Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmniTalker: Real-Time Text-Driven Talking Head Generation with In-Context Audio-Visual Style Replication
Recent years have witnessed remarkable advances in talking head generation, owing to its potential to revolutionize the human-AI interaction from text interfaces into realistic video chats. However, research on text-driven talking heads remains underexplored, with existing methods predominantly adopting a cascaded pipeline that combines TTS systems with audio-driven talking head models. This conventional pipeline not only introduces system complexity and latency overhead but also fundamentally suffers from asynchronous audiovisual output and stylistic discrepancies between generated speech and visual expressions. To address these limitations, we introduce OmniTalker, an end-to-end unified framework that simultaneously generates synchronized speech and talking head videos from text and reference video in real-time zero-shot scenarios, while preserving both speech style and facial styles. The framework employs a dual-branch diffusion transformer architecture: the audio branch synthesizes mel-spectrograms from text, while the visual branch predicts fine-grained head poses and facial dynamics. To bridge modalities, we introduce a novel audio-visual fusion module that integrates cross-modal information to ensure temporal synchronization and stylistic coherence between audio and visual outputs. Furthermore, our in-context reference learning module effectively captures both speech and facial style characteristics from a single reference video without introducing an extra style extracting module. To the best of our knowledge, OmniTalker presents the first unified framework that jointly models speech style and facial style in a zero-shot setting, achieving real-time inference speed of 25 FPS. Extensive experiments demonstrate that our method surpasses existing approaches in generation quality, particularly excelling in style preservation and audio-video synchronization.
EGSTalker: Real-Time Audio-Driven Talking Head Generation with Efficient Gaussian Deformation
This paper presents EGSTalker, a real-time audio-driven talking head generation framework based on 3D Gaussian Splatting (3DGS). Designed to enhance both speed and visual fidelity, EGSTalker requires only 3-5 minutes of training video to synthesize high-quality facial animations. The framework comprises two key stages: static Gaussian initialization and audio-driven deformation. In the first stage, a multi-resolution hash triplane and a Kolmogorov-Arnold Network (KAN) are used to extract spatial features and construct a compact 3D Gaussian representation. In the second stage, we propose an Efficient Spatial-Audio Attention (ESAA) module to fuse audio and spatial cues, while KAN predicts the corresponding Gaussian deformations. Extensive experiments demonstrate that EGSTalker achieves rendering quality and lip-sync accuracy comparable to state-of-the-art methods, while significantly outperforming them in inference speed. These results highlight EGSTalker's potential for real-time multimedia applications.
Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
Teller: Real-Time Streaming Audio-Driven Portrait Animation with Autoregressive Motion Generation
In this work, we introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head. Beyond the challenge of lengthy animation times, a critical challenge in realistic talking head generation lies in preserving the natural movement of diverse body parts. To this end, we propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation. Specifically, Teller first decomposes facial and body detail animation into two components: Facial Motion Latent Generation (FMLG) based on an autoregressive transfromer, and movement authenticity refinement using a Efficient Temporal Module (ETM).Concretely, FMLG employs a Residual VQ model to map the facial motion latent from the implicit keypoint-based model into discrete motion tokens, which are then temporally sliced with audio embeddings. This enables the AR tranformer to learn real-time, stream-based mappings from audio to motion. Furthermore, Teller incorporate ETM to capture finer motion details. This module ensures the physical consistency of body parts and accessories, such as neck muscles and earrings, improving the realism of these movements. Teller is designed to be efficient, surpassing the inference speed of diffusion-based models (Hallo 20.93s vs. Teller 0.92s for one second video generation), and achieves a real-time streaming performance of up to 25 FPS. Extensive experiments demonstrate that our method outperforms recent audio-driven portrait animation models, especially in small movements, as validated by human evaluations with a significant margin in quality and realism.
Responsive Listening Head Generation: A Benchmark Dataset and Baseline
We present a new listening head generation benchmark, for synthesizing responsive feedbacks of a listener (e.g., nod, smile) during a face-to-face conversation. As the indispensable complement to talking heads generation, listening head generation has seldomly been studied in literature. Automatically synthesizing listening behavior that actively responds to a talking head, is critical to applications such as digital human, virtual agents and social robots. In this work, we propose a novel dataset "ViCo", highlighting the listening head generation during a face-to-face conversation. A total number of 92 identities (67 speakers and 76 listeners) are involved in ViCo, featuring 483 clips in a paired "speaking-listening" pattern, where listeners show three listening styles based on their attitudes: positive, neutral, negative. Different from traditional speech-to-gesture or talking-head generation, listening head generation takes as input both the audio and visual signals from the speaker, and gives non-verbal feedbacks (e.g., head motions, facial expressions) in a real-time manner. Our dataset supports a wide range of applications such as human-to-human interaction, video-to-video translation, cross-modal understanding and generation. To encourage further research, we also release a listening head generation baseline, conditioning on different listening attitudes. Code & ViCo dataset: https://project.mhzhou.com/vico.
ChatAnyone: Stylized Real-time Portrait Video Generation with Hierarchical Motion Diffusion Model
Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.
Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis
Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance.
VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time
We introduce VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip. Our premiere model, VASA-1, is capable of not only producing lip movements that are exquisitely synchronized with the audio, but also capturing a large spectrum of facial nuances and natural head motions that contribute to the perception of authenticity and liveliness. The core innovations include a holistic facial dynamics and head movement generation model that works in a face latent space, and the development of such an expressive and disentangled face latent space using videos. Through extensive experiments including evaluation on a set of new metrics, we show that our method significantly outperforms previous methods along various dimensions comprehensively. Our method not only delivers high video quality with realistic facial and head dynamics but also supports the online generation of 512x512 videos at up to 40 FPS with negligible starting latency. It paves the way for real-time engagements with lifelike avatars that emulate human conversational behaviors.
Realistic Speech-Driven Facial Animation with GANs
Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution of each component in our model using an ablation study and we provide insights into the latent representation of the model. The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well as their ability to generate natural blinks.
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation
To the best of our knowledge, we first present a live system that generates personalized photorealistic talking-head animation only driven by audio signals at over 30 fps. Our system contains three stages. The first stage is a deep neural network that extracts deep audio features along with a manifold projection to project the features to the target person's speech space. In the second stage, we learn facial dynamics and motions from the projected audio features. The predicted motions include head poses and upper body motions, where the former is generated by an autoregressive probabilistic model which models the head pose distribution of the target person. Upper body motions are deduced from head poses. In the final stage, we generate conditional feature maps from previous predictions and send them with a candidate image set to an image-to-image translation network to synthesize photorealistic renderings. Our method generalizes well to wild audio and successfully synthesizes high-fidelity personalized facial details, e.g., wrinkles, teeth. Our method also allows explicit control of head poses. Extensive qualitative and quantitative evaluations, along with user studies, demonstrate the superiority of our method over state-of-the-art techniques.
SVP: Style-Enhanced Vivid Portrait Talking Head Diffusion Model
Talking Head Generation (THG), typically driven by audio, is an important and challenging task with broad application prospects in various fields such as digital humans, film production, and virtual reality. While diffusion model-based THG methods present high quality and stable content generation, they often overlook the intrinsic style which encompasses personalized features such as speaking habits and facial expressions of a video. As consequence, the generated video content lacks diversity and vividness, thus being limited in real life scenarios. To address these issues, we propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG. Specifically, we first introduce the novel probabilistic style prior learning to model the intrinsic style as a Gaussian distribution using facial expressions and audio embedding. The distribution is learned through the 'bespoked' contrastive objective, effectively capturing the dynamic style information in each video. Then we finetune a pretrained Stable Diffusion (SD) model to inject the learned intrinsic style as a controlling signal via cross attention. Experiments show that our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly at https://github.com/Hanbo-Cheng/DAWN-pytorch.
MakeItTalk: Speaker-Aware Talking-Head Animation
We present a method that generates expressive talking heads from a single facial image with audio as the only input. In contrast to previous approaches that attempt to learn direct mappings from audio to raw pixels or points for creating talking faces, our method first disentangles the content and speaker information in the input audio signal. The audio content robustly controls the motion of lips and nearby facial regions, while the speaker information determines the specifics of facial expressions and the rest of the talking head dynamics. Another key component of our method is the prediction of facial landmarks reflecting speaker-aware dynamics. Based on this intermediate representation, our method is able to synthesize photorealistic videos of entire talking heads with full range of motion and also animate artistic paintings, sketches, 2D cartoon characters, Japanese mangas, stylized caricatures in a single unified framework. We present extensive quantitative and qualitative evaluation of our method, in addition to user studies, demonstrating generated talking heads of significantly higher quality compared to prior state-of-the-art.
PoseTalk: Text-and-Audio-based Pose Control and Motion Refinement for One-Shot Talking Head Generation
While previous audio-driven talking head generation (THG) methods generate head poses from driving audio, the generated poses or lips cannot match the audio well or are not editable. In this study, we propose PoseTalk, a THG system that can freely generate lip-synchronized talking head videos with free head poses conditioned on text prompts and audio. The core insight of our method is using head pose to connect visual, linguistic, and audio signals. First, we propose to generate poses from both audio and text prompts, where the audio offers short-term variations and rhythm correspondence of the head movements and the text prompts describe the long-term semantics of head motions. To achieve this goal, we devise a Pose Latent Diffusion (PLD) model to generate motion latent from text prompts and audio cues in a pose latent space. Second, we observe a loss-imbalance problem: the loss for the lip region contributes less than 4\% of the total reconstruction loss caused by both pose and lip, making optimization lean towards head movements rather than lip shapes. To address this issue, we propose a refinement-based learning strategy to synthesize natural talking videos using two cascaded networks, i.e., CoarseNet, and RefineNet. The CoarseNet estimates coarse motions to produce animated images in novel poses and the RefineNet focuses on learning finer lip motions by progressively estimating lip motions from low-to-high resolutions, yielding improved lip-synchronization performance. Experiments demonstrate our pose prediction strategy achieves better pose diversity and realness compared to text-only or audio-only, and our video generator model outperforms state-of-the-art methods in synthesizing talking videos with natural head motions. Project: https://junleen.github.io/projects/posetalk.
Synthetic Speaking Children -- Why We Need Them and How to Make Them
Contemporary Human Computer Interaction (HCI) research relies primarily on neural network models for machine vision and speech understanding of a system user. Such models require extensively annotated training datasets for optimal performance and when building interfaces for users from a vulnerable population such as young children, GDPR introduces significant complexities in data collection, management, and processing. Motivated by the training needs of an Edge AI smart toy platform this research explores the latest advances in generative neural technologies and provides a working proof of concept of a controllable data generation pipeline for speech driven facial training data at scale. In this context, we demonstrate how StyleGAN2 can be finetuned to create a gender balanced dataset of children's faces. This dataset includes a variety of controllable factors such as facial expressions, age variations, facial poses, and even speech-driven animations with realistic lip synchronization. By combining generative text to speech models for child voice synthesis and a 3D landmark based talking heads pipeline, we can generate highly realistic, entirely synthetic, talking child video clips. These video clips can provide valuable, and controllable, synthetic training data for neural network models, bridging the gap when real data is scarce or restricted due to privacy regulations.
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations
In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.
Faces that Speak: Jointly Synthesising Talking Face and Speech from Text
The goal of this work is to simultaneously generate natural talking faces and speech outputs from text. We achieve this by integrating Talking Face Generation (TFG) and Text-to-Speech (TTS) systems into a unified framework. We address the main challenges of each task: (1) generating a range of head poses representative of real-world scenarios, and (2) ensuring voice consistency despite variations in facial motion for the same identity. To tackle these issues, we introduce a motion sampler based on conditional flow matching, which is capable of high-quality motion code generation in an efficient way. Moreover, we introduce a novel conditioning method for the TTS system, which utilises motion-removed features from the TFG model to yield uniform speech outputs. Our extensive experiments demonstrate that our method effectively creates natural-looking talking faces and speech that accurately match the input text. To our knowledge, this is the first effort to build a multimodal synthesis system that can generalise to unseen identities.
