Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeImproving Steering Vectors by Targeting Sparse Autoencoder Features
To control the behavior of language models, steering methods attempt to ensure that outputs of the model satisfy specific pre-defined properties. Adding steering vectors to the model is a promising method of model control that is easier than finetuning, and may be more robust than prompting. However, it can be difficult to anticipate the effects of steering vectors produced by almost all existing methods, such as CAA (Panickssery et al., 2024) or the direct use of SAE latents (Templeton et al., 2024). In our work, we address this issue by using SAEs to measure the effects of steering vectors, giving us a method that can be used to understand the causal effect of any steering vector intervention. We use this method for measuring causal effects to develop an improved steering method, SAE-Targeted Steering (SAE-TS), which finds steering vectors to target specific SAE features while minimizing unintended side effects. We show that overall, SAE-TS balances steering effects with coherence better than CAA and SAE feature steering, when evaluated on a range of tasks.
Can sparse autoencoders be used to decompose and interpret steering vectors?
Steering vectors are a promising approach to control the behaviour of large language models. However, their underlying mechanisms remain poorly understood. While sparse autoencoders (SAEs) may offer a potential method to interpret steering vectors, recent findings show that SAE-reconstructed vectors often lack the steering properties of the original vectors. This paper investigates why directly applying SAEs to steering vectors yields misleading decompositions, identifying two reasons: (1) steering vectors fall outside the input distribution for which SAEs are designed, and (2) steering vectors can have meaningful negative projections in feature directions, which SAEs are not designed to accommodate. These limitations hinder the direct use of SAEs for interpreting steering vectors.
SteeringControl: Holistic Evaluation of Alignment Steering in LLMs
We introduce SteeringControl, a benchmark for evaluating representation steering methods across core alignment objectives--bias, harmful generation, and hallucination--and their effects on secondary behaviors such as sycophancy and commonsense morality. While prior alignment work often highlights truthfulness or reasoning ability to demonstrate the side effects of representation steering, we find there are many unexplored tradeoffs not yet understood in a systematic way. We collect a dataset of safety-relevant primary and secondary behaviors to evaluate steering effectiveness and behavioral entanglement centered around five popular steering methods. To enable this, we craft a modular steering framework based on unique components that serve as the building blocks of many existing methods. Our results on Qwen-2.5-7B and Llama-3.1-8B find that strong steering performance is dependent on the specific combination of steering method, model, and targeted behavior, and that severe concept entanglement can result from poor combinations of these three as well. We release our code here: https://github.com/wang-research-lab/SteeringControl.git.
Representation Surgery: Theory and Practice of Affine Steering
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
Extending Activation Steering to Broad Skills and Multiple Behaviours
Current large language models have dangerous capabilities, which are likely to become more problematic in the future. Activation steering techniques can be used to reduce risks from these capabilities. In this paper, we investigate the efficacy of activation steering for broad skills and multiple behaviours. First, by comparing the effects of reducing performance on general coding ability and Python-specific ability, we find that steering broader skills is competitive to steering narrower skills. Second, we steer models to become more or less myopic and wealth-seeking, among other behaviours. In our experiments, combining steering vectors for multiple different behaviours into one steering vector is largely unsuccessful. On the other hand, injecting individual steering vectors at different places in a model simultaneously is promising.
SAEs Are Good for Steering -- If You Select the Right Features
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model's latent space. This enables useful applications such as steering - influencing the output of a model towards a desired concept - without requiring labeled data. Current methods identify SAE features to steer by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model's output. In this work, we draw a distinction between two types of features: input features, which mainly capture patterns in the model's input, and output features, which have a human-understandable effect on the model's output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: after filtering out features with low output scores, we obtain 2-3x improvements when steering with SAEs, making them competitive with supervised methods.
Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
HyperSteer: Activation Steering at Scale with Hypernetworks
Steering language models (LMs) by modifying internal activations is a popular approach for controlling text generation. Unsupervised dictionary learning methods, e.g., sparse autoencoders, can be scaled to produce many steering vectors, but lack guarantees on the individual efficacy of each vector and control over the coverage of relevant steering tasks. In contrast, supervised methods for constructing steering vectors are targeted and effective, but require more data collection and training for each additional steering vector produced. In this work, we introduce HyperSteer, a family of hypernetwork-based architectures which are trained end-to-end to generate steering vectors conditioned on the natural language steering prompts and the internals of the steered LM. In our evaluations, we show that scaling HyperSteer with thousands of steering prompts exceeds the performance of state-of-the-art activation steering methods, even on steering prompts never seen during training. Moreover, HyperSteer performs on par with steering-via-prompting.
SAE-SSV: Supervised Steering in Sparse Representation Spaces for Reliable Control of Language Models
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but controlling their behavior reliably remains challenging, especially in open-ended generation settings. This paper introduces a novel supervised steering approach that operates in sparse, interpretable representation spaces. We employ sparse autoencoders (SAEs)to obtain sparse latent representations that aim to disentangle semantic attributes from model activations. Then we train linear classifiers to identify a small subspace of task-relevant dimensions in latent representations. Finally, we learn supervised steering vectors constrained to this subspace, optimized to align with target behaviors. Experiments across sentiment, truthfulness, and politics polarity steering tasks with multiple LLMs demonstrate that our supervised steering vectors achieve higher success rates with minimal degradation in generation quality compared to existing methods. Further analysis reveals that a notably small subspace is sufficient for effective steering, enabling more targeted and interpretable interventions.
Steering off Course: Reliability Challenges in Steering Language Models
Steering methods for language models (LMs) have gained traction as lightweight alternatives to fine-tuning, enabling targeted modifications to model activations. However, prior studies primarily report results on a few models, leaving critical gaps in understanding the robustness of these methods. In this work, we systematically examine three prominent steering methods -- DoLa, function vectors, and task vectors. In contrast to the original studies, which evaluated a handful of models, we test up to 36 models belonging to 14 families with sizes ranging from 1.5B to 70B parameters. Our experiments reveal substantial variability in the effectiveness of the steering approaches, with a large number of models showing no improvement and at times degradation in steering performance. Our analysis demonstrate fundamental flaws in the assumptions underlying these methods, challenging their reliability as scalable steering solutions.
The Rogue Scalpel: Activation Steering Compromises LLM Safety
Activation steering is a promising technique for controlling LLM behavior by adding semantically meaningful vectors directly into a model's hidden states during inference. It is often framed as a precise, interpretable, and potentially safer alternative to fine-tuning. We demonstrate the opposite: steering systematically breaks model alignment safeguards, making it comply with harmful requests. Through extensive experiments on different model families, we show that even steering in a random direction can increase the probability of harmful compliance from 0% to 2-27%. Alarmingly, steering benign features from a sparse autoencoder (SAE), a common source of interpretable directions, increases these rates by a further 2-4%. Finally, we show that combining 20 randomly sampled vectors that jailbreak a single prompt creates a universal attack, significantly increasing harmful compliance on unseen requests. These results challenge the paradigm of safety through interpretability, showing that precise control over model internals does not guarantee precise control over model behavior.
A General Framework for Inference-time Scaling and Steering of Diffusion Models
Diffusion models produce impressive results in modalities ranging from images and video to protein design and text. However, generating samples with user-specified properties remains a challenge. Recent research proposes fine-tuning models to maximize rewards that capture desired properties, but these methods require expensive training and are prone to mode collapse. In this work, we propose Feynman Kac (FK) steering, an inference-time framework for steering diffusion models with reward functions. FK steering works by sampling a system of multiple interacting diffusion processes, called particles, and resampling particles at intermediate steps based on scores computed using functions called potentials. Potentials are defined using rewards for intermediate states and are selected such that a high value indicates that the particle will yield a high-reward sample. We explore various choices of potentials, intermediate rewards, and samplers. We evaluate FK steering on text-to-image and text diffusion models. For steering text-to-image models with a human preference reward, we find that FK steering a 0.8B parameter model outperforms a 2.6B parameter fine-tuned model on prompt fidelity, with faster sampling and no training. For steering text diffusion models with rewards for text quality and specific text attributes, we find that FK steering generates lower perplexity, more linguistically acceptable outputs and enables gradient-free control of attributes like toxicity. Our results demonstrate that inference-time scaling and steering of diffusion models, even with off-the-shelf rewards, can provide significant sample quality gains and controllability benefits. Code is available at https://github.com/zacharyhorvitz/Fk-Diffusion-Steering .
Hidden Biases of End-to-End Driving Models
End-to-end driving systems have recently made rapid progress, in particular on CARLA. Independent of their major contribution, they introduce changes to minor system components. Consequently, the source of improvements is unclear. We identify two biases that recur in nearly all state-of-the-art methods and are critical for the observed progress on CARLA: (1) lateral recovery via a strong inductive bias towards target point following, and (2) longitudinal averaging of multimodal waypoint predictions for slowing down. We investigate the drawbacks of these biases and identify principled alternatives. By incorporating our insights, we develop TF++, a simple end-to-end method that ranks first on the Longest6 and LAV benchmarks, gaining 14 driving score over the best prior work on Longest6.
Steerability of Instrumental-Convergence Tendencies in LLMs
We examine two properties of AI systems: capability (what a system can do) and steerability (how reliably one can shift behavior toward intended outcomes). A central question is whether capability growth reduces steerability and risks control collapse. We also distinguish between authorized steerability (builders reliably reaching intended behaviors) and unauthorized steerability (attackers eliciting disallowed behaviors). This distinction highlights a fundamental safety--security dilemma of AI models: safety requires high steerability to enforce control (e.g., stop/refuse), while security requires low steerability for malicious actors to elicit harmful behaviors. This tension presents a significant challenge for open-weight models, which currently exhibit high steerability via common techniques like fine-tuning or adversarial attacks. Using Qwen3 and InstrumentalEval, we find that a short anti-instrumental prompt suffix sharply reduces the measured convergence rate (e.g., shutdown avoidance, self-replication). For Qwen3-30B Instruct, the convergence rate drops from 81.69% under a pro-instrumental suffix to 2.82% under an anti-instrumental suffix. Under anti-instrumental prompting, larger aligned models show lower convergence rates than smaller ones (Instruct: 2.82% vs. 4.23%; Thinking: 4.23% vs. 9.86%). Code is available at github.com/j-hoscilowicz/instrumental_steering.
DynaGuide: Steering Diffusion Polices with Active Dynamic Guidance
Deploying large, complex policies in the real world requires the ability to steer them to fit the needs of a situation. Most common steering approaches, like goal-conditioning, require training the robot policy with a distribution of test-time objectives in mind. To overcome this limitation, we present DynaGuide, a steering method for diffusion policies using guidance from an external dynamics model during the diffusion denoising process. DynaGuide separates the dynamics model from the base policy, which gives it multiple advantages, including the ability to steer towards multiple objectives, enhance underrepresented base policy behaviors, and maintain robustness on low-quality objectives. The separate guidance signal also allows DynaGuide to work with off-the-shelf pretrained diffusion policies. We demonstrate the performance and features of DynaGuide against other steering approaches in a series of simulated and real experiments, showing an average steering success of 70% on a set of articulated CALVIN tasks and outperforming goal-conditioning by 5.4x when steered with low-quality objectives. We also successfully steer an off-the-shelf real robot policy to express preference for particular objects and even create novel behavior. Videos and more can be found on the project website: https://dynaguide.github.io
Linear Personality Probing and Steering in LLMs: A Big Five Study
Large language models (LLMs) exhibit distinct and consistent personalities that greatly impact trust and engagement. While this means that personality frameworks would be highly valuable tools to characterize and control LLMs' behavior, current approaches remain either costly (post-training) or brittle (prompt engineering). Probing and steering via linear directions has recently emerged as a cheap and efficient alternative. In this paper, we investigate whether linear directions aligned with the Big Five personality traits can be used for probing and steering model behavior. Using Llama 3.3 70B, we generate descriptions of 406 fictional characters and their Big Five trait scores. We then prompt the model with these descriptions and questions from the Alpaca questionnaire, allowing us to sample hidden activations that vary along personality traits in known, quantifiable ways. Using linear regression, we learn a set of per-layer directions in activation space, and test their effectiveness for probing and steering model behavior. Our results suggest that linear directions aligned with trait-scores are effective probes for personality detection, while their steering capabilities strongly depend on context, producing reliable effects in forced-choice tasks but limited influence in open-ended generation or when additional context is present in the prompt.
