MAPSS-measures / metrics.py
AIvry's picture
Upload 11 files
b759ccc verified
raw
history blame
22.7 kB
import math
import numpy as np
import torch
from scipy.special import gammaincc
from scipy.stats import gamma
from config import COV_TOL
from utils import get_gpu_count, mahalanobis_torch, safe_cov_torch
def pm_tail_gamma(d_out_sq, sq_dists):
"""
Computes the PM measure based on the Gamma fit.
:param d_out_sq: squared mahalanobis distance from the output to its cluster on the manifold.
:param sq_dists: squared mahalanobis distance of all distortions in the cluster to their cluster on the manifold.
:return: PM score.
"""
mu = sq_dists.mean().item()
var = sq_dists.var(unbiased=True).item()
if var == 0.0:
return 1.0
k = (mu**2) / var
theta = var / mu
return float(1.0 - gamma.cdf(d_out_sq, a=k, scale=theta))
def pm_tail_rank(d_out_sq, sq_dists):
"""
A depracted method to compute the PM measure based on the ranking method of distances.
"""
rank = int((sq_dists < d_out_sq).sum().item())
n = sq_dists.numel()
return 1.0 - (rank + 0.5) / (n + 1.0)
def diffusion_map_torch(
X_np,
labels_by_mix,
*,
cutoff=0.99,
tol=1e-3,
diffusion_time=1,
alpha=0.0,
eig_solver="lobpcg",
k=None,
device=None,
return_eigs=False,
return_complement=False,
return_cval=False,
):
"""
Compute diffusion maps from a high dimensional set of points.
:param X_np: high dimensional input.
:param labels_by_mix: used to keep track of each source's coordinates on the manifold.
:param cutoff: the desired ratio between sum of kept and sum of all eigenvalues.
:param tol: deprecated since we do not use the "lobpcg" solver.
:param diffusion_time: number of steps taken on the probability transition matrix.
:param alpha: normalization factor in [0, 1].
:param eig_solver: "lobpcg" or "full".
:param k: pre-defined truncation dimension.
:param device: "cpu" or "cuda".
:param return_eigs: return eigenvalues and eigenvectors.
:param return_complement: return complementary coordinates, not just kept coordinates.
:param return_cval: calculate and return the psi_2 norm of the coordinates.
:return:
"""
device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
X = torch.as_tensor(X_np, dtype=torch.float32, device=device)
N = X.shape[0]
if device != "cpu" and torch.cuda.is_available():
stream = torch.cuda.Stream(device=device)
ctx_dev = torch.cuda.device(device)
ctx_stream = torch.cuda.stream(stream)
else:
from contextlib import nullcontext
stream = None
ctx_dev = nullcontext()
ctx_stream = nullcontext()
with ctx_dev:
with ctx_stream:
if N > 1000:
chunk = min(500, N)
D2 = torch.zeros(N, N, device=device)
for i in range(0, N, chunk):
ei = min(i + chunk, N)
for j in range(0, N, chunk):
ej = min(j + chunk, N)
D2[i:ei, j:ej] = torch.cdist(X[i:ei], X[j:ej]).pow_(2)
else:
D2 = torch.cdist(X, X).pow_(2)
i, j = torch.triu_indices(
N, N, offset=1, device=None if device == "cpu" else device
)
eps = torch.median(D2[i, j])
K = torch.exp(-D2 / (2 * eps))
d = K.sum(dim=1)
if alpha != 0.0:
d_alpha_inv = d.pow(-alpha)
K *= d_alpha_inv[:, None] * d_alpha_inv[None, :]
d = K.sum(dim=1)
D_half_inv = torch.diag(torch.rsqrt(d))
K_sym = D_half_inv @ K @ D_half_inv
if eig_solver == "lobpcg":
m = k if k is not None else min(N - 1, 50)
init = torch.randn(N, m, device=device)
vals, vecs = torch.lobpcg(
K_sym, k=m, X=init, niter=200, tol=tol, largest=True
)
elif eig_solver == "full":
vals, vecs = torch.linalg.eigh(K_sym)
vals, vecs = vals.flip(0), vecs.flip(1)
if k is not None:
vecs = vecs[:, : k + 1]
vals = vals[: k + 1]
else:
raise ValueError(f"Unknown eig_solver '{eig_solver}'")
psi = vecs[:, 1:]
lam = vals[1:]
cum = torch.cumsum(lam, dim=0)
L = int((cum / cum[-1] < cutoff).sum().item()) + 1
lam_pow = lam.pow(diffusion_time)
psi_all = psi * lam_pow
Psi = psi_all[:, :L]
Psi_rest = psi_all[:, L:]
if return_cval:
indices_with_out = [
ii for ii, name in enumerate(labels_by_mix) if "out" in name
]
valid_idx = torch.tensor(
[ii for ii in range(N) if ii not in indices_with_out], device=device
)
pi_min = d[valid_idx].min() / d[valid_idx].sum()
c_val = lam_pow[0] * pi_min.rsqrt() / math.log(2.0)
if stream is not None:
stream.synchronize()
if return_complement and return_eigs and return_cval:
return (
Psi.cpu().numpy(),
Psi_rest.cpu().numpy(),
lam.cpu().numpy(),
float(c_val),
)
if return_complement and return_eigs:
return Psi.cpu().numpy(), Psi_rest.cpu().numpy(), lam.cpu().numpy()
if return_complement:
return Psi.cpu().numpy(), Psi_rest.cpu().numpy()
if return_eigs:
return Psi.cpu().numpy(), lam.cpu().numpy()
return Psi.cpu().numpy()
def compute_ps(coords, labels, max_gpus=None):
"""
Computes the PS measure.