ARIG: Autoregressive Interactive Head Generation for Real-time Conversations
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.
VividTalk: One-Shot Audio-Driven Talking Head Generation Based on 3D Hybrid Prior
Audio-driven talking head generation has drawn much attention in recent years, and many efforts have been made in lip-sync, expressive facial expressions, natural head pose generation, and high video quality. However, no model has yet led or tied on all these metrics due to the one-to-many mapping between audio and motion. In this paper, we propose VividTalk, a two-stage generic framework that supports generating high-visual quality talking head videos with all the above properties. Specifically, in the first stage, we map the audio to mesh by learning two motions, including non-rigid expression motion and rigid head motion. For expression motion, both blendshape and vertex are adopted as the intermediate representation to maximize the representation ability of the model. For natural head motion, a novel learnable head pose codebook with a two-phase training mechanism is proposed. In the second stage, we proposed a dual branch motion-vae and a generator to transform the meshes into dense motion and synthesize high-quality video frame-by-frame. Extensive experiments show that the proposed VividTalk can generate high-visual quality talking head videos with lip-sync and realistic enhanced by a large margin, and outperforms previous state-of-the-art works in objective and subjective comparisons.
Pheme: Efficient and Conversational Speech Generation
In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.
A Unified Compression Framework for Efficient Speech-Driven Talking-Face Generation
Virtual humans have gained considerable attention in numerous industries, e.g., entertainment and e-commerce. As a core technology, synthesizing photorealistic face frames from target speech and facial identity has been actively studied with generative adversarial networks. Despite remarkable results of modern talking-face generation models, they often entail high computational burdens, which limit their efficient deployment. This study aims to develop a lightweight model for speech-driven talking-face synthesis. We build a compact generator by removing the residual blocks and reducing the channel width from Wav2Lip, a popular talking-face generator. We also present a knowledge distillation scheme to stably yet effectively train the small-capacity generator without adversarial learning. We reduce the number of parameters and MACs by 28times while retaining the performance of the original model. Moreover, to alleviate a severe performance drop when converting the whole generator to INT8 precision, we adopt a selective quantization method that uses FP16 for the quantization-sensitive layers and INT8 for the other layers. Using this mixed precision, we achieve up to a 19times speedup on edge GPUs without noticeably compromising the generation quality.
SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk
EAI-Avatar: Emotion-Aware Interactive Talking Head Generation
Generative models have advanced rapidly, enabling impressive talking head generation that brings AI to life. However, most existing methods focus solely on one-way portrait animation. Even the few that support bidirectional conversational interactions lack precise emotion-adaptive capabilities, significantly limiting their practical applicability. In this paper, we propose EAI-Avatar, a novel emotion-aware talking head generation framework for dyadic interactions. Leveraging the dialogue generation capability of large language models (LLMs, e.g., GPT-4), our method produces temporally consistent virtual avatars with rich emotional variations that seamlessly transition between speaking and listening states. Specifically, we design a Transformer-based head mask generator that learns temporally consistent motion features in a latent mask space, capable of generating arbitrary-length, temporally consistent mask sequences to constrain head motions. Furthermore, we introduce an interactive talking tree structure to represent dialogue state transitions, where each tree node contains information such as child/parent/sibling nodes and the current character's emotional state. By performing reverse-level traversal, we extract rich historical emotional cues from the current node to guide expression synthesis. Extensive experiments demonstrate the superior performance and effectiveness of our method.
StyleTalk: One-shot Talking Head Generation with Controllable Speaking Styles
Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.
ScanTalk: 3D Talking Heads from Unregistered Scans
Speech-driven 3D talking heads generation has emerged as a significant area of interest among researchers, presenting numerous challenges. Existing methods are constrained by animating faces with fixed topologies, wherein point-wise correspondence is established, and the number and order of points remains consistent across all identities the model can animate. In this work, we present ScanTalk, a novel framework capable of animating 3D faces in arbitrary topologies including scanned data. Our approach relies on the DiffusionNet architecture to overcome the fixed topology constraint, offering promising avenues for more flexible and realistic 3D animations. By leveraging the power of DiffusionNet, ScanTalk not only adapts to diverse facial structures but also maintains fidelity when dealing with scanned data, thereby enhancing the authenticity and versatility of generated 3D talking heads. Through comprehensive comparisons with state-of-the-art methods, we validate the efficacy of our approach, demonstrating its capacity to generate realistic talking heads comparable to existing techniques. While our primary objective is to develop a generic method free from topological constraints, all state-of-the-art methodologies are bound by such limitations. Code for reproducing our results, and the pre-trained model will be made available.
Talking Head Generation with Probabilistic Audio-to-Visual Diffusion Priors
In this paper, we introduce a simple and novel framework for one-shot audio-driven talking head generation. Unlike prior works that require additional driving sources for controlled synthesis in a deterministic manner, we instead probabilistically sample all the holistic lip-irrelevant facial motions (i.e. pose, expression, blink, gaze, etc.) to semantically match the input audio while still maintaining both the photo-realism of audio-lip synchronization and the overall naturalness. This is achieved by our newly proposed audio-to-visual diffusion prior trained on top of the mapping between audio and disentangled non-lip facial representations. Thanks to the probabilistic nature of the diffusion prior, one big advantage of our framework is it can synthesize diverse facial motion sequences given the same audio clip, which is quite user-friendly for many real applications. Through comprehensive evaluations on public benchmarks, we conclude that (1) our diffusion prior outperforms auto-regressive prior significantly on almost all the concerned metrics; (2) our overall system is competitive with prior works in terms of audio-lip synchronization but can effectively sample rich and natural-looking lip-irrelevant facial motions while still semantically harmonized with the audio input.
One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target person's appearance and a driving video that dictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
SyncTalk++: High-Fidelity and Efficient Synchronized Talking Heads Synthesis Using Gaussian Splatting
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic results. To address the critical issue of synchronization, identified as the ''devil'' in creating realistic talking heads, we introduce SyncTalk++, which features a Dynamic Portrait Renderer with Gaussian Splatting to ensure consistent subject identity preservation and a Face-Sync Controller that aligns lip movements with speech while innovatively using a 3D facial blendshape model to reconstruct accurate facial expressions. To ensure natural head movements, we propose a Head-Sync Stabilizer, which optimizes head poses for greater stability. Additionally, SyncTalk++ enhances robustness to out-of-distribution (OOD) audio by incorporating an Expression Generator and a Torso Restorer, which generate speech-matched facial expressions and seamless torso regions. Our approach maintains consistency and continuity in visual details across frames and significantly improves rendering speed and quality, achieving up to 101 frames per second. Extensive experiments and user studies demonstrate that SyncTalk++ outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk++.
DiffPoseTalk: Speech-Driven Stylistic 3D Facial Animation and Head Pose Generation via Diffusion Models
The generation of stylistic 3D facial animations driven by speech poses a significant challenge as it requires learning a many-to-many mapping between speech, style, and the corresponding natural facial motion. However, existing methods either employ a deterministic model for speech-to-motion mapping or encode the style using a one-hot encoding scheme. Notably, the one-hot encoding approach fails to capture the complexity of the style and thus limits generalization ability. In this paper, we propose DiffPoseTalk, a generative framework based on the diffusion model combined with a style encoder that extracts style embeddings from short reference videos. During inference, we employ classifier-free guidance to guide the generation process based on the speech and style. We extend this to include the generation of head poses, thereby enhancing user perception. Additionally, we address the shortage of scanned 3D talking face data by training our model on reconstructed 3DMM parameters from a high-quality, in-the-wild audio-visual dataset. Our extensive experiments and user study demonstrate that our approach outperforms state-of-the-art methods. The code and dataset will be made publicly available.
Controllable Talking Face Generation by Implicit Facial Keypoints Editing
Audio-driven talking face generation has garnered significant interest within the domain of digital human research. Existing methods are encumbered by intricate model architectures that are intricately dependent on each other, complicating the process of re-editing image or video inputs. In this work, we present ControlTalk, a talking face generation method to control face expression deformation based on driven audio, which can construct the head pose and facial expression including lip motion for both single image or sequential video inputs in a unified manner. By utilizing a pre-trained video synthesis renderer and proposing the lightweight adaptation, ControlTalk achieves precise and naturalistic lip synchronization while enabling quantitative control over mouth opening shape. Our experiments show that our method is superior to state-of-the-art performance on widely used benchmarks, including HDTF and MEAD. The parameterized adaptation demonstrates remarkable generalization capabilities, effectively handling expression deformation across same-ID and cross-ID scenarios, and extending its utility to out-of-domain portraits, regardless of languages.
DAE-Talker: High Fidelity Speech-Driven Talking Face Generation with Diffusion Autoencoder
While recent research has made significant progress in speech-driven talking face generation, the quality of the generated video still lags behind that of real recordings. One reason for this is the use of handcrafted intermediate representations like facial landmarks and 3DMM coefficients, which are designed based on human knowledge and are insufficient to precisely describe facial movements. Additionally, these methods require an external pretrained model for extracting these representations, whose performance sets an upper bound on talking face generation. To address these limitations, we propose a novel method called DAE-Talker that leverages data-driven latent representations obtained from a diffusion autoencoder (DAE). DAE contains an image encoder that encodes an image into a latent vector and a DDIM image decoder that reconstructs the image from it. We train our DAE on talking face video frames and then extract their latent representations as the training target for a Conformer-based speech2latent model. This allows DAE-Talker to synthesize full video frames and produce natural head movements that align with the content of speech, rather than relying on a predetermined head pose from a template video. We also introduce pose modelling in speech2latent for pose controllability. Additionally, we propose a novel method for generating continuous video frames with the DDIM image decoder trained on individual frames, eliminating the need for modelling the joint distribution of consecutive frames directly. Our experiments show that DAE-Talker outperforms existing popular methods in lip-sync, video fidelity, and pose naturalness. We also conduct ablation studies to analyze the effectiveness of the proposed techniques and demonstrate the pose controllability of DAE-Talker.
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Recent advances in language models have achieved significant progress. GPT-4o, as a new milestone, has enabled real-time conversations with humans, demonstrating near-human natural fluency. Such human-computer interaction necessitates models with the capability to perform reasoning directly with the audio modality and generate output in streaming. However, this remains beyond the reach of current academic models, as they typically depend on extra TTS systems for speech synthesis, resulting in undesirable latency. This paper introduces the Mini-Omni, an audio-based end-to-end conversational model, capable of real-time speech interaction. To achieve this capability, we propose a text-instructed speech generation method, along with batch-parallel strategies during inference to further boost the performance. Our method also helps to retain the original model's language capabilities with minimal degradation, enabling other works to establish real-time interaction capabilities. We call this training method "Any Model Can Talk". We also introduce the VoiceAssistant-400K dataset to fine-tune models optimized for speech output. To our best knowledge, Mini-Omni is the first fully end-to-end, open-source model for real-time speech interaction, offering valuable potential for future research.
AVI-Talking: Learning Audio-Visual Instructions for Expressive 3D Talking Face Generation
While considerable progress has been made in achieving accurate lip synchronization for 3D speech-driven talking face generation, the task of incorporating expressive facial detail synthesis aligned with the speaker's speaking status remains challenging. Our goal is to directly leverage the inherent style information conveyed by human speech for generating an expressive talking face that aligns with the speaking status. In this paper, we propose AVI-Talking, an Audio-Visual Instruction system for expressive Talking face generation. This system harnesses the robust contextual reasoning and hallucination capability offered by Large Language Models (LLMs) to instruct the realistic synthesis of 3D talking faces. Instead of directly learning facial movements from human speech, our two-stage strategy involves the LLMs first comprehending audio information and generating instructions implying expressive facial details seamlessly corresponding to the speech. Subsequently, a diffusion-based generative network executes these instructions. This two-stage process, coupled with the incorporation of LLMs, enhances model interpretability and provides users with flexibility to comprehend instructions and specify desired operations or modifications. Extensive experiments showcase the effectiveness of our approach in producing vivid talking faces with expressive facial movements and consistent emotional status.