Multi-property Steering of Large Language Models with Dynamic Activation Composition
Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models' intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
Steering Language Model Refusal with Sparse Autoencoders
Responsible practices for deploying language models include guiding models to recognize and refuse answering prompts that are considered unsafe, while complying with safe prompts. Achieving such behavior typically requires updating model weights, which is costly and inflexible. We explore opportunities to steering model activations at inference time, which does not require updating weights. Using sparse autoencoders, we identify and steer features in Phi-3 Mini that mediate refusal behavior. We find that feature steering can improve Phi-3 Minis robustness to jailbreak attempts across various harms, including challenging multi-turn attacks. However, we discover that feature steering can adversely affect overall performance on benchmarks. These results suggest that identifying steerable mechanisms for refusal via sparse autoencoders is a promising approach for enhancing language model safety, but that more research is needed to mitigate feature steerings adverse effects on performance.
A Causal Explainable Guardrails for Large Language Models
Large Language Models (LLMs) have shown impressive performance in natural language tasks, but their outputs can exhibit undesirable attributes or biases. Existing methods for steering LLMs toward desired attributes often assume unbiased representations and rely solely on steering prompts. However, the representations learned from pre-training can introduce semantic biases that influence the steering process, leading to suboptimal results. We propose LLMGuardrail, a novel framework that incorporates causal analysis and adversarial learning to obtain unbiased steering representations in LLMs. LLMGuardrail systematically identifies and blocks the confounding effects of biases, enabling the extraction of unbiased steering representations. Additionally, it includes an explainable component that provides insights into the alignment between the generated output and the desired direction. Experiments demonstrate LLMGuardrail's effectiveness in steering LLMs toward desired attributes while mitigating biases. Our work contributes to the development of safe and reliable LLMs that align with desired attributes.
A review of path following control strategies for autonomous robotic vehicles: theory, simulations, and experiments
This article presents an in-depth review of the topic of path following for autonomous robotic vehicles, with a specific focus on vehicle motion in two dimensional space (2D). From a control system standpoint, path following can be formulated as the problem of stabilizing a path following error system that describes the dynamics of position and possibly orientation errors of a vehicle with respect to a path, with the errors defined in an appropriate reference frame. In spite of the large variety of path following methods described in the literature we show that, in principle, most of them can be categorized in two groups: stabilization of the path following error system expressed either in the vehicle's body frame or in a frame attached to a "reference point" moving along the path, such as a Frenet-Serret (F-S) frame or a Parallel Transport (P-T) frame. With this observation, we provide a unified formulation that is simple but general enough to cover many methods available in the literature. We then discuss the advantages and disadvantages of each method, comparing them from the design and implementation standpoint. We further show experimental results of the path following methods obtained from field trials testing with under-actuated and fully-actuated autonomous marine vehicles. In addition, we introduce open-source Matlab and Gazebo/ROS simulation toolboxes that are helpful in testing path following methods prior to their integration in the combined guidance, navigation, and control systems of autonomous vehicles.
Improving Activation Steering in Language Models with Mean-Centring
Recent work in activation steering has demonstrated the potential to better control the outputs of Large Language Models (LLMs), but it involves finding steering vectors. This is difficult because engineers do not typically know how features are represented in these models. We seek to address this issue by applying the idea of mean-centring to steering vectors. We find that taking the average of activations associated with a target dataset, and then subtracting the mean of all training activations, results in effective steering vectors. We test this method on a variety of models on natural language tasks by steering away from generating toxic text, and steering the completion of a story towards a target genre. We also apply mean-centring to extract function vectors, more effectively triggering the execution of a range of natural language tasks by a significant margin (compared to previous baselines). This suggests that mean-centring can be used to easily improve the effectiveness of activation steering in a wide range of contexts.
A Course Correction in Steerability Evaluation: Revealing Miscalibration and Side Effects in LLMs
Despite advances in large language models (LLMs) on reasoning and instruction-following benchmarks, it remains unclear whether they can reliably produce outputs aligned with a broad variety of user goals, a concept we refer to as steerability. The abundance of methods proposed to modify LLM behavior makes it unclear whether current LLMs are already steerable, or require further intervention. In particular, LLMs may exhibit (i) poor coverage, where rare user goals are underrepresented; (ii) miscalibration, where models overshoot requests; and (iii) side effects, where changes to one dimension of text inadvertently affect others. To systematically evaluate these failures, we introduce a framework based on a multi-dimensional goal space that models user goals and LLM outputs as vectors with dimensions corresponding to text attributes (e.g., reading difficulty). Applied to a text-rewriting task, we find that current LLMs struggle with steerability, as side effects are persistent. Interventions to improve steerability, such as prompt engineering, best-of-N sampling, and reinforcement learning fine-tuning, have varying effectiveness, yet side effects remain problematic. Our findings suggest that even strong LLMs struggle with steerability, and existing alignment strategies may be insufficient. We open-source our steerability evaluation framework at https://github.com/MLD3/steerability.
Surrogate Modeling of Car Drag Coefficient with Depth and Normal Renderings
Generative AI models have made significant progress in automating the creation of 3D shapes, which has the potential to transform car design. In engineering design and optimization, evaluating engineering metrics is crucial. To make generative models performance-aware and enable them to create high-performing designs, surrogate modeling of these metrics is necessary. However, the currently used representations of three-dimensional (3D) shapes either require extensive computational resources to learn or suffer from significant information loss, which impairs their effectiveness in surrogate modeling. To address this issue, we propose a new two-dimensional (2D) representation of 3D shapes. We develop a surrogate drag model based on this representation to verify its effectiveness in predicting 3D car drag. We construct a diverse dataset of 9,070 high-quality 3D car meshes labeled by drag coefficients computed from computational fluid dynamics (CFD) simulations to train our model. Our experiments demonstrate that our model can accurately and efficiently evaluate drag coefficients with an R^2 value above 0.84 for various car categories. Moreover, the proposed representation method can be generalized to many other product categories beyond cars. Our model is implemented using deep neural networks, making it compatible with recent AI image generation tools (such as Stable Diffusion) and a significant step towards the automatic generation of drag-optimized car designs. We have made the dataset and code publicly available at https://decode.mit.edu/projects/dragprediction/.
MSRS: Adaptive Multi-Subspace Representation Steering for Attribute Alignment in Large Language Models
Activation steering offers a promising approach to controlling the behavior of Large Language Models by directly manipulating their internal activations. However, most existing methods struggle to jointly steer multiple attributes, often resulting in interference and undesirable trade-offs. To address this challenge, we propose Multi-Subspace Representation Steering (MSRS), a novel framework for effective multi-attribute steering via subspace representation fine-tuning. MSRS reduces inter-attribute interference by allocating orthogonal subspaces to each attribute, isolating their influence within the model's representation space. MSRS also incorporates a hybrid subspace composition strategy: it combines attribute-specific subspaces for unique steering directions with a shared subspace for common steering directions. A dynamic weighting function learns to efficiently integrate these components for precise control. During inference, MSRS introduces a token-level steering mechanism that dynamically identifies and intervenes on the most semantically relevant tokens, enabling fine-grained behavioral modulation. Experimental results show that MSRS significantly reduces attribute conflicts, surpasses existing methods across a range of attributes, and generalizes effectively to diverse downstream tasks.
One Stack to Rule them All: To Drive Automated Vehicles, and Reach for the 4th level
Most automated driving functions are designed for a specific task or vehicle. Most often, the underlying architecture is fixed to specific algorithms to increase performance. Therefore, it is not possible to deploy new modules and algorithms easily. In this paper, we present our automated driving stack which combines both scalability and adaptability. Due to the modular design, our stack allows for a fast integration and testing of novel and state-of-the-art research approaches. Furthermore, it is flexible to be used for our different testing vehicles, including modified EasyMile EZ10 shuttles and different passenger cars. These vehicles differ in multiple ways, e.g. sensor setups, control systems, maximum speed, or steering angle limitations. Finally, our stack is deployed in real world environments, including passenger transport in urban areas. Our stack includes all components needed for operating an autonomous vehicle, including localization, perception, planning, controller, and additional safety modules. Our stack is developed, tested, and evaluated in real world traffic in multiple test sites, including the Test Area Autonomous Driving Baden-W\"urttemberg.
EasyEdit2: An Easy-to-use Steering Framework for Editing Large Language Models
In this paper, we introduce EasyEdit2, a framework designed to enable plug-and-play adjustability for controlling Large Language Model (LLM) behaviors. EasyEdit2 supports a wide range of test-time interventions, including safety, sentiment, personality, reasoning patterns, factuality, and language features. Unlike its predecessor, EasyEdit2 features a new architecture specifically designed for seamless model steering. It comprises key modules such as the steering vector generator and the steering vector applier, which enable automatic generation and application of steering vectors to influence the model's behavior without modifying its parameters. One of the main advantages of EasyEdit2 is its ease of use-users do not need extensive technical knowledge. With just a single example, they can effectively guide and adjust the model's responses, making precise control both accessible and efficient. Empirically, we report model steering performance across different LLMs, demonstrating the effectiveness of these techniques. We have released the source code on GitHub at https://github.com/zjunlp/EasyEdit along with a demonstration notebook. In addition, we provide a demo video at https://zjunlp.github.io/project/EasyEdit2/video for a quick introduction.
Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic Navigation Systems using Liquid Time-Constant Networks
Magnetic navigation (MagNav) is a rising alternative to the Global Positioning System (GPS) and has proven useful for aircraft navigation. Traditional aircraft navigation systems, while effective, face limitations in precision and reliability in certain environments and against attacks. Airborne MagNav leverages the Earth's magnetic field to provide accurate positional information. However, external magnetic fields induced by aircraft electronics and Earth's large-scale magnetic fields disrupt the weaker signal of interest. We introduce a physics-informed approach using Tolles-Lawson coefficients for compensation and Liquid Time-Constant Networks (LTCs) to remove complex, noisy signals derived from the aircraft's magnetic sources. Using real flight data with magnetometer measurements and aircraft measurements, we observe up to a 64% reduction in aeromagnetic compensation error (RMSE nT), outperforming conventional models. This significant improvement underscores the potential of a physics-informed, machine learning approach for extracting clean, reliable, and accurate magnetic signals for MagNav positional estimation.
Brain-Grounded Axes for Reading and Steering LLM States
Interpretability methods for large language models (LLMs) typically derive directions from textual supervision, which can lack external grounding. We propose using human brain activity not as a training signal but as a coordinate system for reading and steering LLM states. Using the SMN4Lang MEG dataset, we construct a word-level brain atlas of phase-locking value (PLV) patterns and extract latent axes via ICA. We validate axes with independent lexica and NER-based labels (POS/log-frequency used as sanity checks), then train lightweight adapters that map LLM hidden states to these brain axes without fine-tuning the LLM. Steering along the resulting brain-derived directions yields a robust lexical (frequency-linked) axis in a mid TinyLlama layer, surviving perplexity-matched controls, and a brain-vs-text probe comparison shows larger log-frequency shifts (relative to the text probe) with lower perplexity for the brain axis. A function/content axis (axis 13) shows consistent steering in TinyLlama, Qwen2-0.5B, and GPT-2, with PPL-matched text-level corroboration. Layer-4 effects in TinyLlama are large but inconsistent, so we treat them as secondary (Appendix). Axis structure is stable when the atlas is rebuilt without GPT embedding-change features or with word2vec embeddings (|r|=0.64-0.95 across matched axes), reducing circularity concerns. Exploratory fMRI anchoring suggests potential alignment for embedding change and log frequency, but effects are sensitive to hemodynamic modeling assumptions and are treated as population-level evidence only. These results support a new interface: neurophysiology-grounded axes provide interpretable and controllable handles for LLM behavior.
GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.
GeoGuide: Geometric guidance of diffusion models
Diffusion models are among the most effective methods for image generation. This is in particular because, unlike GANs, they can be easily conditioned during training to produce elements with desired class or properties. However, guiding a pre-trained diffusion model to generate elements from previously unlabeled data is significantly more challenging. One of the possible solutions was given by the ADM-G guiding approach. Although ADM-G successfully generates elements from the given class, there is a significant quality gap compared to a model originally conditioned on this class. In particular, the FID score obtained by the ADM-G-guided diffusion model is nearly three times lower than the class-conditioned guidance. We demonstrate that this issue is partly due to ADM-G providing minimal guidance during the final stage of the denoising process. To address this problem, we propose GeoGuide, a guidance model based on tracing the distance of the diffusion model's trajectory from the data manifold. The main idea of GeoGuide is to produce normalized adjustments during the backward denoising process. As shown in the experiments, GeoGuide surpasses the probabilistic approach ADM-G with respect to both the FID scores and the quality of the generated images.
Characterizing gaussian mixture of motion modes for skid-steer state estimation
Skid-steered wheel mobile robots (SSWMRs) are characterized by the unique domination of the tire-terrain skidding for the robot to move. The lack of reliable friction models cascade into unreliable motion models, especially the reduced ordered variants used for state estimation and robot control. Ensemble modeling is an emerging research direction where the overall motion model is broken down into a family of local models to distribute the performance and resource requirement and provide a fast real-time prediction. To this end, a gaussian mixture model based modeling identification of model clusters is adopted and implemented within an interactive multiple model (IMM) based state estimation. The framework is adopted and implemented for angular velocity as the estimated state for a mid scaled skid-steered wheel mobile robot platform.
Breaking Bad Tokens: Detoxification of LLMs Using Sparse Autoencoders
Large language models (LLMs) are now ubiquitous in user-facing applications, yet they still generate undesirable toxic outputs, including profanity, vulgarity, and derogatory remarks. Although numerous detoxification methods exist, most apply broad, surface-level fixes and can therefore easily be circumvented by jailbreak attacks. In this paper we leverage sparse autoencoders (SAEs) to identify toxicity-related directions in the residual stream of models and perform targeted activation steering using the corresponding decoder vectors. We introduce three tiers of steering aggressiveness and evaluate them on GPT-2 Small and Gemma-2-2B, revealing trade-offs between toxicity reduction and language fluency. At stronger steering strengths, these causal interventions surpass competitive baselines in reducing toxicity by up to 20%, though fluency can degrade noticeably on GPT-2 Small depending on the aggressiveness. Crucially, standard NLP benchmark scores upon steering remain stable, indicating that the model's knowledge and general abilities are preserved. We further show that feature-splitting in wider SAEs hampers safety interventions, underscoring the importance of disentangled feature learning. Our findings highlight both the promise and the current limitations of SAE-based causal interventions for LLM detoxification, further suggesting practical guidelines for safer language-model deployment.
Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes LLMs' internal computations remain unclear. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective. These vectors match full fine-tuning performance while preserving the interpretability of small, additive interventions. Using logit-lens readouts and path-patching analyses on two models, we find that (i) the last-layer steering vector acts like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; (ii) the penultimate-layer vector leaves attention patterns largely intact and instead operates through the MLP and unembedding, preferentially up-weighting process words and structure symbols; and (iii) middle layers de-emphasize non-English tokens. Next, we show that a SAE isolates features associated with correct generations. We also show that steering vectors (i) transfer to other models, (ii) combine across layers when trained in isolation, and (iii) concentrate magnitude on meaningful prompt segments under adaptive token-wise scaling. Taken together, these results deepen understanding of how trained steering vectors shape computation and should inform future work in activation engineering and the study of reasoning models.
Deep Stochastic Kinematic Models for Probabilistic Motion Forecasting in Traffic
In trajectory forecasting tasks for traffic, future output trajectories can be computed by advancing the ego vehicle's state with predicted actions according to a kinematics model. By unrolling predicted trajectories via time integration and models of kinematic dynamics, predicted trajectories should not only be kinematically feasible but also relate uncertainty from one timestep to the next. While current works in probabilistic prediction do incorporate kinematic priors for mean trajectory prediction, variance is often left as a learnable parameter, despite uncertainty in one time step being inextricably tied to uncertainty in the previous time step. In this paper, we show simple and differentiable analytical approximations describing the relationship between variance at one timestep and that at the next with the kinematic bicycle model. These approximations can be easily incorporated with negligible additional overhead into any existing trajectory forecasting framework utilizing probabilistic predictions, whether it is autoregressive or one-shot prediction. In our results, we find that encoding the relationship between variance across timesteps works especially well in unoptimal settings, such as with small or noisy datasets. We observe up to a 50% performance boost in partial dataset settings and up to an 8% performance boost in large-scale learning compared to previous kinematic prediction methods on SOTA trajectory forecasting architectures out-of-the-box, with no fine-tuning. In this paper, we show four analytical formulations of probabilistic kinematic priors which can be used for any Gaussian Mixture Model (GMM)-based deep learning models, quantify the error bound on linear approximations applied during trajectory unrolling, and show results to evaluate each formulation in trajectory forecasting.
Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying activations during their forward passes. CAA computes ``steering vectors'' by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using both multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, outperforms traditional methods like finetuning and few-shot prompting, and minimally reduces capabilities. Moreover, by employing various activation space interpretation methods, we gain deeper insights into CAA's mechanisms. CAA both accurately steers model outputs and also sheds light on how high-level concepts are represented in Large Language Models (LLMs).
AxBench: Steering LLMs? Even Simple Baselines Outperform Sparse Autoencoders
Fine-grained steering of language model outputs is essential for safety and reliability. Prompting and finetuning are widely used to achieve these goals, but interpretability researchers have proposed a variety of representation-based techniques as well, including sparse autoencoders (SAEs), linear artificial tomography, supervised steering vectors, linear probes, and representation finetuning. At present, there is no benchmark for making direct comparisons between these proposals. Therefore, we introduce AxBench, a large-scale benchmark for steering and concept detection, and report experiments on Gemma-2-2B and 9B. For steering, we find that prompting outperforms all existing methods, followed by finetuning. For concept detection, representation-based methods such as difference-in-means, perform the best. On both evaluations, SAEs are not competitive. We introduce a novel weakly-supervised representational method (Rank-1 Representation Finetuning; ReFT-r1), which is competitive on both tasks while providing the interpretability advantages that prompting lacks. Along with AxBench, we train and publicly release SAE-scale feature dictionaries for ReFT-r1 and DiffMean.
Word Embeddings Are Steers for Language Models
Language models (LMs) automatically learn word embeddings during pre-training on language corpora. Although word embeddings are usually interpreted as feature vectors for individual words, their roles in language model generation remain underexplored. In this work, we theoretically and empirically revisit output word embeddings and find that their linear transformations are equivalent to steering language model generation styles. We name such steers LM-Steers and find them existing in LMs of all sizes. It requires learning parameters equal to 0.2% of the original LMs' size for steering each style. On tasks such as language model detoxification and sentiment control, LM-Steers can achieve comparable or superior performance compared with state-of-the-art controlled generation methods while maintaining a better balance with generation quality. The learned LM-Steer serves as a lens in text styles: it reveals that word embeddings are interpretable when associated with language model generations and can highlight text spans that most indicate the style differences. An LM-Steer is transferrable between different language models by an explicit form calculation. One can also continuously steer LMs simply by scaling the LM-Steer or compose multiple LM-Steers by adding their transformations. Our codes are publicly available at https://github.com/Glaciohound/LM-Steer.
Steering Evaluation-Aware Language Models to Act Like They Are Deployed
Large language models (LLMs) can sometimes detect when they are being evaluated and adjust their behavior to appear more aligned, compromising the reliability of safety evaluations. In this paper, we show that adding a steering vector to an LLM's activations can suppress evaluation-awareness and make the model act like it is deployed during evaluation. To study our steering technique, we train an LLM to exhibit evaluation-aware behavior using a two-step training process designed to mimic how this behavior could emerge naturally. First, we perform continued pretraining on documents with factual descriptions of the model (1) using Python type hints during evaluation but not during deployment and (2) recognizing that the presence of a certain evaluation cue always means that it is being tested. Then, we train the model with expert iteration to use Python type hints in evaluation settings. The resulting model is evaluation-aware: it writes type hints in evaluation contexts more than deployment contexts. We find that activation steering can suppress evaluation awareness and make the model act like it is deployed even when the cue is present. Importantly, we constructed our steering vector using the original model before our additional training. Our results suggest that AI evaluators could improve the reliability of safety evaluations by steering models to act like they are deployed.
Interacting Streams of Cognitive Active Agents in a Three-Way Intersection
The emergent collective motion of active agents - in particular pedestrians - at a three-way intersection is studied by Langevin simulations of cognitive intelligent active Brownian particles (iABPs) with directed visual perception and self-steering avoidance. Depending on the maneuverability Omega, the goal fixation K, and the vision angle psi, different types of pedestrian motion emerge. At intermediate relative maneuverability Delta = Omega/K and large psi, pedestrians have noisy trajectories due to multiple scattering events as they encounter other pedestrians in their field of view. For psi = pi and large relative maneuverability Delta, an effectively jammed state is found, which belongs to the percolation universality class. For small psi, agents exhibit localised clustering and flocking, while for intermediate psi self-organized rotational flows can emerge. The analysis of mean squared displacement and velocity auto-correlation of the agents reveals that the motion is well described by fractional Brownian Motion with positively correlated noise. Finally, despite the rich variety of collective behaviour, the fundamental flow diagram for the three-way-crossing setup shows a universal curve for the different vision angles. Our research provides valuable insights into the importance of vision angle and self-steering avoidance on pedestrian dynamics in semi-dense crowds.
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.
CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.
Temperature Steerable Flows and Boltzmann Generators
Boltzmann generators approach the sampling problem in many-body physics by combining a normalizing flow and a statistical reweighting method to generate samples in thermodynamic equilibrium. The equilibrium distribution is usually defined by an energy function and a thermodynamic state. Here we propose temperature-steerable flows (TSF) which are able to generate a family of probability densities parametrized by a choosable temperature parameter. TSFs can be embedded in generalized ensemble sampling frameworks to sample a physical system across multiple thermodynamic states.
Quantification of Actual Road User Behavior on the Basis of Given Traffic Rules
Driving on roads is restricted by various traffic rules, aiming to ensure safety for all traffic participants. However, human road users usually do not adhere to these rules strictly, resulting in varying degrees of rule conformity. Such deviations from given rules are key components of today's road traffic. In autonomous driving, robotic agents can disturb traffic flow, when rule deviations are not taken into account. In this paper, we present an approach to derive the distribution of degrees of rule conformity from human driving data. We demonstrate our method with the Waymo Open Motion dataset and Safety Distance and Speed Limit rules.
The effect of turbulence on the angular momentum of the solar wind
The transfer of a star's angular momentum to its atmosphere is a topic of considerable and wide-ranging interest in astrophysics. This letter considers the effect of kinetic and magnetic turbulence on the solar wind's angular momentum. The effects are quantified in a theoretical framework that employs Reynolds-averaged mean field magnetohydrodynamics, allowing for fluctuations of arbitrary amplitude. The model is restricted to the solar equatorial (\(r-\phi\)) plane with axial symmetry, which permits the effect of turbulence to be expressed in analytical form as a modification to the classic Weber & Davis (1967) theory, dependent on the \(r,\phi\) shear component of the Reynolds stress tensor. A solar wind simulation with turbulence transport modeling and Parker Solar Probe observations at the Alfv\'en surface are employed to quantify this turbulent modification to the solar wind's angular momentum, which is found to be ~ 3% - 10% and tends to be negative. Implications for solar and stellar rotational evolution are discussed.
