File size: 21,655 Bytes
1832e16
 
 
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
236f287
1832e16
 
 
236f287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832e16
236f287
1832e16
236f287
 
1832e16
236f287
1832e16
 
 
 
 
 
 
 
236f287
 
 
 
 
 
 
1832e16
236f287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832e16
236f287
 
 
1832e16
236f287
 
1832e16
236f287
 
1832e16
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236f287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832e16
 
 
236f287
1832e16
 
 
 
 
 
 
 
 
236f287
1832e16
 
 
236f287
 
 
 
 
 
 
 
 
 
 
 
1832e16
236f287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import json
import random
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import librosa
import pandas as pd
import numpy as np
from audio import (
    assign_outputs_to_refs_by_corr,
    loudness_normalize,
    make_union_voiced_mask,
)
from config import *
from distortions import apply_adv_distortions, apply_distortions
from metrics import (
    compute_pm,
    compute_ps,
    diffusion_map_torch,
    pm_ci_components_full,
    ps_ci_components_full,
)
from models import embed_batch, load_model
from utils import *


def compute_mapss_measures(

        models,

        mixtures,

        *,

        systems=None,

        algos=None,

        experiment_id=None,

        layer=DEFAULT_LAYER,

        add_ci=DEFAULT_ADD_CI,

        alpha=DEFAULT_ALPHA,

        seed=42,

        on_missing="skip",

        verbose=False,

        max_gpus=None,

):
    gpu_distributor = GPUWorkDistributor(max_gpus)
    ngpu = get_gpu_count(max_gpus)

    if on_missing not in {"skip", "error"}:
        raise ValueError("on_missing must be 'skip' or 'error'.")

    torch.manual_seed(seed)
    random.seed(seed)
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

    canon_mix = canonicalize_mixtures(mixtures, systems=systems)

    mixture_entries = []
    for m in canon_mix:
        entries = []
        for i, refp in enumerate(m.refs):
            sid = m.speaker_ids[i]
            entries.append(
                {"id": sid, "ref": Path(refp), "mixture": m.mixture_id, "outs": {}}
            )
        mixture_entries.append(entries)

    for m, mix_entries in zip(canon_mix, mixture_entries):
        for algo, out_list in (m.systems or {}).items():
            mapping = assign_outputs_to_refs_by_corr(
                [e["ref"] for e in mix_entries], out_list
            )
            for idx, e in enumerate(mix_entries):
                j = mapping[idx]
                if j is not None:
                    e["outs"][algo] = out_list[j]

    if algos is None:
        algos_to_run = sorted(
            {algo for algo in canon_mix[0].systems.keys()} if canon_mix and canon_mix[0].systems else []
        )
    else:
        algos_to_run = list(algos)

    exp_id = experiment_id or datetime.now().strftime("%Y%m%d_%H%M%S")
    exp_root = os.path.join(RESULTS_ROOT, f"experiment_{exp_id}")
    os.makedirs(exp_root, exist_ok=True)

    params = {
        "models": models,
        "layer": layer,
        "add_ci": add_ci,
        "alpha": alpha,
        "seed": seed,
        "batch_size": BATCH_SIZE,
        "ngpu": ngpu,
        "max_gpus": max_gpus,
    }

    with open(os.path.join(exp_root, "params.json"), "w") as f:
        json.dump(params, f, indent=2)

    canon_struct = [
        {
            "mixture_id": m.mixture_id,
            "references": [str(p) for p in m.refs],
            "systems": {
                a: [str(p) for p in outs] for a, outs in (m.systems or {}).items()
            },
            "speaker_ids": m.speaker_ids,
        }
        for m in canon_mix
    ]

    with open(os.path.join(exp_root, "manifest_canonical.json"), "w") as f:
        json.dump(canon_struct, f, indent=2)

    print(f"Starting experiment {exp_id} with {ngpu} GPUs")
    print(f"Results will be saved to: {exp_root}")

    clear_gpu_memory()
    get_gpu_memory_info(verbose)

    flat_entries = [e for mix in mixture_entries for e in mix]
    all_refs = {}

    if verbose:
        print("Loading reference signals...")
    for e in flat_entries:
        wav, _ = librosa.load(str(e["ref"]), sr=SR)
        all_refs[e["id"]] = torch.from_numpy(loudness_normalize(wav))

    if verbose:
        print("Computing voiced masks...")

