1 Generative Modelling for Controllable Audio Synthesis of Expressive Piano Performance We present a controllable neural audio synthesizer based on Gaussian Mixture Variational Autoencoders (GM-VAE), which can generate realistic piano performances in the audio domain that closely follows temporal conditions of two essential style features for piano performances: articulation and dynamics. We demonstrate how the model is able to apply fine-grained style morphing over the course of synthesizing the audio. This is based on conditions which are latent variables that can be sampled from the prior or inferred from other pieces. One of the envisioned use cases is to inspire creative and brand new interpretations for existing pieces of piano music. 3 authors · Jun 16, 2020
- StyleGAN2 Distillation for Feed-forward Image Manipulation StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing images requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human faces' transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method is comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks. 3 authors · Mar 7, 2020