- Speaker Targeting via Self-Speaker Adaptation for Multi-talker ASR We propose a self-speaker adaptation method for streaming multi-talker automatic speech recognition (ASR) that eliminates the need for explicit speaker queries. Unlike conventional approaches requiring target speaker embeddings or enrollment audio, our technique dynamically adapts individual ASR instances through speaker-wise speech activity prediction. The key innovation involves injecting speaker-specific kernels generated via speaker supervision activations into selected ASR encoder layers. This enables instantaneous speaker adaptation to target speakers while handling fully overlapped speech even in a streaming scenario. Experiments show state-of-the-art performance in both offline and streaming scenarios, demonstrating that our self-adaptive method effectively addresses severe speech overlap through streamlined speaker-focused recognition. The results validate the proposed self-speaker adaptation approach as a robust solution for multi-talker ASR under severe overlapping speech conditions. 9 authors · Jun 27
1 Sortformer: Seamless Integration of Speaker Diarization and ASR by Bridging Timestamps and Tokens We propose Sortformer, a novel neural model for speaker diarization, trained with unconventional objectives compared to existing end-to-end diarization models. The permutation problem in speaker diarization has long been regarded as a critical challenge. Most prior end-to-end diarization systems employ permutation invariant loss (PIL), which optimizes for the permutation that yields the lowest error. In contrast, we introduce Sort Loss, which enables a diarization model to autonomously resolve permutation, with or without PIL. We demonstrate that combining Sort Loss and PIL achieves performance competitive with state-of-the-art end-to-end diarization models trained exclusively with PIL. Crucially, we present a streamlined multispeaker ASR architecture that leverages Sortformer as a speaker supervision model, embedding speaker label estimation within the ASR encoder state using a sinusoidal kernel function. This approach resolves the speaker permutation problem through sorted objectives, effectively bridging speaker-label timestamps and speaker tokens. In our experiments, we show that the proposed multispeaker ASR architecture, enhanced with speaker supervision, improves performance via adapter techniques. Code and trained models will be made publicly available via the NVIDIA NeMo framework 9 authors · Sep 10, 2024
- Label-Efficient Self-Supervised Speaker Verification With Information Maximization and Contrastive Learning State-of-the-art speaker verification systems are inherently dependent on some kind of human supervision as they are trained on massive amounts of labeled data. However, manually annotating utterances is slow, expensive and not scalable to the amount of data available today. In this study, we explore self-supervised learning for speaker verification by learning representations directly from raw audio. The objective is to produce robust speaker embeddings that have small intra-speaker and large inter-speaker variance. Our approach is based on recent information maximization learning frameworks and an intensive data augmentation pre-processing step. We evaluate the ability of these methods to work without contrastive samples before showing that they achieve better performance when combined with a contrastive loss. Furthermore, we conduct experiments to show that our method reaches competitive results compared to existing techniques and can get better performances compared to a supervised baseline when fine-tuned with a small portion of labeled data. 2 authors · Jul 12, 2022
- Disentangled Speech Embeddings using Cross-modal Self-supervision The objective of this paper is to learn representations of speaker identity without access to manually annotated data. To do so, we develop a self-supervised learning objective that exploits the natural cross-modal synchrony between faces and audio in video. The key idea behind our approach is to tease apart--without annotation--the representations of linguistic content and speaker identity. We construct a two-stream architecture which: (1) shares low-level features common to both representations; and (2) provides a natural mechanism for explicitly disentangling these factors, offering the potential for greater generalisation to novel combinations of content and identity and ultimately producing speaker identity representations that are more robust. We train our method on a large-scale audio-visual dataset of talking heads `in the wild', and demonstrate its efficacy by evaluating the learned speaker representations for standard speaker recognition performance. 4 authors · Feb 20, 2020
1 Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to "reading") and from semantic tokens to low-level acoustic tokens ("speaking"). Decoupling these two tasks enables training of the "speaking" module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the "reading" component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker-id labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in terms of naturalness and acoustic quality, as measured in subjective tests. 9 authors · Feb 7, 2023