Adaptive Super Resolution For One-Shot Talking-Head Generation
The one-shot talking-head generation learns to synthesize a talking-head video with one source portrait image under the driving of same or different identity video. Usually these methods require plane-based pixel transformations via Jacobin matrices or facial image warps for novel poses generation. The constraints of using a single image source and pixel displacements often compromise the clarity of the synthesized images. Some methods try to improve the quality of synthesized videos by introducing additional super-resolution modules, but this will undoubtedly increase computational consumption and destroy the original data distribution. In this work, we propose an adaptive high-quality talking-head video generation method, which synthesizes high-resolution video without additional pre-trained modules. Specifically, inspired by existing super-resolution methods, we down-sample the one-shot source image, and then adaptively reconstruct high-frequency details via an encoder-decoder module, resulting in enhanced video clarity. Our method consistently improves the quality of generated videos through a straightforward yet effective strategy, substantiated by quantitative and qualitative evaluations. The code and demo video are available on: https://github.com/Songluchuan/AdaSR-TalkingHead/.
EmoVOCA: Speech-Driven Emotional 3D Talking Heads
The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available.
Implicit Identity Representation Conditioned Memory Compensation Network for Talking Head video Generation
Talking head video generation aims to animate a human face in a still image with dynamic poses and expressions using motion information derived from a target-driving video, while maintaining the person's identity in the source image. However, dramatic and complex motions in the driving video cause ambiguous generation, because the still source image cannot provide sufficient appearance information for occluded regions or delicate expression variations, which produces severe artifacts and significantly degrades the generation quality. To tackle this problem, we propose to learn a global facial representation space, and design a novel implicit identity representation conditioned memory compensation network, coined as MCNet, for high-fidelity talking head generation.~Specifically, we devise a network module to learn a unified spatial facial meta-memory bank from all training samples, which can provide rich facial structure and appearance priors to compensate warped source facial features for the generation. Furthermore, we propose an effective query mechanism based on implicit identity representations learned from the discrete keypoints of the source image. It can greatly facilitate the retrieval of more correlated information from the memory bank for the compensation. Extensive experiments demonstrate that MCNet can learn representative and complementary facial memory, and can clearly outperform previous state-of-the-art talking head generation methods on VoxCeleb1 and CelebV datasets. Please check our https://github.com/harlanhong/ICCV2023-MCNET{Project}.
Talking Face Generation with Multilingual TTS
In this work, we propose a joint system combining a talking face generation system with a text-to-speech system that can generate multilingual talking face videos from only the text input. Our system can synthesize natural multilingual speeches while maintaining the vocal identity of the speaker, as well as lip movements synchronized to the synthesized speech. We demonstrate the generalization capabilities of our system by selecting four languages (Korean, English, Japanese, and Chinese) each from a different language family. We also compare the outputs of our talking face generation model to outputs of a prior work that claims multilingual support. For our demo, we add a translation API to the preprocessing stage and present it in the form of a neural dubber so that users can utilize the multilingual property of our system more easily.
TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
Face-StyleSpeech: Improved Face-to-Voice latent mapping for Natural Zero-shot Speech Synthesis from a Face Image
Generating a voice from a face image is crucial for developing virtual humans capable of interacting using their unique voices, without relying on pre-recorded human speech. In this paper, we propose Face-StyleSpeech, a zero-shot Text-To-Speech (TTS) synthesis model that generates natural speech conditioned on a face image rather than reference speech. We hypothesize that learning both speaker identity and prosody from a face image poses a significant challenge. To address the issue, our TTS model incorporates both a face encoder and a prosody encoder. The prosody encoder is specifically designed to model prosodic features that are not captured only with a face image, allowing the face encoder to focus solely on capturing the speaker identity from the face image. Experimental results demonstrate that Face-StyleSpeech effectively generates more natural speech from a face image than baselines, even for the face images the model has not trained. Samples are at our demo page https://face-stylespeech.github.io.
PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation
Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
Hi-Reco: High-Fidelity Real-Time Conversational Digital Humans
High-fidelity digital humans are increasingly used in interactive applications, yet achieving both visual realism and real-time responsiveness remains a major challenge. We present a high-fidelity, real-time conversational digital human system that seamlessly combines a visually realistic 3D avatar, persona-driven expressive speech synthesis, and knowledge-grounded dialogue generation. To support natural and timely interaction, we introduce an asynchronous execution pipeline that coordinates multi-modal components with minimal latency. The system supports advanced features such as wake word detection, emotionally expressive prosody, and highly accurate, context-aware response generation. It leverages novel retrieval-augmented methods, including history augmentation to maintain conversational flow and intent-based routing for efficient knowledge access. Together, these components form an integrated system that enables responsive and believable digital humans, suitable for immersive applications in communication, education, and entertainment.
WavChat: A Survey of Spoken Dialogue Models
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain. Compared to traditional three-tier cascaded spoken dialogue models that comprise speech recognition (ASR), large language models (LLMs), and text-to-speech (TTS), modern spoken dialogue models exhibit greater intelligence. These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech. Moreover, they generate high-quality, multi-turn speech responses with low latency, enabling real-time interaction through simultaneous listening and speaking capability. Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems and the underlying technologies. To address this, we have first compiled existing spoken dialogue systems in the chronological order and categorized them into the cascaded and end-to-end paradigms. We then provide an in-depth overview of the core technologies in spoken dialogue models, covering aspects such as speech representation, training paradigm, streaming, duplex, and interaction capabilities. Each section discusses the limitations of these technologies and outlines considerations for future research. Additionally, we present a thorough review of relevant datasets, evaluation metrics, and benchmarks from the perspectives of training and evaluating spoken dialogue systems. We hope this survey will contribute to advancing both academic research and industrial applications in the field of spoken dialogue systems. The related material is available at https://github.com/jishengpeng/WavChat.
ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles using sample motion sequences, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
Several recent works have shown how highly realistic human head images can be obtained by training convolutional neural networks to generate them. In order to create a personalized talking head model, these works require training on a large dataset of images of a single person. However, in many practical scenarios, such personalized talking head models need to be learned from a few image views of a person, potentially even a single image. Here, we present a system with such few-shot capability. It performs lengthy meta-learning on a large dataset of videos, and after that is able to frame few- and one-shot learning of neural talking head models of previously unseen people as adversarial training problems with high capacity generators and discriminators. Crucially, the system is able to initialize the parameters of both the generator and the discriminator in a person-specific way, so that training can be based on just a few images and done quickly, despite the need to tune tens of millions of parameters. We show that such an approach is able to learn highly realistic and personalized talking head models of new people and even portrait paintings.
UniFLG: Unified Facial Landmark Generator from Text or Speech
Talking face generation has been extensively investigated owing to its wide applicability. The two primary frameworks used for talking face generation comprise a text-driven framework, which generates synchronized speech and talking faces from text, and a speech-driven framework, which generates talking faces from speech. To integrate these frameworks, this paper proposes a unified facial landmark generator (UniFLG). The proposed system exploits end-to-end text-to-speech not only for synthesizing speech but also for extracting a series of latent representations that are common to text and speech, and feeds it to a landmark decoder to generate facial landmarks. We demonstrate that our system achieves higher naturalness in both speech synthesis and facial landmark generation compared to the state-of-the-art text-driven method. We further demonstrate that our system can generate facial landmarks from speech of speakers without facial video data or even speech data.
Diffused Heads: Diffusion Models Beat GANs on Talking-Face Generation
Talking face generation has historically struggled to produce head movements and natural facial expressions without guidance from additional reference videos. Recent developments in diffusion-based generative models allow for more realistic and stable data synthesis and their performance on image and video generation has surpassed that of other generative models. In this work, we present an autoregressive diffusion model that requires only one identity image and audio sequence to generate a video of a realistic talking human head. Our solution is capable of hallucinating head movements, facial expressions, such as blinks, and preserving a given background. We evaluate our model on two different datasets, achieving state-of-the-art results on both of them.
Depth-Aware Generative Adversarial Network for Talking Head Video Generation
Talking head video generation aims to produce a synthetic human face video that contains the identity and pose information respectively from a given source image and a driving video.Existing works for this task heavily rely on 2D representations (e.g. appearance and motion) learned from the input images. However, dense 3D facial geometry (e.g. pixel-wise depth) is extremely important for this task as it is particularly beneficial for us to essentially generate accurate 3D face structures and distinguish noisy information from the possibly cluttered background. Nevertheless, dense 3D geometry annotations are prohibitively costly for videos and are typically not available for this video generation task. In this paper, we first introduce a self-supervised geometry learning method to automatically recover the dense 3D geometry (i.e.depth) from the face videos without the requirement of any expensive 3D annotation data. Based on the learned dense depth maps, we further propose to leverage them to estimate sparse facial keypoints that capture the critical movement of the human head. In a more dense way, the depth is also utilized to learn 3D-aware cross-modal (i.e. appearance and depth) attention to guide the generation of motion fields for warping source image representations. All these contributions compose a novel depth-aware generative adversarial network (DaGAN) for talking head generation. Extensive experiments conducted demonstrate that our proposed method can generate highly realistic faces, and achieve significant results on the unseen human faces.
Towards Seamless Interaction: Causal Turn-Level Modeling of Interactive 3D Conversational Head Dynamics
Human conversation involves continuous exchanges of speech and nonverbal cues such as head nods, gaze shifts, and facial expressions that convey attention and emotion. Modeling these bidirectional dynamics in 3D is essential for building expressive avatars and interactive robots. However, existing frameworks often treat talking and listening as independent processes or rely on non-causal full-sequence modeling, hindering temporal coherence across turns. We present TIMAR (Turn-level Interleaved Masked AutoRegression), a causal framework for 3D conversational head generation that models dialogue as interleaved audio-visual contexts. It fuses multimodal information within each turn and applies turn-level causal attention to accumulate conversational history, while a lightweight diffusion head predicts continuous 3D head dynamics that captures both coordination and expressive variability. Experiments on the DualTalk benchmark show that TIMAR reduces Fréchet Distance and MSE by 15-30% on the test set, and achieves similar gains on out-of-distribution data. The source code will be released in the GitHub repository https://github.com/CoderChen01/towards-seamleass-interaction.
Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a Short Video
Synthesizing realistic videos according to a given speech is still an open challenge. Previous works have been plagued by issues such as inaccurate lip shape generation and poor image quality. The key reason is that only motions and appearances on limited facial areas (e.g., lip area) are mainly driven by the input speech. Therefore, directly learning a mapping function from speech to the entire head image is prone to ambiguity, particularly when using a short video for training. We thus propose a decomposition-synthesis-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance to facilitate effective learning from limited training data, resulting in the generation of natural-looking videos. First, given a fixed head pose (i.e., canonical space), we present a speech-driven implicit model for lip image generation which concentrates on learning speech-sensitive motion and appearance. Next, to model the major speech-insensitive motion (i.e., head movement), we introduce a geometry-aware mutual explicit mapping (GAMEM) module that establishes geometric mappings between different head poses. This allows us to paste generated lip images at the canonical space onto head images with arbitrary poses and synthesize talking videos with natural head movements. In addition, a Blend-Net and a contrastive sync loss are introduced to enhance the overall synthesis performance. Quantitative and qualitative results on three benchmarks demonstrate that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization. Code: https://github.com/CVMI-Lab/Speech2Lip.