    win = int(ENERGY_WIN_MS * SR / 1000)
    hop = int(ENERGY_HOP_MS * SR / 1000)
    voiced_mask_mix = []
    total_frames_per_mix = []  # Store total frames for each mixture

    for i, mix in enumerate(mixture_entries):
        if verbose:
            print(f"  Computing mask for mixture {i + 1}/{len(mixture_entries)}")

        if ngpu > 0:
            with torch.cuda.device(0):
                refs_for_mix = [all_refs[e["id"]].cuda() for e in mix]
                mask = make_union_voiced_mask(refs_for_mix, win, hop)
                voiced_mask_mix.append(mask.cpu())
                total_frames_per_mix.append(mask.shape[0])
                # Explicitly delete GPU tensors
                for ref in refs_for_mix:
                    del ref
                torch.cuda.empty_cache()
        else:
            refs_for_mix = [all_refs[e["id"]].cpu() for e in mix]
            mask = make_union_voiced_mask(refs_for_mix, win, hop)
            voiced_mask_mix.append(mask.cpu())
            total_frames_per_mix.append(mask.shape[0])

    ordered_speakers = [e["id"] for e in flat_entries]

    # Initialize storage for all mixtures and algorithms
    all_mixture_results = {}  # mixture_id -> {algo -> {model -> data}}

    for mix_idx, (mix_canon, mix_entries) in enumerate(zip(canon_mix, mixture_entries)):
        mixture_id = mix_canon.mixture_id
        all_mixture_results[mixture_id] = {}

        # Get total frames for this mixture
        total_frames = total_frames_per_mix[mix_idx]

        # Get speakers for this mixture
        mixture_speakers = [e["id"] for e in mix_entries]

        for algo_idx, algo in enumerate(algos_to_run):
            if verbose:
                print(f"\nProcessing Mixture {mixture_id}, Algorithm {algo_idx + 1}/{len(algos_to_run)}: {algo}")

            # Remove the old algo_dir creation here - we don't need these empty folders anymore

            all_outs = {}
            missing = []

            for e in mix_entries:
                assigned_path = e.get("outs", {}).get(algo)
                if assigned_path is None:
                    missing.append((e["mixture"], e["id"]))
                    continue

                wav, _ = librosa.load(str(assigned_path), sr=SR)
                all_outs[e["id"]] = torch.from_numpy(loudness_normalize(wav))

            if missing:
                msg = f"[{algo}] missing outputs for {len(missing)} speaker(s) in mixture {mixture_id}"
                if on_missing == "error":
                    raise FileNotFoundError(msg)
                else:
                    if verbose:
                        warnings.warn(msg + " Skipping those speakers.")

            if not all_outs:
                if verbose:
                    warnings.warn(f"[{algo}] No outputs for mixture {mixture_id}. Skipping.")
                continue

            # Initialize storage for this algorithm
            if algo not in all_mixture_results[mixture_id]:
                all_mixture_results[mixture_id][algo] = {}

            # Initialize frame-wise storage with NaN for all frames
            ps_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
            pm_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
            ps_bias_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
            ps_prob_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
            pm_bias_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
            pm_prob_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}

            for model_idx, mname in enumerate(models):
                if verbose:
                    print(f"  Processing Model {model_idx + 1}/{len(models)}: {mname}")

                for metric_type in ["PS", "PM"]:
                    clear_gpu_memory()
                    gc.collect()

                    model_wrapper, layer_eff = load_model(mname, layer, max_gpus)
                    get_gpu_memory_info(verbose)

                    # Process only this mixture
                    speakers_this_mix = [e for e in mix_entries if e["id"] in all_outs]
                    if not speakers_this_mix:
                        continue

                    if verbose:
                        print(f"    Processing {metric_type} for mixture {mixture_id}")

                    all_signals_mix = []
                    all_masks_mix = []
                    all_labels_mix = []

                    for e in speakers_this_mix:
                        s = e["id"]

                        if metric_type == "PS":
                            dists = [
                                loudness_normalize(d)
                                for d in apply_distortions(all_refs[s].numpy(), "all")
                            ]
                        else:
                            dists = [
                                loudness_normalize(d)
                                for d in apply_adv_distortions(
                                    all_refs[s].numpy(), "all"
                                )
                            ]