:param coords: coordinates on the manifold.
:param labels: assign source index per coordinate.
:param max_gpus: maximal number of GPUs to use.
:return: the PS measure.
"""
ngpu = get_gpu_count(max_gpus)
if ngpu == 0:
coords_t = torch.tensor(coords)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu = coords_t[ref_is].mean(0)
cov = safe_cov_torch(coords_t[ref_is])
inv = torch.linalg.inv(cov)
A = mahalanobis_torch(coords_t[out_i], mu, inv)
B_list = []
for o in spks_here:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
mu_o = coords_t[o_idxs].mean(0)
inv_o = torch.linalg.inv(safe_cov_torch(coords_t[o_idxs]))
B_list.append(mahalanobis_torch(coords_t[out_i], mu_o, inv_o))
B_min = torch.min(torch.stack(B_list)) if B_list else torch.tensor(0.0)
out[s] = (1 - A / (A + B_min + 1e-6)).item()
return out
device = min(ngpu - 1, 1)
device_str = f"cuda:{device}"
coords_t = torch.tensor(coords, device=device_str)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
stream = torch.cuda.Stream(device=device_str)
with torch.cuda.device(device):
with torch.cuda.stream(stream):
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu = coords_t[ref_is].mean(0)
cov = safe_cov_torch(coords_t[ref_is])
inv = torch.linalg.inv(cov)
A = mahalanobis_torch(coords_t[out_i], mu, inv)
B_list = []
for o in spks_here:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
mu_o = coords_t[o_idxs].mean(0)
inv_o = torch.linalg.inv(safe_cov_torch(coords_t[o_idxs]))
B_list.append(mahalanobis_torch(coords_t[out_i], mu_o, inv_o))
B_min = (
torch.min(torch.stack(B_list))
if B_list
else torch.tensor(0.0, device=device_str)
)
out[s] = (1 - A / (A + B_min + 1e-6)).item()
stream.synchronize()
return out
def compute_pm(coords, labels, pm_method, max_gpus=None):
"""
Computes the PM measure.
:param coords: coordinates on the manifold.
:param labels: assign source index per coordinate.
:param pm_method: "rank" or "gamma".
:param max_gpus: maximal number of GPUs to use.
:return: the PS measure.