LiveTalk: Real-Time Multimodal Interactive Video Diffusion via Improved On-Policy Distillation
Real-time video generation via diffusion is essential for building general-purpose multimodal interactive AI systems. However, the simultaneous denoising of all video frames with bidirectional attention via an iterative process in diffusion models prevents real-time interaction. While existing distillation methods can make the model autoregressive and reduce sampling steps to mitigate this, they focus primarily on text-to-video generation, leaving the human-AI interaction unnatural and less efficient. This paper targets real-time interactive video diffusion conditioned on a multimodal context, including text, image, and audio, to bridge the gap. Given the observation that the leading on-policy distillation approach Self Forcing encounters challenges (visual artifacts like flickering, black frames, and quality degradation) with multimodal conditioning, we investigate an improved distillation recipe with emphasis on the quality of condition inputs as well as the initialization and schedule for the on-policy optimization. On benchmarks for multimodal-conditioned (audio, image, and text) avatar video generation including HDTF, AVSpeech, and CelebV-HQ, our distilled model matches the visual quality of the full-step, bidirectional baselines of similar or larger size with 20x less inference cost and latency. Further, we integrate our model with audio language models and long-form video inference technique Anchor-Heavy Identity Sinks to build LiveTalk, a real-time multimodal interactive avatar system. System-level evaluation on our curated multi-turn interaction benchmark shows LiveTalk outperforms state-of-the-art models (Sora2, Veo3) in multi-turn video coherence and content quality, while reducing response latency from 1 to 2 minutes to real-time generation, enabling seamless human-AI multimodal interaction.
One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning
Audio-driven one-shot talking face generation methods are usually trained on video resources of various persons. However, their created videos often suffer unnatural mouth shapes and asynchronous lips because those methods struggle to learn a consistent speech style from different speakers. We observe that it would be much easier to learn a consistent speech style from a specific speaker, which leads to authentic mouth movements. Hence, we propose a novel one-shot talking face generation framework by exploring consistent correlations between audio and visual motions from a specific speaker and then transferring audio-driven motion fields to a reference image. Specifically, we develop an Audio-Visual Correlation Transformer (AVCT) that aims to infer talking motions represented by keypoint based dense motion fields from an input audio. In particular, considering audio may come from different identities in deployment, we incorporate phonemes to represent audio signals. In this manner, our AVCT can inherently generalize to audio spoken by other identities. Moreover, as face keypoints are used to represent speakers, AVCT is agnostic against appearances of the training speaker, and thus allows us to manipulate face images of different identities readily. Considering different face shapes lead to different motions, a motion field transfer module is exploited to reduce the audio-driven dense motion field gap between the training identity and the one-shot reference. Once we obtained the dense motion field of the reference image, we employ an image renderer to generate its talking face videos from an audio clip. Thanks to our learned consistent speaking style, our method generates authentic mouth shapes and vivid movements. Extensive experiments demonstrate that our synthesized videos outperform the state-of-the-art in terms of visual quality and lip-sync.
RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network
Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.
Ada-TTA: Towards Adaptive High-Quality Text-to-Talking Avatar Synthesis
We are interested in a novel task, namely low-resource text-to-talking avatar. Given only a few-minute-long talking person video with the audio track as the training data and arbitrary texts as the driving input, we aim to synthesize high-quality talking portrait videos corresponding to the input text. This task has broad application prospects in the digital human industry but has not been technically achieved yet due to two challenges: (1) It is challenging to mimic the timbre from out-of-domain audio for a traditional multi-speaker Text-to-Speech system. (2) It is hard to render high-fidelity and lip-synchronized talking avatars with limited training data. In this paper, we introduce Adaptive Text-to-Talking Avatar (Ada-TTA), which (1) designs a generic zero-shot multi-speaker TTS model that well disentangles the text content, timbre, and prosody; and (2) embraces recent advances in neural rendering to achieve realistic audio-driven talking face video generation. With these designs, our method overcomes the aforementioned two challenges and achieves to generate identity-preserving speech and realistic talking person video. Experiments demonstrate that our method could synthesize realistic, identity-preserving, and audio-visual synchronized talking avatar videos.
EmoTalk3D: High-Fidelity Free-View Synthesis of Emotional 3D Talking Head
We present a novel approach for synthesizing 3D talking heads with controllable emotion, featuring enhanced lip synchronization and rendering quality. Despite significant progress in the field, prior methods still suffer from multi-view consistency and a lack of emotional expressiveness. To address these issues, we collect EmoTalk3D dataset with calibrated multi-view videos, emotional annotations, and per-frame 3D geometry. By training on the EmoTalk3D dataset, we propose a `Speech-to-Geometry-to-Appearance' mapping framework that first predicts faithful 3D geometry sequence from the audio features, then the appearance of a 3D talking head represented by 4D Gaussians is synthesized from the predicted geometry. The appearance is further disentangled into canonical and dynamic Gaussians, learned from multi-view videos, and fused to render free-view talking head animation. Moreover, our model enables controllable emotion in the generated talking heads and can be rendered in wide-range views. Our method exhibits improved rendering quality and stability in lip motion generation while capturing dynamic facial details such as wrinkles and subtle expressions. Experiments demonstrate the effectiveness of our approach in generating high-fidelity and emotion-controllable 3D talking heads. The code and EmoTalk3D dataset are released at https://nju-3dv.github.io/projects/EmoTalk3D.
THQA: A Perceptual Quality Assessment Database for Talking Heads
In the realm of media technology, digital humans have gained prominence due to rapid advancements in computer technology. However, the manual modeling and control required for the majority of digital humans pose significant obstacles to efficient development. The speech-driven methods offer a novel avenue for manipulating the mouth shape and expressions of digital humans. Despite the proliferation of driving methods, the quality of many generated talking head (TH) videos remains a concern, impacting user visual experiences. To tackle this issue, this paper introduces the Talking Head Quality Assessment (THQA) database, featuring 800 TH videos generated through 8 diverse speech-driven methods. Extensive experiments affirm the THQA database's richness in character and speech features. Subsequent subjective quality assessment experiments analyze correlations between scoring results and speech-driven methods, ages, and genders. In addition, experimental results show that mainstream image and video quality assessment methods have limitations for the THQA database, underscoring the imperative for further research to enhance TH video quality assessment. The THQA database is publicly accessible at https://github.com/zyj-2000/THQA.
MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting
Achieving high-resolution, identity consistency, and accurate lip-speech synchronization in face visual dubbing presents significant challenges, particularly for real-time applications like live video streaming. We propose MuseTalk, which generates lip-sync targets in a latent space encoded by a Variational Autoencoder, enabling high-fidelity talking face video generation with efficient inference. Specifically, we project the occluded lower half of the face image and itself as an reference into a low-dimensional latent space and use a multi-scale U-Net to fuse audio and visual features at various levels. We further propose a novel sampling strategy during training, which selects reference images with head poses closely matching the target, allowing the model to focus on precise lip movement by filtering out redundant information. Additionally, we analyze the mechanism of lip-sync loss and reveal its relationship with input information volume. Extensive experiments show that MuseTalk consistently outperforms recent state-of-the-art methods in visual fidelity and achieves comparable lip-sync accuracy. As MuseTalk supports the online generation of face at 256x256 at more than 30 FPS with negligible starting latency, it paves the way for real-time applications.
Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
DreamTalk: When Expressive Talking Head Generation Meets Diffusion Probabilistic Models
Diffusion models have shown remarkable success in a variety of downstream generative tasks, yet remain under-explored in the important and challenging expressive talking head generation. In this work, we propose a DreamTalk framework to fulfill this gap, which employs meticulous design to unlock the potential of diffusion models in generating expressive talking heads. Specifically, DreamTalk consists of three crucial components: a denoising network, a style-aware lip expert, and a style predictor. The diffusion-based denoising network is able to consistently synthesize high-quality audio-driven face motions across diverse expressions. To enhance the expressiveness and accuracy of lip motions, we introduce a style-aware lip expert that can guide lip-sync while being mindful of the speaking styles. To eliminate the need for expression reference video or text, an extra diffusion-based style predictor is utilized to predict the target expression directly from the audio. By this means, DreamTalk can harness powerful diffusion models to generate expressive faces effectively and reduce the reliance on expensive style references. Experimental results demonstrate that DreamTalk is capable of generating photo-realistic talking faces with diverse speaking styles and achieving accurate lip motions, surpassing existing state-of-the-art counterparts.
MultiTalk: Enhancing 3D Talking Head Generation Across Languages with Multilingual Video Dataset
Recent studies in speech-driven 3D talking head generation have achieved convincing results in verbal articulations. However, generating accurate lip-syncs degrades when applied to input speech in other languages, possibly due to the lack of datasets covering a broad spectrum of facial movements across languages. In this work, we introduce a novel task to generate 3D talking heads from speeches of diverse languages. We collect a new multilingual 2D video dataset comprising over 420 hours of talking videos in 20 languages. With our proposed dataset, we present a multilingually enhanced model that incorporates language-specific style embeddings, enabling it to capture the unique mouth movements associated with each language. Additionally, we present a metric for assessing lip-sync accuracy in multilingual settings. We demonstrate that training a 3D talking head model with our proposed dataset significantly enhances its multilingual performance. Codes and datasets are available at https://multi-talk.github.io/.
FD2Talk: Towards Generalized Talking Head Generation with Facial Decoupled Diffusion Model
Talking head generation is a significant research topic that still faces numerous challenges. Previous works often adopt generative adversarial networks or regression models, which are plagued by generation quality and average facial shape problem. Although diffusion models show impressive generative ability, their exploration in talking head generation remains unsatisfactory. This is because they either solely use the diffusion model to obtain an intermediate representation and then employ another pre-trained renderer, or they overlook the feature decoupling of complex facial details, such as expressions, head poses and appearance textures. Therefore, we propose a Facial Decoupled Diffusion model for Talking head generation called FD2Talk, which fully leverages the advantages of diffusion models and decouples the complex facial details through multi-stages. Specifically, we separate facial details into motion and appearance. In the initial phase, we design the Diffusion Transformer to accurately predict motion coefficients from raw audio. These motions are highly decoupled from appearance, making them easier for the network to learn compared to high-dimensional RGB images. Subsequently, in the second phase, we encode the reference image to capture appearance textures. The predicted facial and head motions and encoded appearance then serve as the conditions for the Diffusion UNet, guiding the frame generation. Benefiting from decoupling facial details and fully leveraging diffusion models, extensive experiments substantiate that our approach excels in enhancing image quality and generating more accurate and diverse results compared to previous state-of-the-art methods.
SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at <https://novicemm.github.io/synchrorama>.
EMO2: End-Effector Guided Audio-Driven Avatar Video Generation
In this paper, we propose a novel audio-driven talking head method capable of simultaneously generating highly expressive facial expressions and hand gestures. Unlike existing methods that focus on generating full-body or half-body poses, we investigate the challenges of co-speech gesture generation and identify the weak correspondence between audio features and full-body gestures as a key limitation. To address this, we redefine the task as a two-stage process. In the first stage, we generate hand poses directly from audio input, leveraging the strong correlation between audio signals and hand movements. In the second stage, we employ a diffusion model to synthesize video frames, incorporating the hand poses generated in the first stage to produce realistic facial expressions and body movements. Our experimental results demonstrate that the proposed method outperforms state-of-the-art approaches, such as CyberHost and Vlogger, in terms of both visual quality and synchronization accuracy. This work provides a new perspective on audio-driven gesture generation and a robust framework for creating expressive and natural talking head animations.
Language Model Can Listen While Speaking
Dialogue serves as the most natural manner of human-computer interaction (HCI). Recent advancements in speech language models (SLM) have significantly enhanced speech-based conversational AI. However, these models are limited to turn-based conversation, lacking the ability to interact with humans in real-time spoken scenarios, for example, being interrupted when the generated content is not satisfactory. To address these limitations, we explore full duplex modeling (FDM) in interactive speech language models (iSLM), focusing on enhancing real-time interaction and, more explicitly, exploring the quintessential ability of interruption. We introduce a novel model design, namely listening-while-speaking language model (LSLM), an end-to-end system equipped with both listening and speaking channels. Our LSLM employs a token-based decoder-only TTS for speech generation and a streaming self-supervised learning (SSL) encoder for real-time audio input. LSLM fuses both channels for autoregressive generation and detects turn-taking in real time. Three fusion strategies -- early fusion, middle fusion, and late fusion -- are explored, with middle fusion achieving an optimal balance between speech generation and real-time interaction. Two experimental settings, command-based FDM and voice-based FDM, demonstrate LSLM's robustness to noise and sensitivity to diverse instructions. Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems. This study aims to advance the development of interactive speech dialogue systems, enhancing their applicability in real-world contexts.