                        sigs = [all_refs[s].numpy(), all_outs[s].numpy()] + dists
                        lbls = ["ref", "out"] + [f"d{i}" for i in range(len(dists))]

                        masks = [voiced_mask_mix[mix_idx]] * len(sigs)
                        all_signals_mix.extend(sigs)
                        all_masks_mix.extend(masks)
                        all_labels_mix.extend([f"{s}-{l}" for l in lbls])

                    try:
                        # Process in smaller batches
                        batch_size = min(2, BATCH_SIZE)
                        embeddings_list = []

                        for i in range(0, len(all_signals_mix), batch_size):
                            batch_sigs = all_signals_mix[i:i + batch_size]
                            batch_masks = all_masks_mix[i:i + batch_size]

                            batch_embs = embed_batch(
                                batch_sigs,
                                batch_masks,
                                model_wrapper,
                                layer_eff,
                                use_mlm=False,
                            )

                            if batch_embs.numel() > 0:
                                embeddings_list.append(batch_embs.cpu())

                            torch.cuda.empty_cache()

                        if embeddings_list:
                            embeddings = torch.cat(embeddings_list, dim=0)
                            E, L, D = embeddings.shape

                            if L == 0:
                                if verbose:
                                    print(
                                        f"        WARNING: mixture {mixture_id} produced 0 frames after masking; skipping.")
                                continue

                            # Get valid frame indices for this mixture
                            mask = voiced_mask_mix[mix_idx]
                            valid_frame_indices = torch.where(mask)[0].tolist()

                            if verbose:
                                print(f"    Computing {metric_type} scores for {mname}...")

                            # Process frames with their stored embeddings and labels
                            with ThreadPoolExecutor(
                                    max_workers=min(2, ngpu if ngpu > 0 else 1)
                            ) as executor:

                                def process_frame(f, frame_idx, embeddings_mix, labels_mix):
                                    try:
                                        frame_emb = embeddings_mix[:, f, :].detach().cpu().numpy()

                                        if add_ci:
                                            coords_d, coords_c, eigvals, k_sub_gauss = (
                                                gpu_distributor.execute_on_gpu(
                                                    diffusion_map_torch,
                                                    frame_emb,
                                                    labels_mix,
                                                    alpha=alpha,
                                                    eig_solver="full",
                                                    return_eigs=True,
                                                    return_complement=True,
                                                    return_cval=add_ci,
                                                )
                                            )
                                        else:
                                            coords_d = gpu_distributor.execute_on_gpu(
                                                diffusion_map_torch,
                                                frame_emb,
                                                labels_mix,
                                                alpha=alpha,
                                                eig_solver="full",
                                                return_eigs=False,
                                                return_complement=False,
                                                return_cval=False,
                                            )
                                            coords_c = None
                                            eigvals = None
                                            k_sub_gauss = 1

                                        if metric_type == "PS":
                                            score = compute_ps(
                                                coords_d, labels_mix, max_gpus
                                            )
                                            bias = prob = None
                                            if add_ci:
                                                bias, prob = ps_ci_components_full(
                                                    coords_d,
                                                    coords_c,
                                                    eigvals,
                                                    labels_mix,
                                                    delta=DEFAULT_DELTA_CI,
                                                )
                                            return frame_idx, "PS", score, bias, prob
                                        else:
                                            score = compute_pm(
                                                coords_d, labels_mix, "gamma", max_gpus
                                            )
                                            bias = prob = None
                                            if add_ci:
                                                bias, prob = pm_ci_components_full(
                                                    coords_d,
                                                    coords_c,
                                                    eigvals,
                                                    labels_mix,
                                                    delta=DEFAULT_DELTA_CI,
                                                    K=k_sub_gauss,
                                                )
                                            return frame_idx, "PM", score, bias, prob

                                    except Exception as ex:
                                        if verbose:
                                            print(f"        ERROR frame {frame_idx}: {ex}")
                                        return None

                                futures = [
                                    executor.submit(process_frame, f, valid_frame_indices[f], embeddings,
                                                    all_labels_mix)
                                    for f in range(L)
                                ]

                                for fut in futures:
                                    result = fut.result()
                                    if result is None:
                                        continue

