|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Mimi model configuration""" |
|
|
|
|
|
import math |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class MimiConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of an [`MimiModel`]. It is used to instantiate a |
|
|
Mimi model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
|
with the defaults will yield a similar configuration to that of the |
|
|
[kyutai/mimi](https://huggingface.co/kyutai/mimi) architecture. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
sampling_rate (`int`, *optional*, defaults to 24000): |
|
|
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz). |
|
|
frame_rate (`float`, *optional*): |
|
|
Should be computed from the other parameters, yet kept for backward compatibility. |
|
|
audio_channels (`int`, *optional*, defaults to 1): |
|
|
Number of channels in the audio data. Either 1 for mono or 2 for stereo. |
|
|
hidden_size (`int`, *optional*, defaults to 512): |
|
|
Intermediate representation dimension. |
|
|
num_filters (`int`, *optional*, defaults to 64): |
|
|
Number of convolution kernels of first `MimiConv1d` down sampling layer. |
|
|
num_residual_layers (`int`, *optional*, defaults to 1): |
|
|
Number of residual layers. |
|
|
upsampling_ratios (`Sequence[int]`, *optional*): |
|
|
Kernel size and stride ratios. The encoder uses downsampling ratios instead of upsampling ratios, hence it |
|
|
will use the ratios in the reverse order to the ones specified here that must match the decoder order. |
|
|
If not specified, will defaults to `[8, 6, 5, 4]` |
|
|
kernel_size (`int`, *optional*, defaults to 7): |
|
|
Kernel size for the initial convolution. |
|
|
last_kernel_size (`int`, *optional*, defaults to 3): |
|
|
Kernel size for the last convolution layer. |
|
|
residual_kernel_size (`int`, *optional*, defaults to 3): |
|
|
Kernel size for the residual layers. |
|
|
dilation_growth_rate (`int`, *optional*, defaults to 2): |
|
|
How much to increase the dilation with each layer. |
|
|
use_causal_conv (`bool`, *optional*, defaults to `True`): |
|
|
Whether to use fully causal convolution. |
|
|
pad_mode (`str`, *optional*, defaults to `"constant"`): |
|
|
Padding mode for the convolutions. |
|
|
compress (`int`, *optional*, defaults to 2): |
|
|
Reduced dimensionality in residual branches. |
|
|
trim_right_ratio (`float`, *optional*, defaults to 1.0): |
|
|
Ratio for trimming at the right of the transposed convolution under the `use_causal_conv = True` setup. If |
|
|
equal to 1.0, it means that all the trimming is done at the right. |
|
|
codebook_size (`int`, *optional*, defaults to 2048): |
|
|
Number of discret codes in each codebooks. |
|
|
codebook_dim (`int`, *optional*, defaults to 256): |
|
|
Dimension of the unquantized codebook vectors. If not defined, uses `hidden_size`. |
|
|
num_quantizers (`int`, *optional*, defaults to 32): |
|
|
Number of quantizer channels, or codebooks, in the quantizer. |
|
|
use_conv_shortcut (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a convolutional layer as the 'skip' connection in the `MimiResnetBlock` block. If False, |
|
|
an identity function will be used, giving a generic residual connection. |
|
|
vector_quantization_hidden_dimension (`int`, *optional*, defaults to 256): |
|
|
Intermediate representation dimension in the residual vector quantization space. |
|
|
num_semantic_quantizers (`int`, *optional*, defaults to 1): |
|
|
Number of semantic quantizer channels, or codebooks, in the semantic quantizer. Must be lower than `num_quantizers`. |
|
|
upsample_groups (`int`, *optional*, defaults to 512): |
|
|
If `frame_rate!=encodec_frame_rate`, indicates the number of groups used in the upsampling operation to go from one rate to another. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 8): |
|
|
Number of hidden layers in the Transformer models. |
|
|
intermediate_size (`int`, *optional*, defaults to 2048): |
|
|
Dimension of the MLP representations. |
|
|
num_attention_heads (`int`, *optional*, defaults to 8): |
|
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
|
by meanpooling all the original heads within that group. For more details, check out [this |
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`. |
|
|
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`): |
|
|
The attention head dimension. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 8000): |
|
|
The maximum sequence length that this model might ever be used with. Mimi's sliding window attention |
|
|
allows sequence of up to 8000 tokens. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
norm_eps (`float`, *optional*, defaults to 1e-05): |
|
|
The epsilon used by the LayerNorm normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `False`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
use_streaming (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use streaming mode. If `True`, the model encode method will return the padding cache that can be used in a subsequent call to the encode method. |