MIDAS: Multimodal Interactive Digital-human Synthesis via Real-time Autoregressive Video Generation
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with high latency, heavy computational cost, and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64times reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.
Speak While You Think: Streaming Speech Synthesis During Text Generation
Large Language Models (LLMs) demonstrate impressive capabilities, yet interaction with these models is mostly facilitated through text. Using Text-To-Speech to synthesize LLM outputs typically results in notable latency, which is impractical for fluent voice conversations. We propose LLM2Speech, an architecture to synthesize speech while text is being generated by an LLM which yields significant latency reduction. LLM2Speech mimics the predictions of a non-streaming teacher model while limiting the exposure to future context in order to enable streaming. It exploits the hidden embeddings of the LLM, a by-product of the text generation that contains informative semantic context. Experimental results show that LLM2Speech maintains the teacher's quality while reducing the latency to enable natural conversations.
Lightning Fast Caching-based Parallel Denoising Prediction for Accelerating Talking Head Generation
Diffusion-based talking head models generate high-quality, photorealistic videos but suffer from slow inference, limiting practical applications. Existing acceleration methods for general diffusion models fail to exploit the temporal and spatial redundancies unique to talking head generation. In this paper, we propose a task-specific framework addressing these inefficiencies through two key innovations. First, we introduce Lightning-fast Caching-based Parallel denoising prediction (LightningCP), caching static features to bypass most model layers in inference time. We also enable parallel prediction using cached features and estimated noisy latents as inputs, efficiently bypassing sequential sampling. Second, we propose Decoupled Foreground Attention (DFA) to further accelerate attention computations, exploiting the spatial decoupling in talking head videos to restrict attention to dynamic foreground regions. Additionally, we remove reference features in certain layers to bring extra speedup. Extensive experiments demonstrate that our framework significantly improves inference speed while preserving video quality.
Learned Spatial Representations for Few-shot Talking-Head Synthesis
We propose a novel approach for few-shot talking-head synthesis. While recent works in neural talking heads have produced promising results, they can still produce images that do not preserve the identity of the subject in source images. We posit this is a result of the entangled representation of each subject in a single latent code that models 3D shape information, identity cues, colors, lighting and even background details. In contrast, we propose to factorize the representation of a subject into its spatial and style components. Our method generates a target frame in two steps. First, it predicts a dense spatial layout for the target image. Second, an image generator utilizes the predicted layout for spatial denormalization and synthesizes the target frame. We experimentally show that this disentangled representation leads to a significant improvement over previous methods, both quantitatively and qualitatively.
Memories are One-to-Many Mapping Alleviators in Talking Face Generation
Talking face generation aims at generating photo-realistic video portraits of a target person driven by input audio. Due to its nature of one-to-many mapping from the input audio to the output video (e.g., one speech content may have multiple feasible visual appearances), learning a deterministic mapping like previous works brings ambiguity during training, and thus causes inferior visual results. Although this one-to-many mapping could be alleviated in part by a two-stage framework (i.e., an audio-to-expression model followed by a neural-rendering model), it is still insufficient since the prediction is produced without enough information (e.g., emotions, wrinkles, etc.). In this paper, we propose MemFace to complement the missing information with an implicit memory and an explicit memory that follow the sense of the two stages respectively. More specifically, the implicit memory is employed in the audio-to-expression model to capture high-level semantics in the audio-expression shared space, while the explicit memory is employed in the neural-rendering model to help synthesize pixel-level details. Our experimental results show that our proposed MemFace surpasses all the state-of-the-art results across multiple scenarios consistently and significantly.
GSmoothFace: Generalized Smooth Talking Face Generation via Fine Grained 3D Face Guidance
Although existing speech-driven talking face generation methods achieve significant progress, they are far from real-world application due to the avatar-specific training demand and unstable lip movements. To address the above issues, we propose the GSmoothFace, a novel two-stage generalized talking face generation model guided by a fine-grained 3d face model, which can synthesize smooth lip dynamics while preserving the speaker's identity. Our proposed GSmoothFace model mainly consists of the Audio to Expression Prediction (A2EP) module and the Target Adaptive Face Translation (TAFT) module. Specifically, we first develop the A2EP module to predict expression parameters synchronized with the driven speech. It uses a transformer to capture the long-term audio context and learns the parameters from the fine-grained 3D facial vertices, resulting in accurate and smooth lip-synchronization performance. Afterward, the well-designed TAFT module, empowered by Morphology Augmented Face Blending (MAFB), takes the predicted expression parameters and target video as inputs to modify the facial region of the target video without distorting the background content. The TAFT effectively exploits the identity appearance and background context in the target video, which makes it possible to generalize to different speakers without retraining. Both quantitative and qualitative experiments confirm the superiority of our method in terms of realism, lip synchronization, and visual quality. See the project page for code, data, and request pre-trained models: https://zhanghm1995.github.io/GSmoothFace.
MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes
Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos. Personalized TFG is a variant that emphasizes the perceptual identity similarity of the synthesized result (from the perspective of appearance and talking style). While previous works typically solve this problem by learning an individual neural radiance field (NeRF) for each identity to implicitly store its static and dynamic information, we find it inefficient and non-generalized due to the per-identity-per-training framework and the limited training data. To this end, we propose MimicTalk, the first attempt that exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG. To be specific, (1) we first come up with a person-agnostic 3D TFG model as the base model and propose to adapt it into a specific identity; (2) we propose a static-dynamic-hybrid adaptation pipeline to help the model learn the personalized static appearance and facial dynamic features; (3) To generate the facial motion of the personalized talking style, we propose an in-context stylized audio-to-motion model that mimics the implicit talking style provided in the reference video without information loss by an explicit style representation. The adaptation process to an unseen identity can be performed in 15 minutes, which is 47 times faster than previous person-dependent methods. Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness. Source code and video samples are available at https://mimictalk.github.io .
Efficient Emotional Adaptation for Audio-Driven Talking-Head Generation
Audio-driven talking-head synthesis is a popular research topic for virtual human-related applications. However, the inflexibility and inefficiency of existing methods, which necessitate expensive end-to-end training to transfer emotions from guidance videos to talking-head predictions, are significant limitations. In this work, we propose the Emotional Adaptation for Audio-driven Talking-head (EAT) method, which transforms emotion-agnostic talking-head models into emotion-controllable ones in a cost-effective and efficient manner through parameter-efficient adaptations. Our approach utilizes a pretrained emotion-agnostic talking-head transformer and introduces three lightweight adaptations (the Deep Emotional Prompts, Emotional Deformation Network, and Emotional Adaptation Module) from different perspectives to enable precise and realistic emotion controls. Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including LRW and MEAD. Additionally, our parameter-efficient adaptations exhibit remarkable generalization ability, even in scenarios where emotional training videos are scarce or nonexistent. Project website: https://yuangan.github.io/eat/
Style-Talker: Finetuning Audio Language Model and Style-Based Text-to-Speech Model for Fast Spoken Dialogue Generation
The rapid advancement of large language models (LLMs) has significantly propelled the development of text-based chatbots, demonstrating their capability to engage in coherent and contextually relevant dialogues. However, extending these advancements to enable end-to-end speech-to-speech conversation bots remains a formidable challenge, primarily due to the extensive dataset and computational resources required. The conventional approach of cascading automatic speech recognition (ASR), LLM, and text-to-speech (TTS) models in a pipeline, while effective, suffers from unnatural prosody because it lacks direct interactions between the input audio and its transcribed text and the output audio. These systems are also limited by their inherent latency from the ASR process for real-time applications. This paper introduces Style-Talker, an innovative framework that fine-tunes an audio LLM alongside a style-based TTS model for fast spoken dialog generation. Style-Talker takes user input audio and uses transcribed chat history and speech styles to generate both the speaking style and text for the response. Subsequently, the TTS model synthesizes the speech, which is then played back to the user. While the response speech is being played, the input speech undergoes ASR processing to extract the transcription and speaking style, serving as the context for the ensuing dialogue turn. This novel pipeline accelerates the traditional cascade ASR-LLM-TTS systems while integrating rich paralinguistic information from input speech. Our experimental results show that Style-Talker significantly outperforms the conventional cascade and speech-to-speech baselines in terms of both dialogue naturalness and coherence while being more than 50% faster.
ChatAnything: Facetime Chat with LLM-Enhanced Personas
In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.
GeneFace++: Generalized and Stable Real-Time Audio-Driven 3D Talking Face Generation
Generating talking person portraits with arbitrary speech audio is a crucial problem in the field of digital human and metaverse. A modern talking face generation method is expected to achieve the goals of generalized audio-lip synchronization, good video quality, and high system efficiency. Recently, neural radiance field (NeRF) has become a popular rendering technique in this field since it could achieve high-fidelity and 3D-consistent talking face generation with a few-minute-long training video. However, there still exist several challenges for NeRF-based methods: 1) as for the lip synchronization, it is hard to generate a long facial motion sequence of high temporal consistency and audio-lip accuracy; 2) as for the video quality, due to the limited data used to train the renderer, it is vulnerable to out-of-domain input condition and produce bad rendering results occasionally; 3) as for the system efficiency, the slow training and inference speed of the vanilla NeRF severely obstruct its usage in real-world applications. In this paper, we propose GeneFace++ to handle these challenges by 1) utilizing the pitch contour as an auxiliary feature and introducing a temporal loss in the facial motion prediction process; 2) proposing a landmark locally linear embedding method to regulate the outliers in the predicted motion sequence to avoid robustness issues; 3) designing a computationally efficient NeRF-based motion-to-video renderer to achieves fast training and real-time inference. With these settings, GeneFace++ becomes the first NeRF-based method that achieves stable and real-time talking face generation with generalized audio-lip synchronization. Extensive experiments show that our method outperforms state-of-the-art baselines in terms of subjective and objective evaluation. Video samples are available at https://genefaceplusplus.github.io .
EDTalk: Efficient Disentanglement for Emotional Talking Head Synthesis
Achieving disentangled control over multiple facial motions and accommodating diverse input modalities greatly enhances the application and entertainment of the talking head generation. This necessitates a deep exploration of the decoupling space for facial features, ensuring that they a) operate independently without mutual interference and b) can be preserved to share with different modal input, both aspects often neglected in existing methods. To address this gap, this paper proposes a novel Efficient Disentanglement framework for Talking head generation (EDTalk). Our framework enables individual manipulation of mouth shape, head pose, and emotional expression, conditioned on video or audio inputs. Specifically, we employ three lightweight modules to decompose the facial dynamics into three distinct latent spaces representing mouth, pose, and expression, respectively. Each space is characterized by a set of learnable bases whose linear combinations define specific motions. To ensure independence and accelerate training, we enforce orthogonality among bases and devise an efficient training strategy to allocate motion responsibilities to each space without relying on external knowledge. The learned bases are then stored in corresponding banks, enabling shared visual priors with audio input. Furthermore, considering the properties of each space, we propose an Audio-to-Motion module for audio-driven talking head synthesis. Experiments are conducted to demonstrate the effectiveness of EDTalk. We recommend watching the project website: https://tanshuai0219.github.io/EDTalk/
GeneFace: Generalized and High-Fidelity Audio-Driven 3D Talking Face Synthesis
Generating photo-realistic video portrait with arbitrary speech audio is a crucial problem in film-making and virtual reality. Recently, several works explore the usage of neural radiance field in this task to improve 3D realness and image fidelity. However, the generalizability of previous NeRF-based methods to out-of-domain audio is limited by the small scale of training data. In this work, we propose GeneFace, a generalized and high-fidelity NeRF-based talking face generation method, which can generate natural results corresponding to various out-of-domain audio. Specifically, we learn a variaitional motion generator on a large lip-reading corpus, and introduce a domain adaptative post-net to calibrate the result. Moreover, we learn a NeRF-based renderer conditioned on the predicted facial motion. A head-aware torso-NeRF is proposed to eliminate the head-torso separation problem. Extensive experiments show that our method achieves more generalized and high-fidelity talking face generation compared to previous methods.