                                    frame_idx, metric, score, bias, prob = result

                                    if metric == "PS":
                                        for sp in score:
                                            if sp in mixture_speakers:
                                                ps_frames[mname][sp][frame_idx] = score[sp]
                                                if add_ci and bias is not None:
                                                    ps_bias_frames[mname][sp][frame_idx] = bias[sp]
                                                    ps_prob_frames[mname][sp][frame_idx] = prob[sp]
                                    else:
                                        for sp in score:
                                            if sp in mixture_speakers:
                                                pm_frames[mname][sp][frame_idx] = score[sp]
                                                if add_ci and bias is not None:
                                                    pm_bias_frames[mname][sp][frame_idx] = bias[sp]
                                                    pm_prob_frames[mname][sp][frame_idx] = prob[sp]

                    except Exception as ex:
                        if verbose:
                            print(f"      ERROR processing mixture {mixture_id}: {ex}")
                        continue
                    finally:
                        # Always clean up after processing a mixture
                        del all_signals_mix, all_masks_mix
                        if 'embeddings_list' in locals():
                            del embeddings_list
                        clear_gpu_memory()
                        gc.collect()

                    del model_wrapper
                    clear_gpu_memory()
                    gc.collect()

            # Store results for this mixture and algorithm
            all_mixture_results[mixture_id][algo][mname] = {
                'ps_frames': ps_frames[mname],
                'pm_frames': pm_frames[mname],
                'ps_bias_frames': ps_bias_frames[mname] if add_ci else None,
                'ps_prob_frames': ps_prob_frames[mname] if add_ci else None,
                'pm_bias_frames': pm_bias_frames[mname] if add_ci else None,
                'pm_prob_frames': pm_prob_frames[mname] if add_ci else None,
                'total_frames': total_frames
            }

        # Save results for this mixture after processing all algorithms
        if verbose:
            print(f"  Saving results for mixture {mixture_id}...")

        # Create timestamps in milliseconds - using lowercase hop
        timestamps_ms = [i * hop * 1000 / SR for i in range(total_frames)]

        for model in models:
            # Prepare PS data
            ps_data = {'timestamp_ms': timestamps_ms}
            pm_data = {'timestamp_ms': timestamps_ms}
            ci_data = {'timestamp_ms': timestamps_ms} if add_ci else None

            # Combine data from all algorithms for this mixture
            for algo in algos_to_run:
                if algo not in all_mixture_results[mixture_id]:
                    continue
                if model not in all_mixture_results[mixture_id][algo]:
                    continue

                model_data = all_mixture_results[mixture_id][algo][model]

                # Add PS data
                for speaker in mixture_speakers:
                    col_name = f"{algo}_{speaker}"
                    ps_data[col_name] = model_data['ps_frames'][speaker]
                    pm_data[col_name] = model_data['pm_frames'][speaker]

                    if add_ci and ci_data is not None:
                        ci_data[f"{algo}_{speaker}_ps_bias"] = model_data['ps_bias_frames'][speaker]
                        ci_data[f"{algo}_{speaker}_ps_prob"] = model_data['ps_prob_frames'][speaker]
                        ci_data[f"{algo}_{speaker}_pm_bias"] = model_data['pm_bias_frames'][speaker]
                        ci_data[f"{algo}_{speaker}_pm_prob"] = model_data['pm_prob_frames'][speaker]

            # Save CSV files for this mixture
            mixture_dir = os.path.join(exp_root, mixture_id)
            os.makedirs(mixture_dir, exist_ok=True)

            pd.DataFrame(ps_data).to_csv(
                os.path.join(mixture_dir, f"ps_scores_{model}.csv"),
                index=False
            )

            pd.DataFrame(pm_data).to_csv(
                os.path.join(mixture_dir, f"pm_scores_{model}.csv"),
                index=False
            )

            if add_ci and ci_data is not None:
                pd.DataFrame(ci_data).to_csv(
                    os.path.join(mixture_dir, f"ci_{model}.csv"),
                    index=False
                )

        del all_outs
        clear_gpu_memory()
        gc.collect()

    print(f"\nEXPERIMENT COMPLETED")
    print(f"Results saved to: {exp_root}")

    del all_refs, voiced_mask_mix

    # Import and call the cleanup function
    from models import cleanup_all_models
    cleanup_all_models()

    clear_gpu_memory()
    get_gpu_memory_info(verbose)
    gc.collect()

    return exp_root