"""
ngpu = get_gpu_count(max_gpus)
if ngpu == 0:
coords_t = torch.tensor(coords)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
d_idx = [i for i in idxs if i not in {ref_i, out_i}]
if len(d_idx) < 2:
out[s] = 0.0
continue
ref_v = coords_t[ref_i]
dist = coords_t[d_idx] - ref_v
N, D = dist.shape
cov = dist.T @ dist / (N - 1)
if torch.linalg.matrix_rank(cov) < D:
cov += torch.eye(D) * COV_TOL
inv = torch.linalg.inv(cov)
sq_dists = torch.stack(
[mahalanobis_torch(coords_t[i], ref_v, inv) ** 2 for i in d_idx]
)
d_out_sq = float(mahalanobis_torch(coords_t[out_i], ref_v, inv) ** 2)
pm_score = (
pm_tail_rank(d_out_sq, sq_dists)
if pm_method == "rank"
else pm_tail_gamma(d_out_sq, sq_dists)
)
out[s] = float(np.clip(pm_score, 0.0, 1.0))
return out
device = min(ngpu - 1, 1)
device_str = f"cuda:{device}"
coords_t = torch.tensor(coords, device=device_str)
spks_here = sorted({l.split("-")[0] for l in labels})
out = {}
stream = torch.cuda.Stream(device=device_str)
with torch.cuda.device(device):
with torch.cuda.stream(stream):
for s in spks_here:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
d_idx = [i for i in idxs if i not in {ref_i, out_i}]
if len(d_idx) < 2:
out[s] = 0.0
continue
ref_v = coords_t[ref_i]
dist = coords_t[d_idx] - ref_v
N, D = dist.shape
cov = dist.T @ dist / (N - 1)
if torch.linalg.matrix_rank(cov) < D:
cov += torch.eye(D, device=device_str) * COV_TOL
inv = torch.linalg.inv(cov)
sq_dists = torch.stack(
[mahalanobis_torch(coords_t[i], ref_v, inv) ** 2 for i in d_idx]
)
d_out_sq = float(mahalanobis_torch(coords_t[out_i], ref_v, inv) ** 2)
pm_score = (
pm_tail_rank(d_out_sq, sq_dists)
if pm_method == "rank"
else pm_tail_gamma(d_out_sq, sq_dists)
)
out[s] = float(np.clip(pm_score, 0.0, 1.0))
stream.synchronize()
return out
def pm_ci_components_full(
coords_d, coords_rest, eigvals, labels, *, delta=0.05, K=1.0, C1=1.0, C2=1.0
):
"""
Computes the error radius and tail bounds for the PM measure.
:param coords_d: Retained diffusion maps coordinates.
:param coords_rest: Complement diffusion maps coordinates.
:param eigvals: Eigenvalues of the diffusion maps.
:param labels: Assign source index per coordinate
:param delta: 1-\delta is the confidence score.
:param K: Absolute constant.
:param C1: Absolute constant.
:param C2: Absolute constant.
:return: error radius and tail bounds for the PM measure.
"""
_EPS = 1e-12
def _safe_x(a, theta):
return a / max(theta, _EPS)
D = coords_d.shape[1]
m = coords_rest.shape[1]
if m == 0:
z = {s: 0.0 for s in {l.split("-")[0] for l in labels}}
return z.copy(), z.copy()
X_d = torch.tensor(
coords_d, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
X_c = torch.tensor(
coords_rest, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
spk_ids = sorted({l.split("-")[0] for l in labels})
bias_ci = {}
prob_ci = {}
for s in spk_ids:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
ref_i = labels.index(f"{s}-ref")
out_i = labels.index(f"{s}-out")
dist_is = [i for i in idxs if i not in {ref_i, out_i}]
n_p = len(dist_is)
if n_p < 2:
bias_ci[s] = 0.0
prob_ci[s] = 0.0
continue
ref_d = X_d[ref_i]
ref_c = X_c[ref_i]
D_mat = X_d[dist_is] - ref_d
C_mat = X_c[dist_is] - ref_c
Sigma_d = safe_cov_torch(D_mat)
Sigma_c = safe_cov_torch(C_mat)
C_dc = D_mat.T @ C_mat / (n_p - 1)
inv_Sigma_d = torch.linalg.inv(Sigma_d)
S_i = (
Sigma_c
- C_dc.T @ inv_Sigma_d @ C_dc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
S_inv = torch.linalg.inv(S_i)
diff_out_d = X_d[out_i] - ref_d
diff_out_c = X_c[out_i] - ref_c
r_out = diff_out_c - C_dc.T @ inv_Sigma_d @ diff_out_d
delta_Gi_a = float(r_out @ S_inv @ r_out)
r_list = []
for p in dist_is:
d_p = X_d[p] - ref_d
c_p = X_c[p] - ref_c