Audio-driven Talking Face Generation with Stabilized Synchronization Loss
Talking face generation aims to create realistic videos with accurate lip synchronization and high visual quality, using given audio and reference video while preserving identity and visual characteristics. In this paper, we start by identifying several issues with existing synchronization learning methods. These involve unstable training, lip synchronization, and visual quality issues caused by lip-sync loss, SyncNet, and lip leaking from the identity reference. To address these issues, we first tackle the lip leaking problem by introducing a silent-lip generator, which changes the lips of the identity reference to alleviate leakage. We then introduce stabilized synchronization loss and AVSyncNet to overcome problems caused by lip-sync loss and SyncNet. Experiments show that our model outperforms state-of-the-art methods in both visual quality and lip synchronization. Comprehensive ablation studies further validate our individual contributions and their cohesive effects.
Emotional Conversation: Empowering Talking Faces with Cohesive Expression, Gaze and Pose Generation
Vivid talking face generation holds immense potential applications across diverse multimedia domains, such as film and game production. While existing methods accurately synchronize lip movements with input audio, they typically ignore crucial alignments between emotion and facial cues, which include expression, gaze, and head pose. These alignments are indispensable for synthesizing realistic videos. To address these issues, we propose a two-stage audio-driven talking face generation framework that employs 3D facial landmarks as intermediate variables. This framework achieves collaborative alignment of expression, gaze, and pose with emotions through self-supervised learning. Specifically, we decompose this task into two key steps, namely speech-to-landmarks synthesis and landmarks-to-face generation. The first step focuses on simultaneously synthesizing emotionally aligned facial cues, including normalized landmarks that represent expressions, gaze, and head pose. These cues are subsequently reassembled into relocated facial landmarks. In the second step, these relocated landmarks are mapped to latent key points using self-supervised learning and then input into a pretrained model to create high-quality face images. Extensive experiments on the MEAD dataset demonstrate that our model significantly advances the state-of-the-art performance in both visual quality and emotional alignment.
Identity-Preserving Talking Face Generation with Landmark and Appearance Priors
Generating talking face videos from audio attracts lots of research interest. A few person-specific methods can generate vivid videos but require the target speaker's videos for training or fine-tuning. Existing person-generic methods have difficulty in generating realistic and lip-synced videos while preserving identity information. To tackle this problem, we propose a two-stage framework consisting of audio-to-landmark generation and landmark-to-video rendering procedures. First, we devise a novel Transformer-based landmark generator to infer lip and jaw landmarks from the audio. Prior landmark characteristics of the speaker's face are employed to make the generated landmarks coincide with the facial outline of the speaker. Then, a video rendering model is built to translate the generated landmarks into face images. During this stage, prior appearance information is extracted from the lower-half occluded target face and static reference images, which helps generate realistic and identity-preserving visual content. For effectively exploring the prior information of static reference images, we align static reference images with the target face's pose and expression based on motion fields. Moreover, auditory features are reused to guarantee that the generated face images are well synchronized with the audio. Extensive experiments demonstrate that our method can produce more realistic, lip-synced, and identity-preserving videos than existing person-generic talking face generation methods.
Moshi: a speech-text foundation model for real-time dialogue
We introduce Moshi, a speech-text foundation model and full-duplex spoken dialogue framework. Current systems for spoken dialogue rely on pipelines of independent components, namely voice activity detection, speech recognition, textual dialogue and text-to-speech. Such frameworks cannot emulate the experience of real conversations. First, their complexity induces a latency of several seconds between interactions. Second, text being the intermediate modality for dialogue, non-linguistic information that modifies meaning -- such as emotion or non-speech sounds -- is lost in the interaction. Finally, they rely on a segmentation into speaker turns, which does not take into account overlapping speech, interruptions and interjections. Moshi solves these independent issues altogether by casting spoken dialogue as speech-to-speech generation. Starting from a text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec, while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of explicit speaker turns, and the modeling of arbitrary conversational dynamics. We moreover extend the hierarchical semantic-to-acoustic token generation of previous work to first predict time-aligned text tokens as a prefix to audio tokens. Not only this "Inner Monologue" method significantly improves the linguistic quality of generated speech, but we also illustrate how it can provide streaming speech recognition and text-to-speech. Our resulting model is the first real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice, and is available at https://github.com/kyutai-labs/moshi.
SLIDE: Integrating Speech Language Model with LLM for Spontaneous Spoken Dialogue Generation
Recently, ``textless" speech language models (SLMs) based on speech units have made huge progress in generating naturalistic speech, including non-verbal vocalizations. However, the generated speech samples often lack semantic coherence. In this paper, we propose SLM and LLM Integration for spontaneous spoken Dialogue gEneration (SLIDE). Specifically, we first utilize an LLM to generate the textual content of spoken dialogue. Next, we convert the textual dialogues into phoneme sequences and use a two-tower transformer-based duration predictor to predict the duration of each phoneme. Finally, an SLM conditioned on the spoken phoneme sequences is used to vocalize the textual dialogue. Experimental results on the Fisher dataset demonstrate that our system can generate naturalistic spoken dialogue while maintaining high semantic coherence.
One-Shot Pose-Driving Face Animation Platform
The objective of face animation is to generate dynamic and expressive talking head videos from a single reference face, utilizing driving conditions derived from either video or audio inputs. Current approaches often require fine-tuning for specific identities and frequently fail to produce expressive videos due to the limited effectiveness of Wav2Pose modules. To facilitate the generation of one-shot and more consecutive talking head videos, we refine an existing Image2Video model by integrating a Face Locator and Motion Frame mechanism. We subsequently optimize the model using extensive human face video datasets, significantly enhancing its ability to produce high-quality and expressive talking head videos. Additionally, we develop a demo platform using the Gradio framework, which streamlines the process, enabling users to quickly create customized talking head videos.
Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation
Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
F-Actor: Controllable Conversational Behaviour in Full-Duplex Models
Spoken conversational systems require more than accurate speech generation to have human-like conversations: to feel natural and engaging, they must produce conversational behaviour that adapts dynamically to the context. Current spoken conversational systems, however, rarely allow such customization, limiting their naturalness and usability. In this work, we present the first open, instruction-following full-duplex conversational speech model that can be trained efficiently under typical academic resource constraints. By keeping the audio encoder frozen and finetuning only the language model, our model requires just 2,000 hours of data, without relying on large-scale pretraining or multi-stage optimization. The model can follow explicit instructions to control speaker voice, conversation topic, conversational behaviour (e.g., backchanneling and interruptions), and dialogue initiation. We propose a single-stage training protocol and systematically analyze design choices. Both the model and training code will be released to enable reproducible research on controllable full-duplex speech systems.
Realistic Speech-to-Face Generation with Speech-Conditioned Latent Diffusion Model with Face Prior
Speech-to-face generation is an intriguing area of research that focuses on generating realistic facial images based on a speaker's audio speech. However, state-of-the-art methods employing GAN-based architectures lack stability and cannot generate realistic face images. To fill this gap, we propose a novel speech-to-face generation framework, which leverages a Speech-Conditioned Latent Diffusion Model, called SCLDM. To the best of our knowledge, this is the first work to harness the exceptional modeling capabilities of diffusion models for speech-to-face generation. Preserving the shared identity information between speech and face is crucial in generating realistic results. Therefore, we employ contrastive pre-training for both the speech encoder and the face encoder. This pre-training strategy facilitates effective alignment between the attributes of speech, such as age and gender, and the corresponding facial characteristics in the face images. Furthermore, we tackle the challenge posed by excessive diversity in the synthesis process caused by the diffusion model. To overcome this challenge, we introduce the concept of residuals by integrating a statistical face prior to the diffusion process. This addition helps to eliminate the shared component across the faces and enhances the subtle variations captured by the speech condition. Extensive quantitative, qualitative, and user study experiments demonstrate that our method can produce more realistic face images while preserving the identity of the speaker better than state-of-the-art methods. Highlighting the notable enhancements, our method demonstrates significant gains in all metrics on the AVSpeech dataset and Voxceleb dataset, particularly noteworthy are the improvements of 32.17 and 32.72 on the cosine distance metric for the two datasets, respectively.
Imitator: Personalized Speech-driven 3D Facial Animation
Speech-driven 3D facial animation has been widely explored, with applications in gaming, character animation, virtual reality, and telepresence systems. State-of-the-art methods deform the face topology of the target actor to sync the input audio without considering the identity-specific speaking style and facial idiosyncrasies of the target actor, thus, resulting in unrealistic and inaccurate lip movements. To address this, we present Imitator, a speech-driven facial expression synthesis method, which learns identity-specific details from a short input video and produces novel facial expressions matching the identity-specific speaking style and facial idiosyncrasies of the target actor. Specifically, we train a style-agnostic transformer on a large facial expression dataset which we use as a prior for audio-driven facial expressions. Based on this prior, we optimize for identity-specific speaking style based on a short reference video. To train the prior, we introduce a novel loss function based on detected bilabial consonants to ensure plausible lip closures and consequently improve the realism of the generated expressions. Through detailed experiments and a user study, we show that our approach produces temporally coherent facial expressions from input audio while preserving the speaking style of the target actors.
DiffTalker: Co-driven audio-image diffusion for talking faces via intermediate landmarks
Generating realistic talking faces is a complex and widely discussed task with numerous applications. In this paper, we present DiffTalker, a novel model designed to generate lifelike talking faces through audio and landmark co-driving. DiffTalker addresses the challenges associated with directly applying diffusion models to audio control, which are traditionally trained on text-image pairs. DiffTalker consists of two agent networks: a transformer-based landmarks completion network for geometric accuracy and a diffusion-based face generation network for texture details. Landmarks play a pivotal role in establishing a seamless connection between the audio and image domains, facilitating the incorporation of knowledge from pre-trained diffusion models. This innovative approach efficiently produces articulate-speaking faces. Experimental results showcase DiffTalker's superior performance in producing clear and geometrically accurate talking faces, all without the need for additional alignment between audio and image features.
LaughTalk: Expressive 3D Talking Head Generation with Laughter
Laughter is a unique expression, essential to affirmative social interactions of humans. Although current 3D talking head generation methods produce convincing verbal articulations, they often fail to capture the vitality and subtleties of laughter and smiles despite their importance in social context. In this paper, we introduce a novel task to generate 3D talking heads capable of both articulate speech and authentic laughter. Our newly curated dataset comprises 2D laughing videos paired with pseudo-annotated and human-validated 3D FLAME parameters and vertices. Given our proposed dataset, we present a strong baseline with a two-stage training scheme: the model first learns to talk and then acquires the ability to express laughter. Extensive experiments demonstrate that our method performs favorably compared to existing approaches in both talking head generation and expressing laughter signals. We further explore potential applications on top of our proposed method for rigging realistic avatars.
Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
CP-EB: Talking Face Generation with Controllable Pose and Eye Blinking Embedding
This paper proposes a talking face generation method named "CP-EB" that takes an audio signal as input and a person image as reference, to synthesize a photo-realistic people talking video with head poses controlled by a short video clip and proper eye blinking embedding. It's noted that not only the head pose but also eye blinking are both important aspects for deep fake detection. The implicit control of poses by video has already achieved by the state-of-art work. According to recent research, eye blinking has weak correlation with input audio which means eye blinks extraction from audio and generation are possible. Hence, we propose a GAN-based architecture to extract eye blink feature from input audio and reference video respectively and employ contrastive training between them, then embed it into the concatenated features of identity and poses to generate talking face images. Experimental results show that the proposed method can generate photo-realistic talking face with synchronous lips motions, natural head poses and blinking eyes.
