MAPSS-measures / engine.py
AIvry's picture
Upload 11 files
b759ccc verified
raw
history blame
22.6 kB
import json
import random
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import librosa
import pandas as pd
from audio import (
loudness_normalize,
compute_speaker_activity_masks,
)
from config import *
from distortions import apply_pm_distortions, apply_ps_distortions
from metrics import (
compute_pm,
compute_ps,
diffusion_map_torch,
pm_ci_components_full,
ps_ci_components_full,
)
from models import embed_batch, load_model
from utils import *
def compute_mapss_measures(
models,
mixtures,
*,
systems=None,
algos=None,
experiment_id=None,
layer=DEFAULT_LAYER,
add_ci=DEFAULT_ADD_CI,
alpha=DEFAULT_ALPHA,
seed=42,
on_missing="skip",
verbose=False,
max_gpus=None,
):
"""
Compute MAPSS measures (PM, PS, and their errors). Data is saved to csv files.
:param models: backbone self-supervised models.
:param mixtures: data to process from _read_manifest
:param systems: specific systems (algos and data)
:param algos: specific algorithms to use
:param experiment_id: user-specified name for experiment
:param layer: transformer layer of model to consider
:param add_ci: True will compute error radius and tail bounds. False will not.
:param alpha: normalization factor of the diffusion maps. Lives in [0, 1].
:param seed: random seed number.
:param on_missing: "skip" when missing values or throw an "error".
:param verbose: True will print process info to console during runtime. False will minimize it.
:param max_gpus: maximal amount of GPUs the program tries to utilize in parallel.
"""
gpu_distributor = GPUWorkDistributor(max_gpus)
ngpu = get_gpu_count(max_gpus)
if on_missing not in {"skip", "error"}:
raise ValueError("on_missing must be 'skip' or 'error'.")
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
canon_mix = canonicalize_mixtures(mixtures, systems=systems)
mixture_entries = []
for m in canon_mix:
entries = []
for i, refp in enumerate(m.refs):
sid = m.speaker_ids[i]
entries.append(
{"id": sid, "ref": Path(refp), "mixture": m.mixture_id, "outs": {}}
)
mixture_entries.append(entries)
for m, mix_entries in zip(canon_mix, mixture_entries):
for algo, out_list in (m.systems or {}).items():
if len(out_list) != len(mix_entries):
msg = f"[{algo}] Number of outputs ({len(out_list)}) does not match number of references ({len(mix_entries)}) for mixture {m.mixture_id}"
if on_missing == "error":
raise ValueError(msg)
else:
if verbose:
warnings.warn(msg + " Skipping this algorithm.")
continue
for idx, e in enumerate(mix_entries):
e["outs"][algo] = out_list[idx]
if algos is None:
algos_to_run = sorted(
{algo for algo in canon_mix[0].systems.keys()} if canon_mix and canon_mix[0].systems else []
)
else:
algos_to_run = list(algos)
exp_id = experiment_id or datetime.now().strftime("%Y%m%d_%H%M%S")
exp_root = os.path.join(RESULTS_ROOT, f"experiment_{exp_id}")
os.makedirs(exp_root, exist_ok=True)
params = {
"models": models,
"layer": layer,
"add_ci": add_ci,
"alpha": alpha,
"seed": seed,
"batch_size": BATCH_SIZE,
"ngpu": ngpu,
"max_gpus": max_gpus,
}
with open(os.path.join(exp_root, "params.json"), "w") as f:
json.dump(params, f, indent=2)
canon_struct = [
{
"mixture_id": m.mixture_id,
"references": [str(p) for p in m.refs],
"systems": {
a: [str(p) for p in outs] for a, outs in (m.systems or {}).items()
},
"speaker_ids": m.speaker_ids,
}
for m in canon_mix
]
with open(os.path.join(exp_root, "manifest_canonical.json"), "w") as f:
json.dump(canon_struct, f, indent=2)
print(f"Starting experiment {exp_id} with {ngpu} GPUs")
print(f"Results will be saved to: {exp_root}")
print("NOTE: Output files must be provided in the same order as reference files.")