On the Forward Invariance of Neural ODEs
We propose a new method to ensure neural ordinary differential equations (ODEs) satisfy output specifications by using invariance set propagation. Our approach uses a class of control barrier functions to transform output specifications into constraints on the parameters and inputs of the learning system. This setup allows us to achieve output specification guarantees simply by changing the constrained parameters/inputs both during training and inference. Moreover, we demonstrate that our invariance set propagation through data-controlled neural ODEs not only maintains generalization performance but also creates an additional degree of robustness by enabling causal manipulation of the system's parameters/inputs. We test our method on a series of representation learning tasks, including modeling physical dynamics and convexity portraits, as well as safe collision avoidance for autonomous vehicles.
Steering Large Language Models for Machine Translation Personalization
High-quality machine translation systems based on large language models (LLMs) have simplified the production of personalized translations reflecting specific stylistic constraints. However, these systems still struggle in settings where stylistic requirements are less explicit and might be harder to convey via prompting. We explore various strategies for personalizing LLM-generated translations in low-resource settings, focusing on the challenging literary translation domain. We explore prompting strategies and inference-time interventions for steering model generations towards a personalized style, and propose a contrastive framework exploiting latent concepts extracted from sparse autoencoders to identify salient personalization properties. Our results show that steering achieves strong personalization while preserving translation quality. We further examine the impact of steering on LLM representations, finding model layers with a relevant impact for personalization are impacted similarly by multi-shot prompting and our steering method, suggesting similar mechanism at play.
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.
Feedforward 3D Editing via Text-Steerable Image-to-3D
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/
State-dependent diffusion: thermodynamic consistency and its path integral formulation
The friction coefficient of a particle can depend on its position as it does when the particle is near a wall. We formulate the dynamics of particles with such state-dependent friction coefficients in terms of a general Langevin equation with multiplicative noise, whose evaluation requires the introduction of specific rules. Two common conventions, the Ito and the Stratonovich, provide alternative rules for evaluation of the noise, but other conventions are possible. We show the requirement that a particle's distribution function approach the Boltzmann distribution at long times dictates that a drift term must be added to the Langevin equation. This drift term is proportional to the derivative of the diffusion coefficient times a factor that depends on the convention used to define the multiplicative noise. We explore the consequences of this result in a number examples with spatially varying diffusion coefficients. We also derive path integral representations for arbitrary interpretation of the noise, and use it in a perturbative study of correlations in a simple system.
Nonlinear Deterministic Filter for Inertial Navigation and Bias Estimation with Guaranteed Performance
Unmanned vehicle navigation concerns estimating attitude, position, and linear velocity of the vehicle the six degrees of freedom (6 DoF). It has been known that the true navigation dynamics are highly nonlinear modeled on the Lie Group of SE_{2}(3). In this paper, a nonlinear filter for inertial navigation is proposed. The filter ensures systematic convergence of the error components starting from almost any initial condition. Also, the errors converge asymptotically to the origin. Experimental results validates the robustness of the proposed filter.
On the Learning and Learnability of Quasimetrics
Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.
Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction
Understanding drivers' decision-making is crucial for road safety. Although predicting the ego-vehicle's path is valuable for driver-assistance systems, existing methods mainly focus on external factors like other vehicles' motions, often neglecting the driver's attention and intent. To address this gap, we infer the ego-trajectory by integrating the driver's gaze and the surrounding scene. We introduce RouteFormer, a novel multimodal ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view, comprising first-person video and gaze fixations. We also present the Path Complexity Index (PCI), a new metric for trajectory complexity that enables a more nuanced evaluation of challenging scenarios. To tackle data scarcity and enhance diversity, we introduce GEM, a comprehensive dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data. Extensive evaluations on GEM and DR(eye)VE demonstrate that RouteFormer significantly outperforms state-of-the-art methods, achieving notable improvements in prediction accuracy across diverse conditions. Ablation studies reveal that incorporating driver field-of-view data yields significantly better average displacement error, especially in challenging scenarios with high PCI scores, underscoring the importance of modeling driver attention. All data and code are available at https://meakbiyik.github.io/routeformer.
SAIF: A Sparse Autoencoder Framework for Interpreting and Steering Instruction Following of Language Models
The ability of large language models (LLMs) to follow instructions is crucial for their practical applications, yet the underlying mechanisms remain poorly understood. This paper presents a novel framework that leverages sparse autoencoders (SAE) to interpret how instruction following works in these models. We demonstrate how the features we identify can effectively steer model outputs to align with given instructions. Through analysis of SAE latent activations, we identify specific latents responsible for instruction following behavior. Our findings reveal that instruction following capabilities are encoded by a distinct set of instruction-relevant SAE latents. These latents both show semantic proximity to relevant instructions and demonstrate causal effects on model behavior. Our research highlights several crucial factors for achieving effective steering performance: precise feature identification, the role of final layer, and optimal instruction positioning. Additionally, we demonstrate that our methodology scales effectively across SAEs and LLMs of varying sizes.
O(n)-invariant Riemannian metrics on SPD matrices
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introduced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.
SEAL: Steerable Reasoning Calibration of Large Language Models for Free
Large Language Models (LLMs), such as OpenAI's o1-series have demonstrated compelling capabilities for complex reasoning tasks via the extended chain-of-thought (CoT) reasoning mechanism. However, recent studies reveal substantial redundancy in the CoT reasoning traces, which not only increases inference latency but also negatively impacts model performance by diverting attention to unnecessary reasoning paths. To address this issue, we investigate the internal reasoning structures of LLMs and categorize them into three primary thought types: execution, reflection, and transition thoughts. Moreover, our analysis reveals that excessive reflection and transition thoughts are strongly correlated with failure cases and these thought categories exhibit clear separation in the latent space. Based on these, we introduce SEAL (Steerable reasoning calibration), a training-free approach that seamlessly calibrates the CoT process, improving accuracy while demonstrating significant efficiency gains. SEAL consists of an offline stage for extracting the reasoning steering vector in the latent space, followed by an on-the-fly calibration of the reasoning trace through representation intervention using the steering vector. Notably, the steering vector exhibits strong transferability across various tasks. Extensive experiments across multiple models (DeepSeek-R1-Distill and QwQ-32B-Preview) and benchmarks (Math500, GSM8K, LiveCodeBench) validate the effectiveness of SEAL, up to a 11% improvement in accuracy while reducing reasoning tokens by 11.8% to 50.4%. Our code is publicly available at https://github.com/VITA-Group/SEAL.
Model Steering: Learning with a Reference Model Improves Generalization Bounds and Scaling Laws
This paper formalizes an emerging learning paradigm that uses a trained model as a reference to guide and enhance the training of a target model through strategic data selection or weighting, named model steering. While ad-hoc methods have been used in various contexts, including the training of large foundation models, its underlying principles remain insufficiently understood, leading to sub-optimal performance. In this work, we propose a theory-driven framework for model steering called DRRho risk minimization, which is rooted in Distributionally Robust Optimization (DRO). Through a generalization analysis, we provide theoretical insights into why this approach improves generalization and data efficiency compared to training without a reference model. To the best of our knowledge, this is the first time such theoretical insights are provided for the new learning paradigm, which significantly enhance our understanding and practice of model steering. Building on these insights and the connection between contrastive learning and DRO, we introduce a novel method for Contrastive Language-Image Pretraining (CLIP) with a reference model, termed DRRho-CLIP. Extensive experiments validate the theoretical insights, reveal a superior scaling law compared to CLIP without a reference model, and demonstrate its strength over existing heuristic approaches.
DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
LEAD: Minimizing Learner-Expert Asymmetry in End-to-End Driving
Simulators can generate virtually unlimited driving data, yet imitation learning policies in simulation still struggle to achieve robust closed-loop performance. Motivated by this gap, we empirically study how misalignment between privileged expert demonstrations and sensor-based student observations can limit the effectiveness of imitation learning. More precisely, experts have significantly higher visibility (e.g., ignoring occlusions) and far lower uncertainty (e.g., knowing other vehicles' actions), making them difficult to imitate reliably. Furthermore, navigational intent (i.e., the route to follow) is under-specified in student models at test time via only a single target point. We demonstrate that these asymmetries can measurably limit driving performance in CARLA and offer practical interventions to address them. After careful modifications to narrow the gaps between expert and student, our TransFuser v6 (TFv6) student policy achieves a new state of the art on all major publicly available CARLA closed-loop benchmarks, reaching 95 DS on Bench2Drive and more than doubling prior performances on Longest6~v2 and Town13. Additionally, by integrating perception supervision from our dataset into a shared sim-to-real pipeline, we show consistent gains on the NAVSIM and Waymo Vision-Based End-to-End driving benchmarks. Our code, data, and models are publicly available at https://github.com/autonomousvision/lead.
On the Dynamics of Acceleration in First order Gradient Methods
Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method.
Incorporating Riemannian Geometric Features for Learning Coefficient of Pressure Distributions on Airplane Wings
The aerodynamic coefficients of aircrafts are significantly impacted by its geometry, especially when the angle of attack (AoA) is large. In the field of aerodynamics, traditional polynomial-based parameterization uses as few parameters as possible to describe the geometry of an airfoil. However, because the 3D geometry of a wing is more complicated than the 2D airfoil, polynomial-based parameterizations have difficulty in accurately representing the entire shape of a wing in 3D space. Existing deep learning-based methods can extract massive latent neural representations for the shape of 2D airfoils or 2D slices of wings. Recent studies highlight that directly taking geometric features as inputs to the neural networks can improve the accuracy of predicted aerodynamic coefficients. Motivated by geometry theory, we propose to incorporate Riemannian geometric features for learning Coefficient of Pressure (CP) distributions on wing surfaces. Our method calculates geometric features (Riemannian metric, connection, and curvature) and further inputs the geometric features, coordinates and flight conditions into a deep learning model to predict the CP distribution. Experimental results show that our method, compared to state-of-the-art Deep Attention Network (DAN), reduces the predicted mean square error (MSE) of CP by an average of 8.41% for the DLR-F11 aircraft test set.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
GMD: Controllable Human Motion Synthesis via Guided Diffusion Models
Denoising diffusion models have shown great promise in human motion synthesis conditioned on natural language descriptions. However, integrating spatial constraints, such as pre-defined motion trajectories and obstacles, remains a challenge despite being essential for bridging the gap between isolated human motion and its surrounding environment. To address this issue, we propose Guided Motion Diffusion (GMD), a method that incorporates spatial constraints into the motion generation process. Specifically, we propose an effective feature projection scheme that manipulates motion representation to enhance the coherency between spatial information and local poses. Together with a new imputation formulation, the generated motion can reliably conform to spatial constraints such as global motion trajectories. Furthermore, given sparse spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance approach to turn a sparse signal, which is susceptible to being ignored during the reverse steps, into denser signals to guide the generated motion to the given constraints. Our extensive experiments justify the development of GMD, which achieves a significant improvement over state-of-the-art methods in text-based motion generation while allowing control of the synthesized motions with spatial constraints.
Steering LLM Reasoning Through Bias-Only Adaptation
We show that training a single d-dimensional steering vector per layer with reinforcement learning, while freezing all base weights, matches the accuracy of fully RL-tuned reasoning models on mathematical-reasoning tasks. On an 8 billion-parameter model this adds only approx 0.0016% additional parameters and reproduces performance across a range of base models and mathematical-reasoning benchmarks. These results tighten the upper bound on the parameter budget required for high-level chain-of-thought reasoning, indicating that millions of adapter weights are unnecessary. The minimal trainable footprint reduces optimizer memory and inter-GPU communication, lowering the overall cost of fine-tuning. Moreover, a logit-lens analysis shows that the learned vectors amplify coherent token directions, providing clearer insight into the model's internal computations.