|
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
sliding_window (`int`, *optional*, defaults to 250): |
|
|
Sliding window attention window size. If not specified, will default to `250`. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
layer_scale_initial_scale (`float`, *optional*, defaults to 0.01): |
|
|
Initiale scale of the residual rescaling operation done in the Transformer models. |
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
Example: |
|
|
|
|
|
```python |
|
|
>>> from transformers import MimiModel, MimiConfig |
|
|
|
|
|
>>> # Initializing a "kyutai/mimi" style configuration |
|
|
>>> configuration = MimiConfig() |
|
|
|
|
|
>>> # Initializing a model (with random weights) from the "kyutai/mimi" style configuration |
|
|
>>> model = MimiModel(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "mimi" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
sampling_rate=24_000, |
|
|
frame_rate=None, |
|
|
audio_channels=1, |
|
|
hidden_size=512, |
|
|
num_filters=64, |
|
|
num_residual_layers=1, |
|
|
upsampling_ratios=None, |
|
|
kernel_size=7, |
|
|
last_kernel_size=3, |
|
|
residual_kernel_size=3, |
|
|
dilation_growth_rate=2, |
|
|
use_causal_conv=True, |
|
|
pad_mode="constant", |
|
|
compress=2, |
|
|
trim_right_ratio=1.0, |
|
|
codebook_size=2048, |
|
|
codebook_dim=256, |
|
|
num_quantizers=32, |
|
|
use_conv_shortcut=False, |
|
|
vector_quantization_hidden_dimension=256, |
|
|
num_semantic_quantizers=1, |
|
|
upsample_groups=512, |
|
|
num_hidden_layers=8, |
|
|
intermediate_size=2048, |
|
|
num_attention_heads=8, |
|
|
num_key_value_heads=8, |
|
|
head_dim=None, |
|
|
hidden_act="gelu", |
|
|
max_position_embeddings=8000, |
|
|
initializer_range=0.02, |
|
|
norm_eps=1e-5, |
|
|
use_cache=False, |
|
|
use_streaming=False, |
|
|
rope_theta=10000.0, |
|
|
sliding_window=250, |
|
|
attention_dropout=0.0, |
|
|
layer_scale_initial_scale=0.01, |
|
|
attention_bias=False, |
|
|
**kwargs, |
|
|
): |
|
|
self.sampling_rate = sampling_rate |
|
|
self.audio_channels = audio_channels |
|
|
self.hidden_size = hidden_size |
|
|
self.num_filters = num_filters |
|
|
self.num_residual_layers = num_residual_layers |
|
|
self.upsampling_ratios = upsampling_ratios if upsampling_ratios else [8, 6, 5, 4] |
|
|
self.kernel_size = kernel_size |
|
|
self.last_kernel_size = last_kernel_size |
|
|
self.residual_kernel_size = residual_kernel_size |
|
|
self.dilation_growth_rate = dilation_growth_rate |
|
|
self.use_causal_conv = use_causal_conv |
|
|
self.pad_mode = pad_mode |
|
|
self.compress = compress |
|
|
self.trim_right_ratio = trim_right_ratio |
|
|
self.codebook_size = codebook_size |
|
|
self.codebook_dim = codebook_dim if codebook_dim is not None else hidden_size |
|
|
self.num_quantizers = num_quantizers |
|
|
self.use_conv_shortcut = use_conv_shortcut |
|
|
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension |
|
|
self.upsample_groups = upsample_groups |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.initializer_range = initializer_range |
|
|
self.norm_eps = norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.use_streaming = use_streaming |
|
|
self.rope_theta = rope_theta |
|
|
self.sliding_window = sliding_window |
|
|
self.attention_dropout = attention_dropout |
|
|
self.head_dim = head_dim or hidden_size // num_attention_heads |
|
|
self.layer_scale_initial_scale = layer_scale_initial_scale |
|
|
self.attention_bias = attention_bias |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if frame_rate is not None: |
|
|
self._frame_rate = frame_rate |
|
|
else: |
|
|
self._frame_rate = None |
|
|
|
|
|
if num_semantic_quantizers >= self.num_quantizers: |
|
|
raise ValueError( |
|
|
f"The number of semantic quantizers should be lower than the total number of quantizers {self.num_quantizers}, but is currently {num_semantic_quantizers}." |
|
|
) |
|
|
self.num_semantic_quantizers = num_semantic_quantizers |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
@property |
|
|
def encodec_frame_rate(self) -> int: |
|
|
hop_length = np.prod(self.upsampling_ratios) |
|
|
return math.ceil(self.sampling_rate / hop_length) |
|
|
|
|
|
@property |
|
|
def num_codebooks(self) -> int: |
|
|
|
|
|
return self.num_quantizers |
|
|
|
|
|
@property |
|
|
def frame_size(self) -> int: |
|
|
|
|
|
|
|
|
strides = [1] |
|
|
|
|
|
|
|
|
for ratio in reversed(self.upsampling_ratios): |
|
|
for j in range(self.num_residual_layers): |
|
|
len_kernel_sizes = len(self.residual_kernel_size) if isinstance(self.residual_kernel_size, list) else 1 |
|
|
strides.extend([1] * (len_kernel_sizes + 1)) |
|
|
if self.use_conv_shortcut: |
|
|
strides.append(1) |
|
|
|
|
|
strides.append(ratio) |
|
|
|
|
|
|
|
|
strides.append(1) |
|
|
|
|
|
|
|
|
strides.append(2) |
|
|
|
|
|
return math.prod(strides) |
|
|
|
|
|
@property |
|
|
def frame_rate(self) -> float: |
|
|
|
|
|
if self._frame_rate is not None: |
|
|
return self._frame_rate |
|
|
return self.sampling_rate / self.frame_size |
|
|
|
|
|
|
|
|
__all__ = ["MimiConfig"] |
|
|
|