a unified description of the supported LD lattices, digital nets, and Halton point sets, along with randomization options including random permutations / shifts, linear matrix scrambling (LMS), and nested uniform scrambling (NUS). We also support higher-order digital nets, higher-order scrambling with LMS or NUS, and Halton scrambling with LMS or NUS. For fast kernel methods, we provide shift-invariant (SI) and digitally-shift-invariant (DSI) kernels, including a new set of higher-order smoothness DSI kernels. When SI and DSI kernels are respectively paired with n LD lattice and digital net points, the resulting Gram matrices permit multiplication and inversion at only O(n log n) cost. These fast operations utilize QMCPy's implementation of the fast Fourier transform in bit-reversed order (FFTBR), inverse FFTBR (IFFTBR), and fast Walsh--Hadamard transform (FWHT). 1 authors · Feb 19, 2025