qaihm-bot commited on
Commit
3c32965
·
verified ·
1 Parent(s): 893be00

See https://github.com/quic/ai-hub-models/releases/v0.40.0 for changelog.

.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ DEPLOYMENT_MODEL_LICENSE.pdf filter=lfs diff=lfs merge=lfs -text
DeformableDETR.onnx → DEPLOYMENT_MODEL_LICENSE.pdf RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d2f357cb5f9a70843ad63216dcee89f1b6f635ac9ab4892e00257d2e19f9ccd
3
- size 165001956
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4409f93b0e82531303b3e10f52f1fdfb56467a25f05b7441c6bbd8bb8a64b42c
3
+ size 109629
DeformableDETR_float.onnx.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87dcb2c402f7e200dd3929d352272ac36c9be42123f96724b65ce3146494f43
3
+ size 152084105
LICENSE ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ The license of the original trained model can be found at https://github.com/facebookresearch/detr/blob/main/LICENSE.
2
+ The license for the deployable model files (.tflite, .onnx, .dlc, .bin, etc.) can be found in DEPLOYMENT_MODEL_LICENSE.pdf.
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  library_name: pytorch
3
- license: apache-2.0
4
  tags:
5
  - android
6
  pipeline_tag: object-detection
@@ -23,21 +23,22 @@ More details on model performance across various devices, can be found
23
  [here](https://aihub.qualcomm.com/models/deformable_detr).
24
 
25
 
 
26
  ### Model Details
27
 
28
- - **Model Type:** Object detection
29
  - **Model Stats:**
30
  - Model checkpoint: deformable-detr
31
  - Input resolution: 480x480
32
  - Number of parameters: 40M
33
  - Model size: 160 MB
34
 
35
- | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  |---|---|---|---|---|---|---|---|---|
37
- | DeformableDETR | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 995.627 ms | 31 - 98 MB | FP16 | NPU | [DeformableDETR.onnx](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx) |
38
- | DeformableDETR | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 785.492 ms | 44 - 150 MB | FP16 | NPU | [DeformableDETR.onnx](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx) |
39
- | DeformableDETR | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 644.37 ms | 45 - 161 MB | FP16 | NPU | [DeformableDETR.onnx](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx) |
40
- | DeformableDETR | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1193.916 ms | 106 - 106 MB | FP16 | NPU | [DeformableDETR.onnx](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx) |
41
 
42
 
43
 
@@ -95,17 +96,7 @@ device. This script does the following:
95
  ```bash
96
  python -m qai_hub_models.models.deformable_detr.export
97
  ```
98
- ```
99
- Profiling Results
100
- ------------------------------------------------------------
101
- DeformableDETR
102
- Device : Samsung Galaxy S23 (13)
103
- Runtime : ONNX
104
- Estimated inference time (ms) : 995.6
105
- Estimated peak memory usage (MB): [31, 98]
106
- Total # Ops : 1360
107
- Compute Unit(s) : NPU (1238 ops) CPU (122 ops)
108
- ```
109
 
110
 
111
  ## How does this work?
@@ -129,7 +120,7 @@ from qai_hub_models.models.deformable_detr import Model
129
  torch_model = Model.from_pretrained()
130
 
131
  # Device
132
- device = hub.Device("Samsung Galaxy S24")
133
 
134
  # Trace model
135
  input_shape = torch_model.get_input_spec()
@@ -191,13 +182,13 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
191
  You can also run the demo on-device.
192
 
193
  ```bash
194
- python -m qai_hub_models.models.deformable_detr.demo --on-device
195
  ```
196
 
197
  **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
198
  environment, please add the following to your cell (instead of the above).
199
  ```
200
- %run -m qai_hub_models.models.deformable_detr.demo -- --on-device
201
  ```
202
 
203
 
 
1
  ---
2
  library_name: pytorch
3
+ license: other
4
  tags:
5
  - android
6
  pipeline_tag: object-detection
 
23
  [here](https://aihub.qualcomm.com/models/deformable_detr).
24
 
25
 
26
+
27
  ### Model Details
28
 
29
+ - **Model Type:** Model_use_case.object_detection
30
  - **Model Stats:**
31
  - Model checkpoint: deformable-detr
32
  - Input resolution: 480x480
33
  - Number of parameters: 40M
34
  - Model size: 160 MB
35
 
36
+ | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
37
  |---|---|---|---|---|---|---|---|---|
38
+ | DeformableDETR | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1255.749 ms | 85 - 314 MB | NPU | [DeformableDETR.onnx.zip](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx.zip) |
39
+ | DeformableDETR | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 922.184 ms | 158 - 412 MB | NPU | [DeformableDETR.onnx.zip](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx.zip) |
40
+ | DeformableDETR | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 820.606 ms | 169 - 421 MB | NPU | [DeformableDETR.onnx.zip](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx.zip) |
41
+ | DeformableDETR | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1483.574 ms | 132 - 132 MB | NPU | [DeformableDETR.onnx.zip](https://huggingface.co/qualcomm/DeformableDETR/blob/main/DeformableDETR.onnx.zip) |
42
 
43
 
44
 
 
96
  ```bash
97
  python -m qai_hub_models.models.deformable_detr.export
98
  ```
99
+
 
 
 
 
 
 
 
 
 
 
100
 
101
 
102
  ## How does this work?
 
120
  torch_model = Model.from_pretrained()
121
 
122
  # Device
123
+ device = hub.Device("Samsung Galaxy S25")
124
 
125
  # Trace model
126
  input_shape = torch_model.get_input_spec()
 
182
  You can also run the demo on-device.
183
 
184
  ```bash
185
+ python -m qai_hub_models.models.deformable_detr.demo --eval-mode on-device
186
  ```
187
 
188
  **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
189
  environment, please add the following to your cell (instead of the above).
190
  ```
191
+ %run -m qai_hub_models.models.deformable_detr.demo -- --eval-mode on-device
192
  ```
193
 
194
 
tool-versions.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ tool_versions:
2
+ onnx:
3
+ qairt: 2.37.1.250807093845_124904
4
+ onnx_runtime: 1.23.0