File size: 7,139 Bytes
85a0ef8 eec6e62 85a0ef8 1d1d679 85a0ef8 91951e6 85a0ef8 38f0e60 b48d8fc 1885b47 b48d8fc 1885b47 b48d8fc a601c8f 8a8de23 91951e6 a601c8f 7cb95d2 a601c8f 7cb95d2 a601c8f b48d8fc 1885b47 b48d8fc 1885b47 b48d8fc 7cb95d2 b48d8fc a601c8f b48d8fc 38f0e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-VL-8B-Instruct
pipeline_tag: image-text-to-text
library_name: transformers
tags:
- text-generation-inference
- document-ai
- node-implementations
- table-extraction
- layouts
- markdown
- html-markdown
- document-retrieval
- visual-grounding
- pdf-ocr
- layout-analysis
- json
- html
---

# **proxima-ocr-d.markdown-post3.0.l**
> **proxima-ocr-d.markdown-post3.0.l** is an experimental document AI multimodal model fine-tuned on top of **Qwen3-VL-8B-Instruct**, optimized for high precision OCR and structured document reconstruction. The model converts documents into **Markdown**, **HTML-Markdown**, and hybrid enriched documentation formats capable of embedding inline programming languages and reconstructing complex layouts such as tables, forms, and mathematical content.
# Key Enhancements
* **Dynamic Markdown Reconstruction**
Converts complex documents to structured Markdown or HTML-Markdown while preserving layout hierarchy, formatting consistency, semantic ordering, and section alignment.
* **Inline Code and Language Embedding**
Direct adaptation of Python, JavaScript, LaTeX, and shell syntax into reconstructed documents for technical and research documentation.
* **High Fidelity OCR and Visual Parsing**
Accurate recognition of text across structured and unstructured scanned documents, including multi page layout reasoning.
* **Complex Layout Interpretation**
Interprets tables, grids, equations, graphs, multi column layouts, and forms without structural distortion.
* **Document Retrieval and Semantic Linking**
Efficient multi page chunking with cross reference recognition and content traceability.
* **Multimodal Long Reasoning**
Supports advanced document question answering and reasoning across long input streams such as slides and manuscripts.
---
> 👉 This model is a stage progression model, and it may currently contain artifacts.
---
# Example Preview
### [1] Markdown HTML
| Input Image | Markdown Preview Page 1 | Markdown Preview Page 2 |
|------------|-------------------------|--------------------------|
|  |  |  |
### [2] JSON Nodes
| Input Image | Node Preview Page 1 | Node Preview Page 2 |
|------------|----------------------|----------------------|
|  |  |  |
### [3] YAML Nodes
| Input Image | Node Preview Page 1 | Node Preview Page 2 |
|------------|----------------------|----------------------|
|  |  |  |
---
# Quick Start with Transformers
```python
from transformers import Qwen3VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen3VLForConditionalGeneration.from_pretrained(
"prithivMLmods/proxima-ocr-d.markdown-post3.0.l", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/proxima-ocr-d.markdown-post3.0.l")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Convert to Markdown."},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=2048)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
# Intended Use
* OCR to Markdown or HTML-Markdown conversion
* Complex document reconstruction and formatting regeneration
* Multi page document reasoning and retrieval
* Table extraction and structured output transformation
* Mathematical OCR and LaTeX conversion
* Form extraction and structured entity generation
* Knowledge base indexing and large document QA
* Documentation regeneration for enterprise automation
# Limitations
* Accuracy may drop on extremely damaged or poorly scanned images
* Significant GPU VRAM required for long sequences and multi page documents
* Language accuracy varies for low resource scripts
* Complex objects such as mixed orientation blocks may require secondary post processing
* May occasionally produce formatting misalignment in highly irregular layouts
## Training Details
| Parameter | Value |
| ------------- | ------------------------------------------------- |
| Dataset Size | approx. 544K [ modular combination open source data & synthetic document data entries from Gemini 3 Pro ] |
| Architecture | Qwen3VLForConditionalGeneration |
| Training Time | approx. 17,040 seconds (4 h 44 m) |
| Precision | bfloat16 |
| Hardware | 4x H100 SXM (320 GB VRAM) |
| System Memory | 752 GB RAM |
| CPU | 80 vCPU |
## References
* Qwen2.5 VL
[https://huggingface.co/papers/2502.13923](https://huggingface.co/papers/2502.13923)
* DocVLM Make Your VLM an Efficient Reader
[https://arxiv.org/pdf/2412.08746v1](https://arxiv.org/pdf/2412.08746v1)
* YaRN Efficient Context Window Extension
[https://arxiv.org/pdf/2309.00071](https://arxiv.org/pdf/2309.00071)
* Qwen2 VL High Resolution Perception
[https://arxiv.org/pdf/2409.12191](https://arxiv.org/pdf/2409.12191)
* Qwen VL Vision Language Understanding and OCR
[https://arxiv.org/pdf/2308.12966](https://arxiv.org/pdf/2308.12966)
* OCR Benchmark for Multimodal Models
[https://arxiv.org/pdf/2412.02210](https://arxiv.org/pdf/2412.02210) |