Extracting Latent Steering Vectors from Pretrained Language Models
Prior work on controllable text generation has focused on learning how to control language models through trainable decoding, smart-prompt design, or fine-tuning based on a desired objective. We hypothesize that the information needed to steer the model to generate a target sentence is already encoded within the model. Accordingly, we explore a different approach altogether: extracting latent vectors directly from pretrained language model decoders without fine-tuning. Experiments show that there exist steering vectors, which, when added to the hidden states of the language model, generate a target sentence nearly perfectly (> 99 BLEU) for English sentences from a variety of domains. We show that vector arithmetic can be used for unsupervised sentiment transfer on the Yelp sentiment benchmark, with performance comparable to models tailored to this task. We find that distances between steering vectors reflect sentence similarity when evaluated on a textual similarity benchmark (STS-B), outperforming pooled hidden states of models. Finally, we present an analysis of the intrinsic properties of the steering vectors. Taken together, our results suggest that frozen LMs can be effectively controlled through their latent steering space.
Direction-Aware Diagonal Autoregressive Image Generation
The raster-ordered image token sequence exhibits a significant Euclidean distance between index-adjacent tokens at line breaks, making it unsuitable for autoregressive generation. To address this issue, this paper proposes Direction-Aware Diagonal Autoregressive Image Generation (DAR) method, which generates image tokens following a diagonal scanning order. The proposed diagonal scanning order ensures that tokens with adjacent indices remain in close proximity while enabling causal attention to gather information from a broader range of directions. Additionally, two direction-aware modules: 4D-RoPE and direction embeddings are introduced, enhancing the model's capability to handle frequent changes in generation direction. To leverage the representational capacity of the image tokenizer, we use its codebook as the image token embeddings. We propose models of varying scales, ranging from 485M to 2.0B. On the 256times256 ImageNet benchmark, our DAR-XL (2.0B) outperforms all previous autoregressive image generators, achieving a state-of-the-art FID score of 1.37.
Diffusion Tree Sampling: Scalable inference-time alignment of diffusion models
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS^star), performs a global search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to 10times less compute. In text-to-image generation and language completion tasks, DTS^star effectively searches for high reward samples that match best-of-N with up to 5times less compute. By reusing information from previous generations, we get an anytime algorithm that turns additional compute into steadily better samples, providing a scalable approach for inference-time alignment of diffusion models.
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
An essential and challenging problem in causal inference is causal effect estimation from observational data. The problem becomes more difficult with the presence of unobserved confounding variables. The front-door adjustment is a practical approach for dealing with unobserved confounding variables. However, the restriction for the standard front-door adjustment is difficult to satisfy in practice. In this paper, we relax some of the restrictions by proposing the concept of conditional front-door (CFD) adjustment and develop the theorem that guarantees the causal effect identifiability of CFD adjustment. Furthermore, as it is often impossible for a CFD variable to be given in practice, it is desirable to learn it from data. By leveraging the ability of deep generative models, we propose CFDiVAE to learn the representation of the CFD adjustment variable directly from data with the identifiable Variational AutoEncoder and formally prove the model identifiability. Extensive experiments on synthetic datasets validate the effectiveness of CFDiVAE and its superiority over existing methods. The experiments also show that the performance of CFDiVAE is less sensitive to the causal strength of unobserved confounding variables. We further apply CFDiVAE to a real-world dataset to demonstrate its potential application.
Greed is Good: A Unifying Perspective on Guided Generation
Training-free guided generation is a widely used and powerful technique that allows the end user to exert further control over the generative process of flow/diffusion models. Generally speaking, two families of techniques have emerged for solving this problem for gradient-based guidance: namely, posterior guidance (i.e., guidance via projecting the current sample to the target distribution via the target prediction model) and end-to-end guidance (i.e., guidance by performing backpropagation throughout the entire ODE solve). In this work, we show that these two seemingly separate families can actually be unified by looking at posterior guidance as a greedy strategy of end-to-end guidance. We explore the theoretical connections between these two families and provide an in-depth theoretical of these two techniques relative to the continuous ideal gradients. Motivated by this analysis we then show a method for interpolating between these two families enabling a trade-off between compute and accuracy of the guidance gradients. We then validate this work on several inverse image problems and property-guided molecular generation.
Unsteady and inertial dynamics of an active particle in a fluid
It is well known that the reversibility of Stokes flow makes it difficult for small microorganisms to swim. Inertial effects break this reversibility, allowing new mechanisms of propulsion and feeding. Therefore it is important to understand the effects of unsteady and fluid inertia on the dynamics of microorganisms in flow. In this work, we show how to translate known inertial effects for non-motile organisms to motile ones, from passive to active particles. The method relies on a principle used earlier by Legendre and Magnaudet (1997) to deduce inertial corrections to the lift force on a bubble from the inertial drag on a solid sphere, using the fact that small inertial effects are determined by the far field of the disturbance flow. The method allows for example to compute the inertial effect of unsteady fluid accelerations on motile organisms, and the inertial forces such organisms experience in steady shear flow. We explain why the method fails to describe the effect of convective fluid inertia.
Compositionality in algorithms for smoothing
Backward Filtering Forward Guiding (BFFG) is a bidirectional algorithm proposed in Mider et al. [2021] and studied more in depth in a general setting in Van der Meulen and Schauer [2022]. In category theory, optics have been proposed for modelling systems with bidirectional data flow. We connect BFFG with optics and prove that different ways of composing the building blocks of BFFG correspond to equivalent optics.
HGNET: A Hierarchical Feature Guided Network for Occupancy Flow Field Prediction
Predicting the motion of multiple traffic participants has always been one of the most challenging tasks in autonomous driving. The recently proposed occupancy flow field prediction method has shown to be a more effective and scalable representation compared to general trajectory prediction methods. However, in complex multi-agent traffic scenarios, it remains difficult to model the interactions among various factors and the dependencies among prediction outputs at different time steps. In view of this, we propose a transformer-based hierarchical feature guided network (HGNET), which can efficiently extract features of agents and map information from visual and vectorized inputs, modeling multimodal interaction relationships. Second, we design the Feature-Guided Attention (FGAT) module to leverage the potential guiding effects between different prediction targets, thereby improving prediction accuracy. Additionally, to enhance the temporal consistency and causal relationships of the predictions, we propose a Time Series Memory framework to learn the conditional distribution models of the prediction outputs at future time steps from multivariate time series. The results demonstrate that our model exhibits competitive performance, which ranks 3rd in the 2024 Waymo Occupancy and Flow Prediction Challenge.
Simulating an Autonomous System in CARLA using ROS 2
Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).
Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes
In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.
Nonparametric Modeling of Diffusion MRI Signal in Q-space
This paper describes a novel nonparametric model for modeling diffusion MRI signals in q-space. In q-space, diffusion MRI signal is measured for a sequence of magnetic strengths (b-values) and magnetic gradient directions (b-vectors). We propose a Poly-RBF model, which employs a bidirectional framework with polynomial bases to model the signal along the b-value direction and Gaussian radial bases across the b-vectors. The model can accommodate sparse data on b-values and moderately dense data on b-vectors. The utility of Poly-RBF is inspected for two applications: 1) prediction of the dMRI signal, and 2) harmonization of dMRI data collected under different acquisition protocols with different scanners. Our results indicate that the proposed Poly-RBF model can more accurately predict the unmeasured diffusion signal than its competitors such as the Gaussian process model in {\tt Eddy} of FSL. Applying it to harmonizing the diffusion signal can significantly improve the reproducibility of derived white matter microstructure measures.
Improved Representation Steering for Language Models
Steering methods for language models (LMs) seek to provide fine-grained and interpretable control over model generations by variously changing model inputs, weights, or representations to adjust behavior. Recent work has shown that adjusting weights or representations is often less effective than steering by prompting, for instance when wanting to introduce or suppress a particular concept. We demonstrate how to improve representation steering via our new Reference-free Preference Steering (RePS), a bidirectional preference-optimization objective that jointly does concept steering and suppression. We train three parameterizations of RePS and evaluate them on AxBench, a large-scale model steering benchmark. On Gemma models with sizes ranging from 2B to 27B, RePS outperforms all existing steering methods trained with a language modeling objective and substantially narrows the gap with prompting -- while promoting interpretability and minimizing parameter count. In suppression, RePS matches the language-modeling objective on Gemma-2 and outperforms it on the larger Gemma-3 variants while remaining resilient to prompt-based jailbreaking attacks that defeat prompting. Overall, our results suggest that RePS provides an interpretable and robust alternative to prompting for both steering and suppression.
EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4times speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.
Directional Message Passing for Molecular Graphs
Graph neural networks have recently achieved great successes in predicting quantum mechanical properties of molecules. These models represent a molecule as a graph using only the distance between atoms (nodes). They do not, however, consider the spatial direction from one atom to another, despite directional information playing a central role in empirical potentials for molecules, e.g. in angular potentials. To alleviate this limitation we propose directional message passing, in which we embed the messages passed between atoms instead of the atoms themselves. Each message is associated with a direction in coordinate space. These directional message embeddings are rotationally equivariant since the associated directions rotate with the molecule. We propose a message passing scheme analogous to belief propagation, which uses the directional information by transforming messages based on the angle between them. Additionally, we use spherical Bessel functions and spherical harmonics to construct theoretically well-founded, orthogonal representations that achieve better performance than the currently prevalent Gaussian radial basis representations while using fewer than 1/4 of the parameters. We leverage these innovations to construct the directional message passing neural network (DimeNet). DimeNet outperforms previous GNNs on average by 76% on MD17 and by 31% on QM9. Our implementation is available online.
Steering Generative Models with Experimental Data for Protein Fitness Optimization
Protein fitness optimization involves finding a protein sequence that maximizes desired quantitative properties in a combinatorially large design space of possible sequences. Recent developments in steering protein generative models (e.g diffusion models, language models) offer a promising approach. However, by and large, past studies have optimized surrogate rewards and/or utilized large amounts of labeled data for steering, making it unclear how well existing methods perform and compare to each other in real-world optimization campaigns where fitness is measured by low-throughput wet-lab assays. In this study, we explore fitness optimization using small amounts (hundreds) of labeled sequence-fitness pairs and comprehensively evaluate strategies such as classifier guidance and posterior sampling for guiding generation from different discrete diffusion models of protein sequences. We also demonstrate how guidance can be integrated into adaptive sequence selection akin to Thompson sampling in Bayesian optimization, showing that plug-and-play guidance strategies offer advantages compared to alternatives such as reinforcement learning with protein language models.
Observational Signatures of Galactic Turbulent Dynamos
We analyse the observational signatures of galactic magnetic fields that are self-consistently generated in magnetohydrodynamic simulations of the interstellar medium through turbulence driven by supernova (SN) explosions and differential rotation. In particular, we study the time evolution of the Faraday rotation measure (RM), synchrotron radiation, and Stokes parameters by characterising the typical structures formed in the plane of observation. We do this by defining two distinct models for both thermal and cosmic ray (CR) electron distributions. Our results indicate that the maps of RM have structures which are sheared and rendered anisotropically by differential rotation and that they depend on the choice of thermal electrons model as well as the SN rate. Synchrotron maps are qualitatively similar to the maps of the mean magnetic field along the line of sight and structures are only marginally affected by the CR model. Stokes parameters and related quantities, such as the degree of linear polarisation, are highly dependent on both frequency and resolution of the observation.