MoCha: Towards Movie-Grade Talking Character Synthesis
Recent advancements in video generation have achieved impressive motion realism, yet they often overlook character-driven storytelling, a crucial task for automated film, animation generation. We introduce Talking Characters, a more realistic task to generate talking character animations directly from speech and text. Unlike talking head, Talking Characters aims at generating the full portrait of one or more characters beyond the facial region. In this paper, we propose MoCha, the first of its kind to generate talking characters. To ensure precise synchronization between video and speech, we propose a speech-video window attention mechanism that effectively aligns speech and video tokens. To address the scarcity of large-scale speech-labeled video datasets, we introduce a joint training strategy that leverages both speech-labeled and text-labeled video data, significantly improving generalization across diverse character actions. We also design structured prompt templates with character tags, enabling, for the first time, multi-character conversation with turn-based dialogue-allowing AI-generated characters to engage in context-aware conversations with cinematic coherence. Extensive qualitative and quantitative evaluations, including human preference studies and benchmark comparisons, demonstrate that MoCha sets a new standard for AI-generated cinematic storytelling, achieving superior realism, expressiveness, controllability and generalization.
SpeechDialogueFactory: Generating High-Quality Speech Dialogue Data to Accelerate Your Speech-LLM Development
High-quality speech dialogue datasets are crucial for Speech-LLM development, yet existing acquisition methods face significant limitations. Human recordings incur high costs and privacy concerns, while synthetic approaches often lack conversational authenticity. To address these challenges, we introduce SpeechDialogueFactory, a production-ready framework for generating natural speech dialogues efficiently. Our solution employs a comprehensive pipeline including metadata generation, dialogue scripting, paralinguistic-enriched utterance simulation, and natural speech synthesis with voice cloning. Additionally, the system provides an interactive UI for detailed sample inspection and a high-throughput batch synthesis mode. Evaluations show that dialogues generated by our system achieve a quality comparable to human recordings while significantly reducing production costs. We release our work as an open-source toolkit, alongside example datasets available in English and Chinese, empowering researchers and developers in Speech-LLM research and development.
TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting
Radiance fields have demonstrated impressive performance in synthesizing lifelike 3D talking heads. However, due to the difficulty in fitting steep appearance changes, the prevailing paradigm that presents facial motions by directly modifying point appearance may lead to distortions in dynamic regions. To tackle this challenge, we introduce TalkingGaussian, a deformation-based radiance fields framework for high-fidelity talking head synthesis. Leveraging the point-based Gaussian Splatting, facial motions can be represented in our method by applying smooth and continuous deformations to persistent Gaussian primitives, without requiring to learn the difficult appearance change like previous methods. Due to this simplification, precise facial motions can be synthesized while keeping a highly intact facial feature. Under such a deformation paradigm, we further identify a face-mouth motion inconsistency that would affect the learning of detailed speaking motions. To address this conflict, we decompose the model into two branches separately for the face and inside mouth areas, therefore simplifying the learning tasks to help reconstruct more accurate motion and structure of the mouth region. Extensive experiments demonstrate that our method renders high-quality lip-synchronized talking head videos, with better facial fidelity and higher efficiency compared with previous methods.
Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation
Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence, with its core value lying in enhancing human-computer interaction through immersive and empathetic engagement.With the advancement of multimodal large language models, the driving signals for emotional talking-head generation has shifted from audio and video to more flexible text. However, current text-driven methods rely on predefined discrete emotion label texts, oversimplifying the dynamic complexity of real facial muscle movements and thus failing to achieve natural emotional expressiveness.This study proposes the Think-Before-Draw framework to address two key challenges: (1) In-depth semantic parsing of emotions--by innovatively introducing Chain-of-Thought (CoT), abstract emotion labels are transformed into physiologically grounded facial muscle movement descriptions, enabling the mapping from high-level semantics to actionable motion features; and (2) Fine-grained expressiveness optimization--inspired by artists' portrait painting process, a progressive guidance denoising strategy is proposed, employing a "global emotion localization--local muscle control" mechanism to refine micro-expression dynamics in generated videos.Our experiments demonstrate that our approach achieves state-of-the-art performance on widely-used benchmarks, including MEAD and HDTF. Additionally, we collected a set of portrait images to evaluate our model's zero-shot generation capability.
Towards human-like spoken dialogue generation between AI agents from written dialogue
The advent of large language models (LLMs) has made it possible to generate natural written dialogues between two agents. However, generating human-like spoken dialogues from these written dialogues remains challenging. Spoken dialogues have several unique characteristics: they frequently include backchannels and laughter, and the smoothness of turn-taking significantly influences the fluidity of conversation. This study proposes CHATS - CHatty Agents Text-to-Speech - a discrete token-based system designed to generate spoken dialogues based on written dialogues. Our system can generate speech for both the speaker side and the listener side simultaneously, using only the transcription from the speaker side, which eliminates the need for transcriptions of backchannels or laughter. Moreover, CHATS facilitates natural turn-taking; it determines the appropriate duration of silence after each utterance in the absence of overlap, and it initiates the generation of overlapping speech based on the phoneme sequence of the next utterance in case of overlap. Experimental evaluations indicate that CHATS outperforms the text-to-speech baseline, producing spoken dialogues that are more interactive and fluid while retaining clarity and intelligibility.
SoundStorm: Efficient Parallel Audio Generation
We present SoundStorm, a model for efficient, non-autoregressive audio generation. SoundStorm receives as input the semantic tokens of AudioLM, and relies on bidirectional attention and confidence-based parallel decoding to generate the tokens of a neural audio codec. Compared to the autoregressive generation approach of AudioLM, our model produces audio of the same quality and with higher consistency in voice and acoustic conditions, while being two orders of magnitude faster. SoundStorm generates 30 seconds of audio in 0.5 seconds on a TPU-v4. We demonstrate the ability of our model to scale audio generation to longer sequences by synthesizing high-quality, natural dialogue segments, given a transcript annotated with speaker turns and a short prompt with the speakers' voices.
EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions
In this work, we tackle the challenge of enhancing the realism and expressiveness in talking head video generation by focusing on the dynamic and nuanced relationship between audio cues and facial movements. We identify the limitations of traditional techniques that often fail to capture the full spectrum of human expressions and the uniqueness of individual facial styles. To address these issues, we propose EMO, a novel framework that utilizes a direct audio-to-video synthesis approach, bypassing the need for intermediate 3D models or facial landmarks. Our method ensures seamless frame transitions and consistent identity preservation throughout the video, resulting in highly expressive and lifelike animations. Experimental results demonsrate that EMO is able to produce not only convincing speaking videos but also singing videos in various styles, significantly outperforming existing state-of-the-art methodologies in terms of expressiveness and realism.
StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-based Generator
Despite recent advances in syncing lip movements with any audio waves, current methods still struggle to balance generation quality and the model's generalization ability. Previous studies either require long-term data for training or produce a similar movement pattern on all subjects with low quality. In this paper, we propose StyleSync, an effective framework that enables high-fidelity lip synchronization. We identify that a style-based generator would sufficiently enable such a charming property on both one-shot and few-shot scenarios. Specifically, we design a mask-guided spatial information encoding module that preserves the details of the given face. The mouth shapes are accurately modified by audio through modulated convolutions. Moreover, our design also enables personalized lip-sync by introducing style space and generator refinement on only limited frames. Thus the identity and talking style of a target person could be accurately preserved. Extensive experiments demonstrate the effectiveness of our method in producing high-fidelity results on a variety of scenes. Resources can be found at https://hangz-nju-cuhk.github.io/projects/StyleSync.
LetsTalk: Latent Diffusion Transformer for Talking Video Synthesis
Portrait image animation using audio has rapidly advanced, enabling the creation of increasingly realistic and expressive animated faces. The challenges of this multimodality-guided video generation task involve fusing various modalities while ensuring consistency in timing and portrait. We further seek to produce vivid talking heads. To address these challenges, we present LetsTalk (LatEnt Diffusion TranSformer for Talking Video Synthesis), a diffusion transformer that incorporates modular temporal and spatial attention mechanisms to merge multimodality and enhance spatial-temporal consistency. To handle multimodal conditions, we first summarize three fusion schemes, ranging from shallow to deep fusion compactness, and thoroughly explore their impact and applicability. Then we propose a suitable solution according to the modality differences of image, audio, and video generation. For portrait, we utilize a deep fusion scheme (Symbiotic Fusion) to ensure portrait consistency. For audio, we implement a shallow fusion scheme (Direct Fusion) to achieve audio-animation alignment while preserving diversity. Our extensive experiments demonstrate that our approach generates temporally coherent and realistic videos with enhanced diversity and liveliness.
TalkCuts: A Large-Scale Dataset for Multi-Shot Human Speech Video Generation
In this work, we present TalkCuts, a large-scale dataset designed to facilitate the study of multi-shot human speech video generation. Unlike existing datasets that focus on single-shot, static viewpoints, TalkCuts offers 164k clips totaling over 500 hours of high-quality human speech videos with diverse camera shots, including close-up, half-body, and full-body views. The dataset includes detailed textual descriptions, 2D keypoints and 3D SMPL-X motion annotations, covering over 10k identities, enabling multimodal learning and evaluation. As a first attempt to showcase the value of the dataset, we present Orator, an LLM-guided multi-modal generation framework as a simple baseline, where the language model functions as a multi-faceted director, orchestrating detailed specifications for camera transitions, speaker gesticulations, and vocal modulation. This architecture enables the synthesis of coherent long-form videos through our integrated multi-modal video generation module. Extensive experiments in both pose-guided and audio-driven settings show that training on TalkCuts significantly enhances the cinematographic coherence and visual appeal of generated multi-shot speech videos. We believe TalkCuts provides a strong foundation for future work in controllable, multi-shot speech video generation and broader multimodal learning.
Towards Human-like Multimodal Conversational Agent by Generating Engaging Speech
Human conversation involves language, speech, and visual cues, with each medium providing complementary information. For instance, speech conveys a vibe or tone not fully captured by text alone. While multimodal LLMs focus on generating text responses from diverse inputs, less attention has been paid to generating natural and engaging speech. We propose a human-like agent that generates speech responses based on conversation mood and responsive style information. To achieve this, we build a novel MultiSensory Conversation dataset focused on speech to enable agents to generate natural speech. We then propose a multimodal LLM-based model for generating text responses and voice descriptions, which are used to generate speech covering paralinguistic information. Experimental results demonstrate the effectiveness of utilizing both visual and audio modalities in conversation to generate engaging speech. The source code is available in https://github.com/kimtaesu24/MSenC
MAGIC-Talk: Motion-aware Audio-Driven Talking Face Generation with Customizable Identity Control
Audio-driven talking face generation has gained significant attention for applications in digital media and virtual avatars. While recent methods improve audio-lip synchronization, they often struggle with temporal consistency, identity preservation, and customization, especially in long video generation. To address these issues, we propose MAGIC-Talk, a one-shot diffusion-based framework for customizable and temporally stable talking face generation. MAGIC-Talk consists of ReferenceNet, which preserves identity and enables fine-grained facial editing via text prompts, and AnimateNet, which enhances motion coherence using structured motion priors. Unlike previous methods requiring multiple reference images or fine-tuning, MAGIC-Talk maintains identity from a single image while ensuring smooth transitions across frames. Additionally, a progressive latent fusion strategy is introduced to improve long-form video quality by reducing motion inconsistencies and flickering. Extensive experiments demonstrate that MAGIC-Talk outperforms state-of-the-art methods in visual quality, identity preservation, and synchronization accuracy, offering a robust solution for talking face generation.
GaussianSpeech: Audio-Driven Gaussian Avatars
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.
A Framework for Synthetic Audio Conversations Generation using Large Language Models
In this paper, we introduce ConversaSynth, a framework designed to generate synthetic conversation audio using large language models (LLMs) with multiple persona settings. The framework first creates diverse and coherent text-based dialogues across various topics, which are then converted into audio using text-to-speech (TTS) systems. Our experiments demonstrate that ConversaSynth effectively generates highquality synthetic audio datasets, which can significantly enhance the training and evaluation of models for audio tagging, audio classification, and multi-speaker speech recognition. The results indicate that the synthetic datasets generated by ConversaSynth exhibit substantial diversity and realism, making them suitable for developing robust, adaptable audio-based AI systems.