clear_gpu_memory()
get_gpu_memory_info(verbose)
flat_entries = [e for mix in mixture_entries for e in mix]
all_refs = {}
if verbose:
print("Loading reference signals...")
for e in flat_entries:
wav, _ = librosa.load(str(e["ref"]), sr=SR)
all_refs[e["id"]] = torch.from_numpy(loudness_normalize(wav))
if verbose:
print("Computing speaker activity masks...")
win = int(ENERGY_WIN_MS * SR / 1000)
hop = int(ENERGY_HOP_MS * SR / 1000)
multi_speaker_masks_mix = []
individual_speaker_masks_mix = []
total_frames_per_mix = []
for i, mix in enumerate(mixture_entries):
if verbose:
print(f" Computing masks for mixture {i + 1}/{len(mixture_entries)}")
if ngpu > 0:
with torch.cuda.device(0):
refs_for_mix = [all_refs[e["id"]].cuda() for e in mix]
multi_mask, individual_masks = compute_speaker_activity_masks(refs_for_mix, win, hop)
multi_speaker_masks_mix.append(multi_mask.cpu())
individual_speaker_masks_mix.append([m.cpu() for m in individual_masks])
total_frames_per_mix.append(multi_mask.shape[0])
for ref in refs_for_mix:
del ref
torch.cuda.empty_cache()
else:
refs_for_mix = [all_refs[e["id"]].cpu() for e in mix]
multi_mask, individual_masks = compute_speaker_activity_masks(refs_for_mix, win, hop)
multi_speaker_masks_mix.append(multi_mask.cpu())
individual_speaker_masks_mix.append([m.cpu() for m in individual_masks])
total_frames_per_mix.append(multi_mask.shape[0])
ordered_speakers = [e["id"] for e in flat_entries]
all_mixture_results = {}
for mix_idx, (mix_canon, mix_entries) in enumerate(zip(canon_mix, mixture_entries)):
mixture_id = mix_canon.mixture_id
all_mixture_results[mixture_id] = {}
total_frames = total_frames_per_mix[mix_idx]
mixture_speakers = [e["id"] for e in mix_entries]
for algo_idx, algo in enumerate(algos_to_run):
if verbose:
print(f"\nProcessing Mixture {mixture_id}, Algorithm {algo_idx + 1}/{len(algos_to_run)}: {algo}")
all_outs = {}
missing = []
for e in mix_entries:
assigned_path = e.get("outs", {}).get(algo)
if assigned_path is None:
missing.append((e["mixture"], e["id"]))
continue
wav, _ = librosa.load(str(assigned_path), sr=SR)
all_outs[e["id"]] = torch.from_numpy(loudness_normalize(wav))
if missing:
msg = f"[{algo}] missing outputs for {len(missing)} speaker(s) in mixture {mixture_id}"
if on_missing == "error":
raise FileNotFoundError(msg)
else:
if verbose:
warnings.warn(msg + " Skipping those speakers.")
if not all_outs:
if verbose:
warnings.warn(f"[{algo}] No outputs for mixture {mixture_id}. Skipping.")
