- Relational Attention: Generalizing Transformers for Graph-Structured Tasks Transformers flexibly operate over sets of real-valued vectors representing task-specific entities and their attributes, where each vector might encode one word-piece token and its position in a sequence, or some piece of information that carries no position at all. But as set processors, transformers are at a disadvantage in reasoning over more general graph-structured data where nodes represent entities and edges represent relations between entities. To address this shortcoming, we generalize transformer attention to consider and update edge vectors in each transformer layer. We evaluate this relational transformer on a diverse array of graph-structured tasks, including the large and challenging CLRS Algorithmic Reasoning Benchmark. There, it dramatically outperforms state-of-the-art graph neural networks expressly designed to reason over graph-structured data. Our analysis demonstrates that these gains are attributable to relational attention's inherent ability to leverage the greater expressivity of graphs over sets. 2 authors · Oct 10, 2022
- Gate Set Tomography Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST's intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation. 6 authors · Sep 15, 2020
- Synthesis of Sound and Precise Leakage Contracts for Open-Source RISC-V Processors Leakage contracts have been proposed as a new security abstraction at the instruction set architecture level. Leakage contracts aim to capture the information that processors may leak via microarchitectural side channels. Recently, the first tools have emerged to verify whether a processor satisfies a given contract. However, coming up with a contract that is both sound and precise for a given processor is challenging, time-consuming, and error-prone, as it requires in-depth knowledge of the timing side channels introduced by microarchitectural optimizations. In this paper, we address this challenge by proposing LeaSyn, the first tool for automatically synthesizing leakage contracts that are both sound and precise for processor designs at register-transfer level. Starting from a user-provided contract template that captures the space of possible contracts, LeaSyn automatically constructs a contract, alternating between contract synthesis, which ensures precision based on an empirical characterization of the processor's leaks, and contract verification, which ensures soundness. Using LeaSyn, we automatically synthesize contracts for six open-source RISC-V CPUs for a variety of contract templates. Our experiments indicate that LeaSyn's contracts are sound and more precise (i.e., represent the actual leaks in the target processor more faithfully) than contracts constructed by existing approaches. 5 authors · Sep 8
- Enabling Syscall Intercept for RISC-V The European Union technological sovereignty strategy centers around the RISC-V Instruction Set Architecture, with the European Processor Initiative leading efforts to build production-ready processors. Focusing on realizing a functional RISC-V ecosystem, the BZL initiative (www.bzl.es) is making an effort to create a software stack along with the hardware. In this work, we detail the efforts made in porting a widely used syscall interception library, mainly used on AdHocFS (i.e., DAOS, GekkoFS), to RISC-V and how we overcame some of the limitations encountered. 3 authors · May 15