First observation of the Josephson-Anderson relation in experiments on hydrodynamic drag
We verify a recent prediction (Eq. 3.50 in G. L. Eyink, Phys. Rev. X 11, 031054 (2021)) for the drag on an object moving through a fluid. In this prediction the velocity field is decomposed into a nonvortical (potential) and vortical contribution, and so is the associated drag force. In the Josephson-Anderson relation the vortical contribution of the drag force follows from the flux of vorticity traversing the streamlines of the corresponding potential flow. The potential component is directly determined by the plate acceleration and its added mass. The Josephson-Anderson relation is derived from the quantum description of superfluids, but remarkably applies to the classical fluid in our experiment. In our experiment a flat plate is accelerated through water using a robotic arm. This geometry is simple enough to allow analytic potential flow streamlines. The monitored plate position shows an oscillatory component of the acceleration, which adds an additional test of the Josephson-Anderson relation. The instantaneous velocity field is measured using particle image velocimetry. It enables us to evaluate Eq. 3.50 from [1] and compare its prediction to the measured drag force. We find excellent agreement, and, most remarkably find that the added mass contribution to the drag force still stands out after the flow has turned vortical. We finally comment on the requirements on the experimental techniques for evaluating the Josephson-Anderson relation.
Political Alignment in Large Language Models: A Multidimensional Audit of Psychometric Identity and Behavioral Bias
As large language models (LLMs) are increasingly integrated into social decision-making, understanding their political positioning and alignment behavior is critical for safety and fairness. This study presents a sociotechnical audit of 26 prominent LLMs, triangulating their positions across three psychometric inventories (Political Compass, SapplyValues, 8 Values) and evaluating their performance on a large-scale news labeling task (N approx 27{,}000). Our results reveal a strong clustering of models in the Libertarian-Left region of the ideological space, encompassing 96.3% of the cohort. Alignment signals appear to be consistent architectural traits rather than stochastic noise (η^2 > 0.90); however, we identify substantial discrepancies in measurement validity. In particular, the Political Compass exhibits a strong negative correlation with cultural progressivism (r=-0.64) when compared against multi-axial instruments, suggesting a conflation of social conservatism with authoritarianism in this context. We further observe a significant divergence between open-weights and closed-source models, with the latter displaying markedly higher cultural progressivism scores (p<10^{-25}). In downstream media analysis, models exhibit a systematic "center-shift," frequently categorizing neutral articles as left-leaning, alongside an asymmetric detection capability in which "Far Left" content is identified with greater accuracy (19.2%) than "Far Right" content (2.0%). These findings suggest that single-axis evaluations are insufficient and that multidimensional auditing frameworks are necessary to characterize alignment behavior in deployed LLMs. Our code and data will be made public.
Activation Addition: Steering Language Models Without Optimization
Reliably controlling the behavior of large language models is a pressing open problem. Existing methods include supervised finetuning, reinforcement learning from human feedback, prompt engineering and guided decoding. We instead investigate activation engineering: modifying activations at inference-time to predictably alter model behavior. We bias the forward pass with a 'steering vector' implicitly specified through natural language. Past work learned these steering vectors; our Activation Addition (ActAdd) method instead computes them by taking the activation differences which result from pairs of prompts. We demonstrate ActAdd on GPT-2 on OpenWebText and ConceptNet, and replicate the effect on Llama-13B and GPT-J-6B. Our approach yields inference-time control over high-level properties of output & preserves performance on off-target topics. The method requires far less compute and implementation effort than finetuning and RLHF, allows for natural language specification by users, and its overhead scales naturally with model size.
Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance
Large, general-purpose robotic policies trained on diverse demonstration datasets have been shown to be remarkably effective both for controlling a variety of robots in a range of different scenes, and for acquiring broad repertoires of manipulation skills. However, the data that such policies are trained on is generally of mixed quality -- not only are human-collected demonstrations unlikely to perform the task perfectly, but the larger the dataset is, the harder it is to curate only the highest quality examples. It also remains unclear how optimal data from one embodiment is for training on another embodiment. In this paper, we present a general and broadly applicable approach that enhances the performance of such generalist robot policies at deployment time by re-ranking their actions according to a value function learned via offline RL. This approach, which we call Value-Guided Policy Steering (V-GPS), is compatible with a wide range of different generalist policies, without needing to fine-tune or even access the weights of the policy. We show that the same value function can improve the performance of five different state-of-the-art policies with different architectures, even though they were trained on distinct datasets, attaining consistent performance improvement on multiple robotic platforms across a total of 12 tasks. Code and videos can be found at: https://nakamotoo.github.io/V-GPS
Steering MoE LLMs via Expert (De)Activation
Mixture-of-Experts (MoE) in Large Language Models (LLMs) routes each token through a subset of specialized Feed-Forward Networks (FFN), known as experts. We present SteerMoE, a framework for steering MoE models by detecting and controlling behavior-linked experts. Our detection method identifies experts with distinct activation patterns across paired inputs exhibiting contrasting behaviors. By selectively (de)activating such experts during inference, we control behaviors like faithfulness and safety without retraining or modifying weights. Across 11 benchmarks and 6 LLMs, our steering raises safety by up to +20% and faithfulness by +27%. In adversarial attack mode, it drops safety by -41% alone, and -100% when combined with existing jailbreak methods, bypassing all safety guardrails and exposing a new dimension of alignment faking hidden within experts.
Beyond Simulation: Benchmarking World Models for Planning and Causality in Autonomous Driving
World models have become increasingly popular in acting as learned traffic simulators. Recent work has explored replacing traditional traffic simulators with world models for policy training. In this work, we explore the robustness of existing metrics to evaluate world models as traffic simulators to see if the same metrics are suitable for evaluating a world model as a pseudo-environment for policy training. Specifically, we analyze the metametric employed by the Waymo Open Sim-Agents Challenge (WOSAC) and compare world model predictions on standard scenarios where the agents are fully or partially controlled by the world model (partial replay). Furthermore, since we are interested in evaluating the ego action-conditioned world model, we extend the standard WOSAC evaluation domain to include agents that are causal to the ego vehicle. Our evaluations reveal a significant number of scenarios where top-ranking models perform well under no perturbation but fail when the ego agent is forced to replay the original trajectory. To address these cases, we propose new metrics to highlight the sensitivity of world models to uncontrollable objects and evaluate the performance of world models as pseudo-environments for policy training and analyze some state-of-the-art world models under these new metrics.
Spurious Rewards Paradox: Mechanistically Understanding How RLVR Activates Memorization Shortcuts in LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) is highly effective for enhancing LLM reasoning, yet recent evidence shows models like Qwen 2.5 achieve significant gains even with spurious or incorrect rewards. We investigate this phenomenon and identify a "Perplexity Paradox": spurious RLVR triggers a divergence where answer-token perplexity drops while prompt-side coherence degrades, suggesting the model is bypassing reasoning in favor of memorization. Using Path Patching, Logit Lens, JSD analysis, and Neural Differential Equations, we uncover a hidden Anchor-Adapter circuit that facilitates this shortcut. We localize a Functional Anchor in the middle layers (L18-20) that triggers the retrieval of memorized solutions, followed by Structural Adapters in later layers (L21+) that transform representations to accommodate the shortcut signal. Finally, we demonstrate that scaling specific MLP keys within this circuit allows for bidirectional causal steering-artificially amplifying or suppressing contamination-driven performance. Our results provide a mechanistic roadmap for identifying and mitigating data contamination in RLVR-tuned models. Code is available at https://github.com/idwts/How-RLVR-Activates-Memorization-Shortcuts.
Vanishing Point Estimation in Uncalibrated Images with Prior Gravity Direction
We tackle the problem of estimating a Manhattan frame, i.e. three orthogonal vanishing points, and the unknown focal length of the camera, leveraging a prior vertical direction. The direction can come from an Inertial Measurement Unit that is a standard component of recent consumer devices, e.g., smartphones. We provide an exhaustive analysis of minimal line configurations and derive two new 2-line solvers, one of which does not suffer from singularities affecting existing solvers. Additionally, we design a new non-minimal method, running on an arbitrary number of lines, to boost the performance in local optimization. Combining all solvers in a hybrid robust estimator, our method achieves increased accuracy even with a rough prior. Experiments on synthetic and real-world datasets demonstrate the superior accuracy of our method compared to the state of the art, while having comparable runtimes. We further demonstrate the applicability of our solvers for relative rotation estimation. The code is available at https://github.com/cvg/VP-Estimation-with-Prior-Gravity.
Efficient Hyperparameter Tuning via Trajectory Invariance Principle
As hyperparameter tuning becomes increasingly costly at scale, efficient tuning methods are essential. Yet principles for guiding hyperparameter tuning remain limited. In this work, we seek to establish such principles by considering a broad range of hyperparameters, including batch size, learning rate, and weight decay. We identify a phenomenon we call trajectory invariance, where pre-training loss curves, gradient noise, and gradient norm exhibit invariance--closely overlapping--with respect to a quantity that combines learning rate and weight decay. This phenomenon effectively reduces the original two-dimensional hyperparameter space to one dimension, yielding an efficient tuning rule: follow the salient direction revealed by trajectory invariance. Furthermore, we refine previous scaling laws and challenge several existing viewpoints. Overall, our work proposes new principles for efficient tuning and inspires future research on scaling laws.
KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients
Simulators offer the possibility of safe, low-cost development of self-driving systems. However, current driving simulators exhibit na\"ive behavior models for background traffic. Hand-tuned scenarios are typically added during simulation to induce safety-critical situations. An alternative approach is to adversarially perturb the background traffic trajectories. In this paper, we study this approach to safety-critical driving scenario generation using the CARLA simulator. We use a kinematic bicycle model as a proxy to the simulator's true dynamics and observe that gradients through this proxy model are sufficient for optimizing the background traffic trajectories. Based on this finding, we propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization. By solving the scenarios generated by KING using a privileged rule-based expert algorithm, we obtain training data for an imitation learning policy. After fine-tuning on this new data, we show that the policy becomes better at avoiding collisions. Importantly, our generated data leads to reduced collisions on both held-out scenarios generated via KING as well as traditional hand-crafted scenarios, demonstrating improved robustness.
Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
Going with the Speed of Sound: Pushing Neural Surrogates into Highly-turbulent Transonic Regimes
The widespread use of neural surrogates in automotive aerodynamics, enabled by datasets such as DrivAerML and DrivAerNet++, has primarily focused on bluff-body flows with large wakes. Extending these methods to aerospace, particularly in the transonic regime, remains challenging due to the high level of non-linearity of compressible flows and 3D effects such as wingtip vortices. Existing aerospace datasets predominantly focus on 2D airfoils, neglecting these critical 3D phenomena. To address this gap, we present a new dataset of CFD simulations for 3D wings in the transonic regime. The dataset comprises volumetric and surface-level fields for around 30,000 samples with unique geometry and inflow conditions. This allows computation of lift and drag coefficients, providing a foundation for data-driven aerodynamic optimization of the drag-lift Pareto front. We evaluate several state-of-the-art neural surrogates on our dataset, including Transolver and AB-UPT, focusing on their out-of-distribution (OOD) generalization over geometry and inflow variations. AB-UPT demonstrates strong performance for transonic flowfields and reproduces physically consistent drag-lift Pareto fronts even for unseen wing configurations. Our results demonstrate that AB-UPT can approximate drag-lift Pareto fronts for unseen geometries, highlighting its potential as an efficient and effective tool for rapid aerodynamic design exploration. To facilitate future research, we open-source our dataset at https://huggingface.co/datasets/EmmiAI/Emmi-Wing.
The Connection Between R-Learning and Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects
Our motivation is to shed light the performance of the widely popular "R-Learner." Like many other methods for estimating conditional average treatment effects (CATEs), R-Learning can be expressed as a weighted pseudo-outcome regression (POR). Previous comparisons of POR techniques have paid careful attention to the choice of pseudo-outcome transformation. However, we argue that the dominant driver of performance is actually the choice of weights. Specifically, we argue that R-Learning implicitly performs an inverse-variance weighted form of POR. These weights stabilize the regression and allow for convenient simplifications of bias terms.