- Experimenting with Additive Margins for Contrastive Self-Supervised Speaker Verification Most state-of-the-art self-supervised speaker verification systems rely on a contrastive-based objective function to learn speaker representations from unlabeled speech data. We explore different ways to improve the performance of these methods by: (1) revisiting how positive and negative pairs are sampled through a "symmetric" formulation of the contrastive loss; (2) introducing margins similar to AM-Softmax and AAM-Softmax that have been widely adopted in the supervised setting. We demonstrate the effectiveness of the symmetric contrastive loss which provides more supervision for the self-supervised task. Moreover, we show that Additive Margin and Additive Angular Margin allow reducing the overall number of false negatives and false positives by improving speaker separability. Finally, by combining both techniques and training a larger model we achieve 7.50% EER and 0.5804 minDCF on the VoxCeleb1 test set, which outperforms other contrastive self supervised methods on speaker verification. 2 authors · Jun 6, 2023
3 FuseCodec: Semantic-Contextual Fusion and Supervision for Neural Codecs Speech tokenization enables discrete representation and facilitates speech language modeling. However, existing neural codecs capture low-level acoustic features, overlooking the semantic and contextual cues inherent to human speech. While recent efforts introduced semantic representations from self-supervised speech models or incorporated contextual representations from pre-trained language models, challenges remain in aligning and unifying the semantic and contextual representations. We introduce FuseCodec, which unifies acoustic, semantic, and contextual representations through strong cross-modal alignment and globally informed supervision. We propose three complementary techniques: (i) Latent Representation Fusion, integrating semantic and contextual features directly into the encoder latent space for robust and unified representation learning; (ii) Global Semantic-Contextual Supervision, supervising discrete tokens with globally pooled and broadcasted representations to enhance temporal consistency and cross-modal alignment; and (iii) Temporally Aligned Contextual Supervision, strengthening alignment by dynamically matching contextual and speech tokens within a local window for fine-grained token-level supervision. We further introduce FuseCodec-TTS, demonstrating our methodology's applicability to zero-shot speech synthesis. Empirically, FuseCodec achieves state-of-the-art performance in LibriSpeech, surpassing EnCodec, SpeechTokenizer, and DAC in transcription accuracy, perceptual quality, intelligibility, and speaker similarity. Results highlight the effectiveness of contextually and semantically guided tokenization for speech tokenization and downstream tasks. Code and pretrained models are available at https://github.com/mubtasimahasan/FuseCodec. 9 authors · Sep 14 2
1 HuBERTopic: Enhancing Semantic Representation of HuBERT through Self-supervision Utilizing Topic Model Recently, the usefulness of self-supervised representation learning (SSRL) methods has been confirmed in various downstream tasks. Many of these models, as exemplified by HuBERT and WavLM, use pseudo-labels generated from spectral features or the model's own representation features. From previous studies, it is known that the pseudo-labels contain semantic information. However, the masked prediction task, the learning criterion of HuBERT, focuses on local contextual information and may not make effective use of global semantic information such as speaker, theme of speech, and so on. In this paper, we propose a new approach to enrich the semantic representation of HuBERT. We apply topic model to pseudo-labels to generate a topic label for each utterance. An auxiliary topic classification task is added to HuBERT by using topic labels as teachers. This allows additional global semantic information to be incorporated in an unsupervised manner. Experimental results demonstrate that our method achieves comparable or better performance than the baseline in most tasks, including automatic speech recognition and five out of the eight SUPERB tasks. Moreover, we find that topic labels include various information about utterance, such as gender, speaker, and its theme. This highlights the effectiveness of our approach in capturing multifaceted semantic nuances. 5 authors · Oct 5, 2023
- Libri-Light: A Benchmark for ASR with Limited or No Supervision We introduce a new collection of spoken English audio suitable for training speech recognition systems under limited or no supervision. It is derived from open-source audio books from the LibriVox project. It contains over 60K hours of audio, which is, to our knowledge, the largest freely-available corpus of speech. The audio has been segmented using voice activity detection and is tagged with SNR, speaker ID and genre descriptions. Additionally, we provide baseline systems and evaluation metrics working under three settings: (1) the zero resource/unsupervised setting (ABX), (2) the semi-supervised setting (PER, CER) and (3) the distant supervision setting (WER). Settings (2) and (3) use limited textual resources (10 minutes to 10 hours) aligned with the speech. Setting (3) uses large amounts of unaligned text. They are evaluated on the standard LibriSpeech dev and test sets for comparison with the supervised state-of-the-art. 15 authors · Dec 17, 2019