continue
if algo not in all_mixture_results[mixture_id]:
all_mixture_results[mixture_id][algo] = {}
ps_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
pm_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
ps_bias_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
ps_prob_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
pm_bias_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
pm_prob_frames = {m: {s: [np.nan] * total_frames for s in mixture_speakers} for m in models}
for model_idx, mname in enumerate(models):
if verbose:
print(f" Processing Model {model_idx + 1}/{len(models)}: {mname}")
for metric_type in ["PS", "PM"]:
clear_gpu_memory()
gc.collect()
model_wrapper, layer_eff = load_model(mname, layer, max_gpus)
get_gpu_memory_info(verbose)
speakers_this_mix = [e for e in mix_entries if e["id"] in all_outs]
if not speakers_this_mix:
continue
if verbose:
print(f" Processing {metric_type} for mixture {mixture_id}")
multi_speaker_mask = multi_speaker_masks_mix[mix_idx]
individual_masks = individual_speaker_masks_mix[mix_idx]
valid_frame_indices = torch.where(multi_speaker_mask)[0].tolist()
speaker_signals = {}
speaker_labels = {}
for speaker_idx, e in enumerate(speakers_this_mix):
s = e["id"]
if metric_type == "PS":
dists = [
loudness_normalize(d)
for d in apply_ps_distortions(all_refs[s].numpy(), "all")
]
else:
dists = [
loudness_normalize(d)
for d in apply_pm_distortions(
all_refs[s].numpy(), "all"
)
]
sigs = [all_refs[s].numpy(), all_outs[s].numpy()] + dists
lbls = ["ref", "out"] + [f"d{i}" for i in range(len(dists))]
speaker_signals[s] = sigs
speaker_labels[s] = [f"{s}-{l}" for l in lbls]
all_embeddings = {}
for s in speaker_signals:
sigs = speaker_signals[s]
masks = [multi_speaker_mask] * len(sigs)
batch_size = min(2, BATCH_SIZE)
embeddings_list = []
for i in range(0, len(sigs), batch_size):
batch_sigs = sigs[i:i + batch_size]
batch_masks = masks[i:i + batch_size]
batch_embs = embed_batch(
batch_sigs,
batch_masks,
model_wrapper,
layer_eff,
use_mlm=False,
)
if batch_embs.numel() > 0:
embeddings_list.append(batch_embs.cpu())
torch.cuda.empty_cache()
if embeddings_list:
all_embeddings[s] = torch.cat(embeddings_list, dim=0)
else:
all_embeddings[s] = torch.empty(0, 0, 0)
if not all_embeddings or all(e.numel() == 0 for e in all_embeddings.values()):
if verbose:
print(f"WARNING: mixture {mixture_id} produced 0 frames after masking; skipping.")
continue
L = next(iter(all_embeddings.values())).shape[1] if all_embeddings else 0
if L == 0:
if verbose:
print(f"WARNING: mixture {mixture_id} produced 0 frames after masking; skipping.")
continue
if verbose:
print(f"Computing {metric_type} scores for {mname}...")
with ThreadPoolExecutor(
max_workers=min(2, ngpu if ngpu > 0 else 1)
) as executor:
def process_frame(f, frame_idx, all_embeddings_dict, speaker_labels_dict, individual_masks_list,
speaker_indices):
try:
active_speakers = []
for spk_idx, spk_id in enumerate(speaker_indices):
if individual_masks_list[spk_idx][frame_idx]:
active_speakers.append(spk_id)
if len(active_speakers) < 2:
return frame_idx, metric_type, {}, None, None
frame_embeddings = []
frame_labels = []
for spk_id in active_speakers:
spk_embs = all_embeddings_dict[spk_id][:, f, :]
frame_embeddings.append(spk_embs)
frame_labels.extend(speaker_labels_dict[spk_id])
frame_emb = torch.cat(frame_embeddings, dim=0).detach().cpu().numpy()
if add_ci:
coords_d, coords_c, eigvals, k_sub_gauss = (
gpu_distributor.execute_on_gpu(
diffusion_map_torch,
frame_emb,
frame_labels,
alpha=alpha,
eig_solver="full",
return_eigs=True,
return_complement=True,
return_cval=add_ci,
)
)
else:
coords_d = gpu_distributor.execute_on_gpu(
diffusion_map_torch,
frame_emb,
frame_labels,
alpha=alpha,
eig_solver="full",