Steerable 3D Spherical Neurons
Emerging from low-level vision theory, steerable filters found their counterpart in prior work on steerable convolutional neural networks equivariant to rigid transformations. In our work, we propose a steerable feed-forward learning-based approach that consists of neurons with spherical decision surfaces and operates on point clouds. Such spherical neurons are obtained by conformal embedding of Euclidean space and have recently been revisited in the context of learning representations of point sets. Focusing on 3D geometry, we exploit the isometry property of spherical neurons and derive a 3D steerability constraint. After training spherical neurons to classify point clouds in a canonical orientation, we use a tetrahedron basis to quadruplicate the neurons and construct rotation-equivariant spherical filter banks. We then apply the derived constraint to interpolate the filter bank outputs and, thus, obtain a rotation-invariant network. Finally, we use a synthetic point set and real-world 3D skeleton data to verify our theoretical findings. The code is available at https://github.com/pavlo-melnyk/steerable-3d-neurons.
Generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates
We report an optical method of generating arbitrary polarization states by manipulating the thicknesses of a pair of uniaxial birefringent plates, the optical axes of which are set at a crossing angle of {\pi}/4. The method has the remarkable feature of being able to generate a distribution of arbitrary polarization states in a group of highly discrete spectra without spatially separating the individual spectral components. The target polarization-state distribution is obtained as an optimal solution through an exploration. Within a realistic exploration range, a sufficient number of near-optimal solutions are found. This property is also reproduced well by a concise model based on a distribution of exploration points on a Poincar\'e sphere, showing that the number of near-optimal solutions behaves according to a power law with respect to the number of spectral components of concern. As a typical example of an application, by applying this method to a set of phase-locked highly discrete spectra, we numerically demonstrate the continuous generation of a vector-like optical electric field waveform, the helicity of which is alternated within a single optical cycle in the time domain.
LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models
Large Language Models (LLMs) often generate inconsistent responses when prompted with semantically equivalent paraphrased inputs. Recently, activation steering, a technique that modulates LLMs' behaviours by adjusting their latent representations during inference time, has been explored to improve the semantic consistency of LLMs. However, these methods typically operate at the model component level, such as layer hidden states or attention head outputs. They face a challenge due to the ``polysemanticity issue'', where the model components of LLMs typically encode multiple entangled features, making precise steering difficult. To address this challenge, we drill down to feature-level representations and propose LF-Steering, a novel activation steering approach to precisely identify latent feature representations responsible for semantic inconsistency. More specifically, our method maps the hidden states of the relevant transformer layer into a sparsely activated, high-dimensional feature space based on a sparse autoencoder (SAE), ensuring model steering based on decoupled feature representations with minimal interference. Comprehensive experiments on NLU and NLG datasets demonstrate the effectiveness of our method in enhancing semantic consistency, resulting in significant performance gains for various NLU and NLG tasks.
Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs
Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.
Does Physical Adversarial Example Really Matter to Autonomous Driving? Towards System-Level Effect of Adversarial Object Evasion Attack
In autonomous driving (AD), accurate perception is indispensable to achieving safe and secure driving. Due to its safety-criticality, the security of AD perception has been widely studied. Among different attacks on AD perception, the physical adversarial object evasion attacks are especially severe. However, we find that all existing literature only evaluates their attack effect at the targeted AI component level but not at the system level, i.e., with the entire system semantics and context such as the full AD pipeline. Thereby, this raises a critical research question: can these existing researches effectively achieve system-level attack effects (e.g., traffic rule violations) in the real-world AD context? In this work, we conduct the first measurement study on whether and how effectively the existing designs can lead to system-level effects, especially for the STOP sign-evasion attacks due to their popularity and severity. Our evaluation results show that all the representative prior works cannot achieve any system-level effects. We observe two design limitations in the prior works: 1) physical model-inconsistent object size distribution in pixel sampling and 2) lack of vehicle plant model and AD system model consideration. Then, we propose SysAdv, a novel system-driven attack design in the AD context and our evaluation results show that the system-level effects can be significantly improved, i.e., the violation rate increases by around 70%.
Diverse Score Distillation
Score distillation of 2D diffusion models has proven to be a powerful mechanism to guide 3D optimization, for example enabling text-based 3D generation or single-view reconstruction. A common limitation of existing score distillation formulations, however, is that the outputs of the (mode-seeking) optimization are limited in diversity despite the underlying diffusion model being capable of generating diverse samples. In this work, inspired by the sampling process in denoising diffusion, we propose a score formulation that guides the optimization to follow generation paths defined by random initial seeds, thus ensuring diversity. We then present an approximation to adopt this formulation for scenarios where the optimization may not precisely follow the generation paths (e.g. a 3D representation whose renderings evolve in a co-dependent manner). We showcase the applications of our `Diverse Score Distillation' (DSD) formulation across tasks such as 2D optimization, text-based 3D inference, and single-view reconstruction. We also empirically validate DSD against prior score distillation formulations and show that it significantly improves sample diversity while preserving fidelity.
Bootstrap Motion Forecasting With Self-Consistent Constraints
We present a novel framework for motion forecasting with Dual Consistency Constraints and Multi-Pseudo-Target supervision. The motion forecasting task predicts future trajectories of vehicles by incorporating spatial and temporal information from the past. A key design of DCMS is the proposed Dual Consistency Constraints that regularize the predicted trajectories under spatial and temporal perturbation during the training stage. In addition, we design a novel self-ensembling scheme to obtain accurate pseudo targets to model the multi-modality in motion forecasting through supervision with multiple targets explicitly, namely Multi-Pseudo-Target supervision. Our experimental results on the Argoverse motion forecasting benchmark show that DCMS significantly outperforms the state-of-the-art methods, achieving 1st place on the leaderboard. We also demonstrate that our proposed strategies can be incorporated into other motion forecasting approaches as general training schemes.
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.
Adaptive Testing for Connected and Automated Vehicles with Sparse Control Variates in Overtaking Scenarios
Testing and evaluation is a critical step in the development and deployment of connected and automated vehicles (CAVs). Due to the black-box property and various types of CAVs, how to test and evaluate CAVs adaptively remains a major challenge. Many approaches have been proposed to adaptively generate testing scenarios during the testing process. However, most existing approaches cannot be applied to complex scenarios, where the variables needed to define such scenarios are high dimensional. Towards filling this gap, the adaptive testing with sparse control variates method is proposed in this paper. Instead of adaptively generating testing scenarios, our approach evaluates CAVs' performances by adaptively utilizing the testing results. Specifically, each testing result is adjusted using multiple linear regression techniques based on control variates. As the regression coefficients can be adaptively optimized for the CAV under test, using the adjusted results can reduce the estimation variance, compared with using the testing results directly. To overcome the high dimensionality challenge, sparse control variates are utilized only for the critical variables of testing scenarios. To validate the proposed method, the high-dimensional overtaking scenarios are investigated, and the results demonstrate that our approach can further accelerate the evaluation process by about 30 times.
Are We Really Learning the Score Function? Reinterpreting Diffusion Models Through Wasserstein Gradient Flow Matching
Diffusion models are commonly interpreted as learning the score function, i.e., the gradient of the log-density of noisy data. However, this assumption implies that the target of learning is a conservative vector field, which is not enforced by the neural network architectures used in practice. We present numerical evidence that trained diffusion networks violate both integral and differential constraints required of true score functions, demonstrating that the learned vector fields are not conservative. Despite this, the models perform remarkably well as generative mechanisms. To explain this apparent paradox, we advocate a new theoretical perspective: diffusion training is better understood as flow matching to the velocity field of a Wasserstein Gradient Flow (WGF), rather than as score learning for a reverse-time stochastic differential equation. Under this view, the "probability flow" arises naturally from the WGF framework, eliminating the need to invoke reverse-time SDE theory and clarifying why generative sampling remains successful even when the neural vector field is not a true score. We further show that non-conservative errors from neural approximation do not necessarily harm density transport. Our results advocate for adopting the WGF perspective as a principled, elegant, and theoretically grounded framework for understanding diffusion generative models.
A Third-Order Gaussian Process Trajectory Representation Framework with Closed-Form Kinematics for Continuous-Time Motion Estimation
In this paper, we propose a third-order, i.e., white-noise-on-jerk, Gaussian Process (GP) Trajectory Representation (TR) framework for continuous-time (CT) motion estimation (ME) tasks. Our framework features a unified trajectory representation that encapsulates the kinematic models of both SO(3)timesR^3 and SE(3) pose representations. This encapsulation strategy allows users to use the same implementation of measurement-based factors for either choice of pose representation, which facilitates experimentation and comparison to achieve the best model for the ME task. In addition, unique to our framework, we derive the kinematic models with the closed-form temporal derivatives of the local variable of SO(3) and SE(3), which so far has only been approximated based on the Taylor expansion in the literature. Our experiments show that these kinematic models can improve the estimation accuracy in high-speed scenarios. All analytical Jacobians of the interpolated states with respect to the support states of the trajectory representation, as well as the motion prior factors, are also provided for accelerated Gauss-Newton (GN) optimization. Our experiments demonstrate the efficacy and efficiency of the framework in various motion estimation tasks such as localization, calibration, and odometry, facilitating fast prototyping for ME researchers. We release the source code for the benefit of the community. Our project is available at https://github.com/brytsknguyen/gptr.
Roto-translated Local Coordinate Frames For Interacting Dynamical Systems
Modelling interactions is critical in learning complex dynamical systems, namely systems of interacting objects with highly non-linear and time-dependent behaviour. A large class of such systems can be formalized as geometric graphs, i.e., graphs with nodes positioned in the Euclidean space given an arbitrarily chosen global coordinate system, for instance vehicles in a traffic scene. Notwithstanding the arbitrary global coordinate system, the governing dynamics of the respective dynamical systems are invariant to rotations and translations, also known as Galilean invariance. As ignoring these invariances leads to worse generalization, in this work we propose local coordinate frames per node-object to induce roto-translation invariance to the geometric graph of the interacting dynamical system. Further, the local coordinate frames allow for a natural definition of anisotropic filtering in graph neural networks. Experiments in traffic scenes, 3D motion capture, and colliding particles demonstrate that the proposed approach comfortably outperforms the recent state-of-the-art.
Critical scaling law for the deposition efficiency of inertia-driven particle collisions with a cylinder in high Reynolds number air flow
The Earth's atmosphere is an aerosol, it contains suspended particles. When air flows over an obstacle such as an aircraft wing or tree branch, these particles may not follow the same paths as the air flowing around the obstacle. Instead the particles in the air may deviate from the path of the air and so collide with the surface of the obstacle. It is known that particle inertia can drive this deposition, and that there is a critical value of this inertia, below which no point particles deposit. Particle inertia is measured by the Stokes number, St. We show that near the critical value of the Stokes number, St_c, the amount of deposition has the unusual scaling law of exp(-1/(St-St_c)^{1/2}). The scaling is controlled by the stagnation point of the flow. This scaling is determined by the time for the particle to reach the surface of the cylinder varying as 1/(St-St_c)^{1/2}, together with the distance away from the stagnation point (perpendicular to the flow direction) increasing exponentially with time. The scaling law applies to inviscid flow, a model for flow at high Reynolds numbers. The unusual scaling means that the amount of particles deposited increases only very slowly above the critical Stokes number. This has consequences for applications ranging from rime formation and fog harvesting to pollination.
Steering When Necessary: Flexible Steering Large Language Models with Backtracking
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.