- One-shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization Recently, voice conversion (VC) without parallel data has been successfully adapted to multi-target scenario in which a single model is trained to convert the input voice to many different speakers. However, such model suffers from the limitation that it can only convert the voice to the speakers in the training data, which narrows down the applicable scenario of VC. In this paper, we proposed a novel one-shot VC approach which is able to perform VC by only an example utterance from source and target speaker respectively, and the source and target speaker do not even need to be seen during training. This is achieved by disentangling speaker and content representations with instance normalization (IN). Objective and subjective evaluation shows that our model is able to generate the voice similar to target speaker. In addition to the performance measurement, we also demonstrate that this model is able to learn meaningful speaker representations without any supervision. 3 authors · Apr 10, 2019
- Additive Margin in Contrastive Self-Supervised Frameworks to Learn Discriminative Speaker Representations Self-Supervised Learning (SSL) frameworks became the standard for learning robust class representations by benefiting from large unlabeled datasets. For Speaker Verification (SV), most SSL systems rely on contrastive-based loss functions. We explore different ways to improve the performance of these techniques by revisiting the NT-Xent contrastive loss. Our main contribution is the definition of the NT-Xent-AM loss and the study of the importance of Additive Margin (AM) in SimCLR and MoCo SSL methods to further separate positive from negative pairs. Despite class collisions, we show that AM enhances the compactness of same-speaker embeddings and reduces the number of false negatives and false positives on SV. Additionally, we demonstrate the effectiveness of the symmetric contrastive loss, which provides more supervision for the SSL task. Implementing these two modifications to SimCLR improves performance and results in 7.85% EER on VoxCeleb1-O, outperforming other equivalent methods. 2 authors · Apr 23, 2024
- Generating Pragmatic Examples to Train Neural Program Synthesizers Programming-by-example is the task of synthesizing a program that is consistent with a set of user-provided input-output examples. As examples are often an under-specification of one's intent, a good synthesizer must choose the intended program from the many that are consistent with the given set of examples. Prior work frames program synthesis as a cooperative game between a listener (that synthesizes programs) and a speaker (a user choosing examples), and shows that models of computational pragmatic inference are effective in choosing the user intended programs. However, these models require counterfactual reasoning over a large set of programs and examples, which is infeasible in realistic program spaces. In this paper, we propose a novel way to amortize this search with neural networks. We sample pairs of programs and examples via self-play between listener and speaker models, and use pragmatic inference to choose informative training examples from this sample.We then use the informative dataset to train models to improve the synthesizer's ability to disambiguate user-provided examples without human supervision. We validate our method on the challenging task of synthesizing regular expressions from example strings, and find that our method (1) outperforms models trained without choosing pragmatic examples by 23% (a 51% relative increase) (2) matches the performance of supervised learning on a dataset of pragmatic examples provided by humans, despite using no human data in training. 3 authors · Nov 9, 2023
- OpenS2S: Advancing Open-Source End-to-End Empathetic Large Speech Language Model Empathetic interaction is a cornerstone of human-machine communication, due to the need for understanding speech enriched with paralinguistic cues and generating emotional and expressive responses. However, the most powerful empathetic LSLMs are increasingly closed off, leaving the crucial details about the architecture, data and development opaque to researchers. Given the critical need for transparent research into the LSLMs and empathetic behavior, we present OpenS2S, a fully open-source, transparent and end-to-end LSLM designed to enable empathetic speech interactions. Based on our empathetic speech-to-text model BLSP-Emo, OpenS2S further employs a streaming interleaved decoding architecture to achieve low-latency speech generation. To facilitate end-to-end training, OpenS2S incorporates an automated data construction pipeline that synthesizes diverse, high-quality empathetic speech dialogues at low cost. By leveraging large language models to generate empathetic content and controllable text-to-speech systems to introduce speaker and emotional variation, we construct a scalable training corpus with rich paralinguistic diversity and minimal human supervision. We release the fully open-source OpenS2S model, including the dataset, model weights, pre-training and fine-tuning codes, to empower the broader research community and accelerate innovation in empathetic speech systems. The project webpage can be accessed at https://casia-lm.github.io/OpenS2S 11 authors · Jul 7