new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Evidence to Generate (E2G): A Single-agent Two-step Prompting for Context Grounded and Retrieval Augmented Reasoning

While chain-of-thought (CoT) prompting has revolutionized how LLMs perform reasoning tasks, its current methods and variations (e.g, Self-consistency, ReACT, Reflexion, Tree-of-Thoughts (ToT), Cumulative Reasoning (CR)) suffer from limitations like slowness, limited context grounding, hallucination and inconsistent outputs. To overcome these challenges, we introduce Evidence to Generate (E2G), a novel single-agent, two-step prompting framework. Instead of unverified reasoning claims, this innovative approach leverages the power of "evidence for decision making" by first focusing exclusively on the thought sequences (the series of intermediate steps) explicitly mentioned in the context which then serve as extracted evidence, guiding the LLM's output generation process with greater precision and efficiency. This simple yet powerful approach unlocks the true potential of chain-of-thought like prompting, paving the way for faster, more reliable, and more contextually aware reasoning in LLMs. \tool achieves remarkable results robustly across a wide range of knowledge-intensive reasoning and generation tasks, surpassing baseline approaches with state-of-the-art LLMs. For example, (i) on LogiQA benchmark using GPT-4 as backbone model, \tool achieves a new state-of-the Accuracy of 53.8% exceeding CoT by 18%, ToT by 11%, CR by 9% (ii) a variant of E2G with PaLM2 outperforms the variable-shot performance of Gemini Ultra by 0.9 F1 points, reaching an F1 score of 83.3 on a subset of DROP.

  • 1 authors
·
Jan 11, 2024

Structured Temporal Causality for Interpretable Multivariate Time Series Anomaly Detection

Real-world multivariate time series anomalies are rare and often unlabeled. Additionally, prevailing methods rely on increasingly complex architectures tuned to benchmarks, detecting only fragments of anomalous segments and overstating performance. In this paper, we introduce OracleAD, a simple and interpretable unsupervised framework for multivariate time series anomaly detection. OracleAD encodes each variable's past sequence into a single causal embedding to jointly predict the present time point and reconstruct the input window, effectively modeling temporal dynamics. These embeddings then undergo a self-attention mechanism to project them into a shared latent space and capture spatial relationships. These relationships are not static, since they are modeled by a property that emerges from each variable's temporal dynamics. The projected embeddings are aligned to a Stable Latent Structure (SLS) representing normal-state relationships. Anomalies are identified using a dual scoring mechanism based on prediction error and deviation from the SLS, enabling fine-grained anomaly diagnosis at each time point and across individual variables. Since any noticeable SLS deviation originates from embeddings that violate the learned temporal causality of normal data, OracleAD directly pinpoints the root-cause variables at the embedding level. OracleAD achieves state-of-the-art results across multiple real-world datasets and evaluation protocols, while remaining interpretable through SLS.

  • 6 authors
·
Oct 18