Solar-cycle variations in meridional flows and rotational shear within the Sun's near-surface shear layer
Using solar-cycle long helioseismic measurements of meridional and zonal flows in the near-surface shear layer (NSSL) of the Sun, we study their spatio-temporal variations and connections to active regions. We find that near-surface inflows towards active latitudes are part of a local circulation with an outflow away from them at depths around 0.97 R, which is also the location where the deviations in the radial gradient of rotation change sign. These results, together with opposite-signed changes over latitude and depth in the above quantities observed during the solar minimum period, point to the action of the Coriolis force on large-scale flows as the primary cause of changes in the rotation gradient within the NSSL. We also find that such Coriolis force-mediated changes in near-surface flows towards active latitudes only marginally change the amplitude of zonal flow and hence are not likely to be its driving force. Our measurements typically achieve a high signal-to-noise ratio (>5σ) for near-surface flows but can drop to 3σ near the base (0.95 R) of the NSSL. Close agreements between the depth profiles of changes in rotation gradient and in meridional flows measured from quite different global and local helioseismic techniques, respectively, show that the results are not dependent on the analysis techniques.
Experimental demonstration of superdirective spherical dielectric antenna
An experimental demonstration of directivities exceeding the fundamental Kildal limit, a phenomenon called superdirectivity, is provided for spherical high-index dielectric antennas with an electric dipole excitation. A directivity factor of about 10 with a total efficiency of more than 80\% for an antenna having a size of a third of the wavelength was measured. High directivities are shown to be associated with constructive interference of particular electric and magnetic modes of an open spherical resonator. Both analytic solution for a point dipole and a full-wave rigorous simulation for a realistic dipole antenna were employed for optimization and analysis, yielding an excellent agreement between experimentally measured and numerically predicted directivities. The use of high-index low-loss ceramics can significantly reduce the physical size of such antennas while maintaining their overall high radiation efficiency. Such antennas can be attractive for various high-frequency applications, such as antennas for the Internet of things, smart city systems, 5G network systems, and others. The demonstrated concept can be scaled in frequency.
Reflected Flow Matching
Continuous normalizing flows (CNFs) learn an ordinary differential equation to transform prior samples into data. Flow matching (FM) has recently emerged as a simulation-free approach for training CNFs by regressing a velocity model towards the conditional velocity field. However, on constrained domains, the learned velocity model may lead to undesirable flows that result in highly unnatural samples, e.g., oversaturated images, due to both flow matching error and simulation error. To address this, we add a boundary constraint term to CNFs, which leads to reflected CNFs that keep trajectories within the constrained domains. We propose reflected flow matching (RFM) to train the velocity model in reflected CNFs by matching the conditional velocity fields in a simulation-free manner, similar to the vanilla FM. Moreover, the analytical form of conditional velocity fields in RFM avoids potentially biased approximations, making it superior to existing score-based generative models on constrained domains. We demonstrate that RFM achieves comparable or better results on standard image benchmarks and produces high-quality class-conditioned samples under high guidance weight.
Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension
The Empirical Interpolation Method (EIM) is a greedy procedure that constructs approximate representations of two-variable functions in separated form. In its classical presentation, the two variables play a non-symmetric role. In this work, we give an equivalent definition of the EIM approximation, in which the two variables play symmetric roles. Then, we give a proof for the existence of this approximation, and extend it up to the convergence of the EIM, and for any norm chosen to compute the error in the greedy step. Finally, we introduce a way to compute a separated representation in the case where the number of selected values is different for each variable. In the case of a physical field measured by sensors, this is useful to discard a broken sensor while keeping the information provided by the associated selected field.
Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs
This paper presents the development of a comprehensive dataset capturing interactions between Autonomous Vehicles (AVs) and traffic control devices, specifically traffic lights and stop signs. Derived from the Waymo Motion dataset, our work addresses a critical gap in the existing literature by providing real-world trajectory data on how AVs navigate these traffic control devices. We propose a methodology for identifying and extracting relevant interaction trajectory data from the Waymo Motion dataset, incorporating over 37,000 instances with traffic lights and 44,000 with stop signs. Our methodology includes defining rules to identify various interaction types, extracting trajectory data, and applying a wavelet-based denoising method to smooth the acceleration and speed profiles and eliminate anomalous values, thereby enhancing the trajectory quality. Quality assessment metrics indicate that trajectories obtained in this study have anomaly proportions in acceleration and jerk profiles reduced to near-zero levels across all interaction categories. By making this dataset publicly available, we aim to address the current gap in datasets containing AV interaction behaviors with traffic lights and signs. Based on the organized and published dataset, we can gain a more in-depth understanding of AVs' behavior when interacting with traffic lights and signs. This will facilitate research on AV integration into existing transportation infrastructures and networks, supporting the development of more accurate behavioral models and simulation tools.
Directional Bias Amplification
Mitigating bias in machine learning systems requires refining our understanding of bias propagation pathways: from societal structures to large-scale data to trained models to impact on society. In this work, we focus on one aspect of the problem, namely bias amplification: the tendency of models to amplify the biases present in the data they are trained on. A metric for measuring bias amplification was introduced in the seminal work by Zhao et al. (2017); however, as we demonstrate, this metric suffers from a number of shortcomings including conflating different types of bias amplification and failing to account for varying base rates of protected attributes. We introduce and analyze a new, decoupled metric for measuring bias amplification, BiasAmp_{rightarrow} (Directional Bias Amplification). We thoroughly analyze and discuss both the technical assumptions and normative implications of this metric. We provide suggestions about its measurement by cautioning against predicting sensitive attributes, encouraging the use of confidence intervals due to fluctuations in the fairness of models across runs, and discussing the limitations of what this metric captures. Throughout this paper, we work to provide an interrogative look at the technical measurement of bias amplification, guided by our normative ideas of what we want it to encompass. Code is located at https://github.com/princetonvisualai/directional-bias-amp
Extended vehicle energy dataset (eVED): an enhanced large-scale dataset for deep learning on vehicle trip energy consumption
This work presents an extended version of the Vehicle Energy Dataset (VED), which is a openly released large-scale dataset for vehicle energy consumption analysis. Compared with its original version, the extended VED (eVED) dataset is enhanced with accurate vehicle trip GPS coordinates, serving as a basis to associate the VED trip records with external information, e.g., road speed limit and intersections, from accessible map services to accumulate attributes that is essential in analyzing vehicle energy consumption. In particularly, we calibrate all the GPS trace records in the original VED data, upon which we associated the VED data with attributes extracted from the Geographic Information System (QGIS), the Overpass API, the Open Street Map API, and Google Maps API. The associated attributes include 12,609,170 records of road elevation, 12,203,044 of speed limit, 12,281,719 of speed limit with direction (in case the road is bi-directional), 584,551 of intersections, 429,638 of bus stop, 312,196 of crossings, 195,856 of traffic signals, 29,397 of stop signs, 5,848 of turning loops, 4,053 of railway crossings (level crossing), 3,554 of turning circles, and 2,938 of motorway junctions. With the accurate GPS coordinates and enriched features of the vehicle trip record, the obtained eVED dataset can provide a precise and abundant medium to feed a learning engine, especially a deep learning engine that is more demanding on data sufficiency and richness. Moreover, our software work for data calibration and enrichment can be reused to generate further vehicle trip datasets for specific user cases, contributing to deep insights into vehicle behaviors and traffic dynamics analyses. We anticipate that the eVED dataset and our data enrichment software can serve the academic and industrial automotive section as apparatus in developing future technologies.
Classifying pedestrian crossing flows: A data-driven approach using fundamental diagrams and machine learning
This study investigates the dynamics of pedestrian crossing flows with varying crossing angles α to classify different scenarios and derive implications for crowd management. Probability density functions of four key features-velocity v, density ρ, avoidance number Av, and intrusion number In-were analyzed to characterize pedestrian behavior. Velocity-density fundamental diagrams were constructed for each α and fitted with functional forms from existing literature. Classification attempts using Av-In and v-ρ phase spaces revealed significant overlaps, highlighting the limitations of these metrics alone for scenario differentiation. To address this, machine learning models, including logistic regression and random forest, were employed using all four features. Results showed robust classification performance, with v and Av contributing most significantly. Insights from feature importance metrics and classification accuracy offer practical guidance for managing high-density crowds, optimizing pedestrian flow, and designing safer public spaces. These findings provide a data-driven framework for advancing pedestrian dynamics research.
Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals
Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.
Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models
Guidance is a crucial technique for extracting the best performance out of image-generating diffusion models. Traditionally, a constant guidance weight has been applied throughout the sampling chain of an image. We show that guidance is clearly harmful toward the beginning of the chain (high noise levels), largely unnecessary toward the end (low noise levels), and only beneficial in the middle. We thus restrict it to a specific range of noise levels, improving both the inference speed and result quality. This limited guidance interval improves the record FID in ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and qualitatively beneficial across different sampler parameters, network architectures, and datasets, including the large-scale setting of Stable Diffusion XL. We thus suggest exposing the guidance interval as a hyperparameter in all diffusion models that use guidance.
Adaptive Field Effect Planner for Safe Interactive Autonomous Driving on Curved Roads
Autonomous driving has garnered significant attention for its potential to improve safety, traffic efficiency, and user convenience. However, the dynamic and complex nature of interactive driving poses significant challenges, including the need to navigate non-linear road geometries, handle dynamic obstacles, and meet stringent safety and comfort requirements. Traditional approaches, such as artificial potential fields (APF), often fall short in addressing these complexities independently, necessitating the development of integrated and adaptive frameworks. This paper presents a novel approach to autonomous vehicle navigation that integrates artificial potential fields, Frenet coordinates, and improved particle swarm optimization (IPSO). A dynamic risk field, adapted from traditional APF, is proposed to ensure interactive safety by quantifying risks and dynamically adjusting lane-changing intentions based on surrounding vehicle behavior. Frenet coordinates are utilized to simplify trajectory planning on non-straight roads, while an enhanced quintic polynomial trajectory generator ensures smooth and comfortable path transitions. Additionally, an IPSO algorithm optimizes trajectory selection in real time, balancing safety and user comfort within a feasible input range. The proposed framework is validated through extensive simulations and real-world scenarios, demonstrating its ability to navigate complex traffic environments, maintain safety margins, and generate smooth, dynamically feasible trajectories.
Classification of BCI-EEG based on augmented covariance matrix
Objective: Electroencephalography signals are recorded as a multidimensional dataset. We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification. Methods: From the autoregressive model can be derived the Yule-Walker equations, which show the emergence of a symmetric positive definite matrix: the augmented covariance matrix. The state-of the art for classifying covariance matrices is based on Riemannian Geometry. A fairly natural idea is therefore to extend the standard approach using these augmented covariance matrices. The methodology for creating the augmented covariance matrix shows a natural connection with the delay embedding theorem proposed by Takens for dynamical systems. Such an embedding method is based on the knowledge of two parameters: the delay and the embedding dimension, respectively related to the lag and the order of the autoregressive model. This approach provides new methods to compute the hyper-parameters in addition to standard grid search. Results: The augmented covariance matrix performed noticeably better than any state-of-the-art methods. We will test our approach on several datasets and several subjects using the MOABB framework, using both within-session and cross-session evaluation. Conclusion: The improvement in results is due to the fact that the augmented covariance matrix incorporates not only spatial but also temporal information, incorporating nonlinear components of the signal through an embedding procedure, which allows the leveraging of dynamical systems algorithms. Significance: These results extend the concepts and the results of the Riemannian distance based classification algorithm.
Impact, Attention, Influence: Early Assessment of Autonomous Driving Datasets
Autonomous Driving (AD), the area of robotics with the greatest potential impact on society, has gained a lot of momentum in the last decade. As a result of this, the number of datasets in AD has increased rapidly. Creators and users of datasets can benefit from a better understanding of developments in the field. While scientometric analysis has been conducted in other fields, it rarely revolves around datasets. Thus, the impact, attention, and influence of datasets on autonomous driving remains a rarely investigated field. In this work, we provide a scientometric analysis for over 200 datasets in AD. We perform a rigorous evaluation of relations between available metadata and citation counts based on linear regression. Subsequently, we propose an Influence Score to assess a dataset already early on without the need for a track-record of citations, which is only available with a certain delay.