return_eigs=False,
return_complement=False,
return_cval=False,
)
coords_c = None
eigvals = None
k_sub_gauss = 1
if metric_type == "PS":
score = compute_ps(
coords_d, frame_labels, max_gpus
)
bias = prob = None
if add_ci:
bias, prob = ps_ci_components_full(
coords_d,
coords_c,
eigvals,
frame_labels,
delta=DEFAULT_DELTA_CI,
)
return frame_idx, "PS", score, bias, prob
else:
score = compute_pm(
coords_d, frame_labels, "gamma", max_gpus
)
bias = prob = None
if add_ci:
bias, prob = pm_ci_components_full(
coords_d,
coords_c,
eigvals,
frame_labels,
delta=DEFAULT_DELTA_CI,
K=k_sub_gauss,
)
return frame_idx, "PM", score, bias, prob
except Exception as ex:
if verbose:
print(f"ERROR frame {frame_idx}: {ex}")
return None
speaker_ids = [e["id"] for e in speakers_this_mix]
futures = [
executor.submit(
process_frame,
f,
valid_frame_indices[f],
all_embeddings,
speaker_labels,
individual_masks,
speaker_ids
)
for f in range(L)
]
for fut in futures:
result = fut.result()
if result is None:
continue
frame_idx, metric, score, bias, prob = result
if metric == "PS":
for sp in mixture_speakers:
if sp in score:
ps_frames[mname][sp][frame_idx] = score[sp]
if add_ci and bias is not None and sp in bias:
ps_bias_frames[mname][sp][frame_idx] = bias[sp]
ps_prob_frames[mname][sp][frame_idx] = prob[sp]
else:
for sp in mixture_speakers:
if sp in score:
pm_frames[mname][sp][frame_idx] = score[sp]
if add_ci and bias is not None and sp in bias:
pm_bias_frames[mname][sp][frame_idx] = bias[sp]
pm_prob_frames[mname][sp][frame_idx] = prob[sp]
clear_gpu_memory()
gc.collect()
del model_wrapper
clear_gpu_memory()
gc.collect()
all_mixture_results[mixture_id][algo][mname] = {
'ps_frames': ps_frames[mname],
'pm_frames': pm_frames[mname],
'ps_bias_frames': ps_bias_frames[mname] if add_ci else None,
'ps_prob_frames': ps_prob_frames[mname] if add_ci else None,
'pm_bias_frames': pm_bias_frames[mname] if add_ci else None,
'pm_prob_frames': pm_prob_frames[mname] if add_ci else None,
'total_frames': total_frames
}
if verbose:
print(f"Saving results for mixture {mixture_id}...")
timestamps_ms = [i * hop * 1000 / SR for i in range(total_frames)]
for model in models:
ps_data = {'timestamp_ms': timestamps_ms}
pm_data = {'timestamp_ms': timestamps_ms}
ci_data = {'timestamp_ms': timestamps_ms} if add_ci else None
for algo in algos_to_run:
if algo not in all_mixture_results[mixture_id]:
continue
if model not in all_mixture_results[mixture_id][algo]:
continue
model_data = all_mixture_results[mixture_id][algo][model]
for speaker in mixture_speakers:
col_name = f"{algo}_{speaker}"
ps_data[col_name] = model_data['ps_frames'][speaker]
pm_data[col_name] = model_data['pm_frames'][speaker]
if add_ci and ci_data is not None:
ci_data[f"{algo}_{speaker}_ps_bias"] = model_data['ps_bias_frames'][speaker]
ci_data[f"{algo}_{speaker}_ps_prob"] = model_data['ps_prob_frames'][speaker]
ci_data[f"{algo}_{speaker}_pm_bias"] = model_data['pm_bias_frames'][speaker]
ci_data[f"{algo}_{speaker}_pm_prob"] = model_data['pm_prob_frames'][speaker]
mixture_dir = os.path.join(exp_root, mixture_id)
os.makedirs(mixture_dir, exist_ok=True)
pd.DataFrame(ps_data).to_csv(
os.path.join(mixture_dir, f"ps_scores_{model}.csv"),
index=False
)
pd.DataFrame(pm_data).to_csv(
os.path.join(mixture_dir, f"pm_scores_{model}.csv"),
index=False
)
if add_ci and ci_data is not None:
pd.DataFrame(ci_data).to_csv(
os.path.join(mixture_dir, f"ci_{model}.csv"),
index=False
)
del all_outs
clear_gpu_memory()
gc.collect()
print(f"\nEXPERIMENT COMPLETED")
print(f"Results saved to: {exp_root}")
del all_refs, multi_speaker_masks_mix, individual_speaker_masks_mix
from models import cleanup_all_models
cleanup_all_models()
clear_gpu_memory()
get_gpu_memory_info(verbose)
gc.collect()
return exp_root