Seeing What You Said: Talking Face Generation Guided by a Lip Reading Expert
Talking face generation, also known as speech-to-lip generation, reconstructs facial motions concerning lips given coherent speech input. The previous studies revealed the importance of lip-speech synchronization and visual quality. Despite much progress, they hardly focus on the content of lip movements i.e., the visual intelligibility of the spoken words, which is an important aspect of generation quality. To address the problem, we propose using a lip-reading expert to improve the intelligibility of the generated lip regions by penalizing the incorrect generation results. Moreover, to compensate for data scarcity, we train the lip-reading expert in an audio-visual self-supervised manner. With a lip-reading expert, we propose a novel contrastive learning to enhance lip-speech synchronization, and a transformer to encode audio synchronically with video, while considering global temporal dependency of audio. For evaluation, we propose a new strategy with two different lip-reading experts to measure intelligibility of the generated videos. Rigorous experiments show that our proposal is superior to other State-of-the-art (SOTA) methods, such as Wav2Lip, in reading intelligibility i.e., over 38% Word Error Rate (WER) on LRS2 dataset and 27.8% accuracy on LRW dataset. We also achieve the SOTA performance in lip-speech synchronization and comparable performances in visual quality.
FlashLabs Chroma 1.0: A Real-Time End-to-End Spoken Dialogue Model with Personalized Voice Cloning
Recent end-to-end spoken dialogue systems leverage speech tokenizers and neural audio codecs to enable LLMs to operate directly on discrete speech representations. However, these models often exhibit limited speaker identity preservation, hindering personalized voice interaction. In this work, we present Chroma 1.0, the first open-source, real-time, end-to-end spoken dialogue model that achieves both low-latency interaction and high-fidelity personalized voice cloning. Chroma achieves sub-second end-to-end latency through an interleaved text-audio token schedule (1:2) that supports streaming generation, while maintaining high-quality personalized voice synthesis across multi-turn conversations. Our experimental results demonstrate that Chroma achieves a 10.96% relative improvement in speaker similarity over the human baseline, with a Real-Time Factor (RTF) of 0.43, while maintaining strong reasoning and dialogue capabilities. Our code and models are publicly available at https://github.com/FlashLabs-AI-Corp/FlashLabs-Chroma and https://huggingface.co/FlashLabs/Chroma-4B .
Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). Context-enhanced audio learning, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). Motion-decoupled controller, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, Time-aware position shift fusion, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
ZipVoice-Dialog: Non-Autoregressive Spoken Dialogue Generation with Flow Matching
Generating spoken dialogue is more challenging than monologue text-to-speech (TTS) due to the need for realistic turn-taking and distinct speaker timbres. Existing spoken dialogue generation models, being auto-regressive, suffer from slow and unstable inference. To overcome these limitations, we introduce ZipVoice-Dialog, a non-autoregressive zero-shot spoken dialogue generation model built upon flow matching. Key designs include: 1) speaker-turn embeddings for precise speaker turn-taking; 2) a curriculum learning strategy for stable speech-text alignment; 3) specialized strategies to enable stereo dialogue generation. Additionally, recognizing the lack of open-source large-scale spoken dialogue datasets, we curated OpenDialog, a 6.8k-hour spoken dialogue dataset from in-the-wild speech data. Furthermore, we established a benchmark to comprehensively evaluate various models. Experimental results demonstrate that ZipVoice-Dialog achieves superior performance in intelligibility, speaker turn-taking accuracy, speaker similarity, and inference speed. Our codes, model checkpoints, demo samples, and the OpenDialog dataset are all publicly available at https://github.com/k2-fsa/ZipVoice.
FLAP: Fully-controllable Audio-driven Portrait Video Generation through 3D head conditioned diffusion model
Diffusion-based video generation techniques have significantly improved zero-shot talking-head avatar generation, enhancing the naturalness of both head motion and facial expressions. However, existing methods suffer from poor controllability, making them less applicable to real-world scenarios such as filmmaking and live streaming for e-commerce. To address this limitation, we propose FLAP, a novel approach that integrates explicit 3D intermediate parameters (head poses and facial expressions) into the diffusion model for end-to-end generation of realistic portrait videos. The proposed architecture allows the model to generate vivid portrait videos from audio while simultaneously incorporating additional control signals, such as head rotation angles and eye-blinking frequency. Furthermore, the decoupling of head pose and facial expression allows for independent control of each, offering precise manipulation of both the avatar's pose and facial expressions. We also demonstrate its flexibility in integrating with existing 3D head generation methods, bridging the gap between 3D model-based approaches and end-to-end diffusion techniques. Extensive experiments show that our method outperforms recent audio-driven portrait video models in both naturalness and controllability.
AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition. Despite the recent success, current LLMs are not capable of processing complex audio information or conducting spoken conversations (like Siri or Alexa). In this work, we propose a multi-modal AI system named AudioGPT, which complements LLMs (i.e., ChatGPT) with 1) foundation models to process complex audio information and solve numerous understanding and generation tasks; and 2) the input/output interface (ASR, TTS) to support spoken dialogue. With an increasing demand to evaluate multi-modal LLMs of human intention understanding and cooperation with foundation models, we outline the principles and processes and test AudioGPT in terms of consistency, capability, and robustness. Experimental results demonstrate the capabilities of AudioGPT in solving AI tasks with speech, music, sound, and talking head understanding and generation in multi-round dialogues, which empower humans to create rich and diverse audio content with unprecedented ease. Our system is publicly available at https://github.com/AIGC-Audio/AudioGPT.
KMTalk: Speech-Driven 3D Facial Animation with Key Motion Embedding
We present a novel approach for synthesizing 3D facial motions from audio sequences using key motion embeddings. Despite recent advancements in data-driven techniques, accurately mapping between audio signals and 3D facial meshes remains challenging. Direct regression of the entire sequence often leads to over-smoothed results due to the ill-posed nature of the problem. To this end, we propose a progressive learning mechanism that generates 3D facial animations by introducing key motion capture to decrease cross-modal mapping uncertainty and learning complexity. Concretely, our method integrates linguistic and data-driven priors through two modules: the linguistic-based key motion acquisition and the cross-modal motion completion. The former identifies key motions and learns the associated 3D facial expressions, ensuring accurate lip-speech synchronization. The latter extends key motions into a full sequence of 3D talking faces guided by audio features, improving temporal coherence and audio-visual consistency. Extensive experimental comparisons against existing state-of-the-art methods demonstrate the superiority of our approach in generating more vivid and consistent talking face animations. Consistent enhancements in results through the integration of our proposed learning scheme with existing methods underscore the efficacy of our approach. Our code and weights will be at the project website: https://github.com/ffxzh/KMTalk.
VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild
We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.
Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation
Recent advances in Talking Head Generation (THG) have achieved impressive lip synchronization and visual quality through diffusion models; yet existing methods struggle to generate emotionally expressive portraits while preserving speaker identity. We identify three critical limitations in current emotional talking head generation: insufficient utilization of audio's inherent emotional cues, identity leakage in emotion representations, and isolated learning of emotion correlations. To address these challenges, we propose a novel framework dubbed as DICE-Talk, following the idea of disentangling identity with emotion, and then cooperating emotions with similar characteristics. First, we develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention, representing emotions as identity-agnostic Gaussian distributions. Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks that explicitly capture inter-emotion relationships through vector quantization and attention-based feature aggregation. Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process through latent-space classification. Extensive experiments on MEAD and HDTF datasets demonstrate our method's superiority, outperforming state-of-the-art approaches in emotion accuracy while maintaining competitive lip-sync performance. Qualitative results and user studies further confirm our method's ability to generate identity-preserving portraits with rich, correlated emotional expressions that naturally adapt to unseen identities.
Generative Expressive Conversational Speech Synthesis
Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting. Existing CSS methods employ effective multi-modal context modeling techniques to achieve empathy understanding and expression. However, they often need to design complex network architectures and meticulously optimize the modules within them. In addition, due to the limitations of small-scale datasets containing scripted recording styles, they often fail to simulate real natural conversational styles. To address the above issues, we propose a novel generative expressive CSS system, termed GPT-Talker.We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context. Leveraging the power of GPT, we predict the token sequence, that includes both semantic and style knowledge, of response for the agent. After that, the expressive conversational speech is synthesized by the conversation-enriched VITS to deliver feedback to the user.Furthermore, we propose a large-scale Natural CSS Dataset called NCSSD, that includes both naturally recorded conversational speech in improvised styles and dialogues extracted from TV shows. It encompasses both Chinese and English languages, with a total duration of 236 hours.We conducted comprehensive experiments on the reliability of the NCSSD and the effectiveness of our GPT-Talker. Both subjective and objective evaluations demonstrate that our model outperforms other state-of-the-art CSS systems significantly in terms of naturalness and expressiveness. The Code, Dataset, and Pre-trained Model are available at: https://github.com/AI-S2-Lab/GPT-Talker.
ConsistentAvatar: Learning to Diffuse Fully Consistent Talking Head Avatar with Temporal Guidance
Diffusion models have shown impressive potential on talking head generation. While plausible appearance and talking effect are achieved, these methods still suffer from temporal, 3D or expression inconsistency due to the error accumulation and inherent limitation of single-image generation ability. In this paper, we propose ConsistentAvatar, a novel framework for fully consistent and high-fidelity talking avatar generation. Instead of directly employing multi-modal conditions to the diffusion process, our method learns to first model the temporal representation for stability between adjacent frames. Specifically, we propose a Temporally-Sensitive Detail (TSD) map containing high-frequency feature and contours that vary significantly along the time axis. Using a temporal consistent diffusion module, we learn to align TSD of the initial result to that of the video frame ground truth. The final avatar is generated by a fully consistent diffusion module, conditioned on the aligned TSD, rough head normal, and emotion prompt embedding. We find that the aligned TSD, which represents the temporal patterns, constrains the diffusion process to generate temporally stable talking head. Further, its reliable guidance complements the inaccuracy of other conditions, suppressing the accumulated error while improving the consistency on various aspects. Extensive experiments demonstrate that ConsistentAvatar outperforms the state-of-the-art methods on the generated appearance, 3D, expression and temporal consistency. Project page: https://njust-yang.github.io/ConsistentAvatar.github.io/
TalkVid: A Large-Scale Diversified Dataset for Audio-Driven Talking Head Synthesis
Audio-driven talking head synthesis has achieved remarkable photorealism, yet state-of-the-art (SOTA) models exhibit a critical failure: they lack generalization to the full spectrum of human diversity in ethnicity, language, and age groups. We argue that this generalization gap is a direct symptom of limitations in existing training data, which lack the necessary scale, quality, and diversity. To address this challenge, we introduce TalkVid, a new large-scale, high-quality, and diverse dataset containing 1244 hours of video from 7729 unique speakers. TalkVid is curated through a principled, multi-stage automated pipeline that rigorously filters for motion stability, aesthetic quality, and facial detail, and is validated against human judgments to ensure its reliability. Furthermore, we construct and release TalkVid-Bench, a stratified evaluation set of 500 clips meticulously balanced across key demographic and linguistic axes. Our experiments demonstrate that a model trained on TalkVid outperforms counterparts trained on previous datasets, exhibiting superior cross-dataset generalization. Crucially, our analysis on TalkVid-Bench reveals performance disparities across subgroups that are obscured by traditional aggregate metrics, underscoring its necessity for future research. Code and data can be found in https://github.com/FreedomIntelligence/TalkVid
LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
JoyGen: Audio-Driven 3D Depth-Aware Talking-Face Video Editing
Significant progress has been made in talking-face video generation research; however, precise lip-audio synchronization and high visual quality remain challenging in editing lip shapes based on input audio. This paper introduces JoyGen, a novel two-stage framework for talking-face generation, comprising audio-driven lip motion generation and visual appearance synthesis. In the first stage, a 3D reconstruction model and an audio2motion model predict identity and expression coefficients respectively. Next, by integrating audio features with a facial depth map, we provide comprehensive supervision for precise lip-audio synchronization in facial generation. Additionally, we constructed a Chinese talking-face dataset containing 130 hours of high-quality video. JoyGen is trained on the open-source HDTF dataset and our curated dataset. Experimental results demonstrate superior lip-audio synchronization and visual quality achieved by our method.