r_p = c_p - C_dc.T @ inv_Sigma_d @ d_p
r_list.append(r_p)
R_p = torch.stack(r_list, dim=0)
delta_Gi_p = torch.sum(R_p @ S_inv * R_p, dim=1)
delta_Gi_mu_max = float(delta_Gi_p.max())
mah_sq = torch.stack(
[(X_d[i] - ref_d) @ inv_Sigma_d @ (X_d[i] - ref_d) for i in dist_is]
)
mu_g = float(mah_sq.mean())
sigma2_g = float(mah_sq.var(unbiased=True) + 1e-12)
sigma_g = math.sqrt(sigma2_g)
full_sq = mah_sq + delta_Gi_p
mu_full = float(full_sq.mean())
sigma2_full = float(full_sq.var(unbiased=True) + 1e-12)
if sigma2_g == 0.0:
delta_Gi_k = delta_Gi_theta = 0.0
else:
factor = delta_Gi_mu_max * n_p / (n_p - 1)
delta_Gi_k = 1.0 * factor * (mu_full + mu_g) / sigma2_g
delta_Gi_theta = 1.0 * factor * (sigma2_full + sigma2_g) / (mu_g**2 + 1e-9)
k_d = (mu_g**2) / max(sigma2_g, 1e-12)
theta_d = sigma2_g / max(mu_g, 1e-12)
a_d = float(diff_out_d @ inv_Sigma_d @ diff_out_d)
pm_center = gammaincc(k_d, _safe_x(a_d, theta_d))
corner_vals = []
for s_k in (-1, 1):
for s_theta in (-1, 1):
for s_a in (-1, 1):
k_c = max(k_d + s_k * delta_Gi_k, 1e-6)
theta_c = max(theta_d + s_theta * delta_Gi_theta, 1e-6)
a_c = max(a_d + s_a * delta_Gi_a, 1e-8)
corner_vals.append(gammaincc(k_c, _safe_x(a_c, theta_c)))
bias_ci[s] = max(abs(v - pm_center) for v in corner_vals)
R_sq = float(mah_sq.max()) + 1e-12
log_term = math.log(6.0 / delta)
eps_mu = math.sqrt(2 * sigma2_g * log_term / n_p) + 3 * R_sq * log_term / n_p
eps_sigma = (
math.sqrt(2 * R_sq**2 * log_term / n_p) + 3 * R_sq**2 * log_term / n_p
)
g1_x = 2.0 * mu_g / (sigma2_g + 1e-9)
g1_y = -2.0 * mu_g**2 / (sigma_g**3 + 1e-9)
g2_x = -sigma2_g / (mu_g**2 + 1e-9)
g2_y = 2.0 * sigma_g / (mu_g + 1e-9)
delta_k = min(abs(g1_x) * eps_mu + abs(g1_y) * eps_sigma, 0.5 * k_d)
delta_theta = min(abs(g2_x) * eps_mu + abs(g2_y) * eps_sigma, 0.5 * theta_d)
delta_a = min(R_sq * math.sqrt(2 * log_term / n_p), 0.5 * a_d + 1e-12)
pm_corners = []
for s_k in (-1, 1):
for s_theta in (-1, 1):
for s_a in (-1, 1):
k_c = k_d + s_k * delta_k
theta_c = theta_d + s_theta * delta_theta
a_c = max(a_d + s_a * delta_a, 1e-8)
pm_corners.append(gammaincc(k_c, _safe_x(a_c, theta_c)))
prob_ci[s] = max(abs(pm - pm_center) for pm in pm_corners)
return bias_ci, prob_ci
def ps_ci_components_full(coords_d, coords_rest, eigvals, labels, *, delta=0.05):
"""
Computes the error radius and tail bounds for the PS measure.
:param coords_d: Retained diffusion maps coordinates.
:param coords_rest: Complement diffusion maps coordinates.
:param eigvals: Eigenvalues of the diffusion maps.
:param labels: Assign source index per coordinate
:param delta: 1-\delta is the confidence score.
:return: error radius and tail bounds for the PS measure.
"""
def _mean_dev(lam_max, delta, n_eff):
return math.sqrt(2 * lam_max * math.log(2 / delta) / n_eff)
def _rel_cov_dev(lam_max, trace, delta, n_eff, C=1.0):
r = trace / lam_max
abs_dev = (
C * lam_max * (math.sqrt(r / n_eff) + (r + math.log(2 / delta)) / n_eff)
)
return abs_dev / lam_max
def _maha_eps_m(a_hat, lam_min, lam_max, mean_dev, rel_cov_dev):
term1 = 2 * math.sqrt(a_hat) * mean_dev * math.sqrt(lam_max / lam_min)
term2 = a_hat * rel_cov_dev
return term1 + term2
D = coords_d.shape[1]
m = coords_rest.shape[1]
if m == 0:
z = {s: 0.0 for s in set(l.split("-")[0] for l in labels)}
return z.copy(), z.copy()
X_d = torch.tensor(
coords_d, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
X_c = torch.tensor(
coords_rest, device="cuda:0" if torch.cuda.is_available() else "cpu"
)
spk_ids = sorted({l.split("-")[0] for l in labels})
bias = {}
prob = {}
for s in spk_ids:
idxs = [i for i, l in enumerate(labels) if l.startswith(s)]
out_i = labels.index(f"{s}-out")
ref_is = [i for i in idxs if i != out_i]
mu_d = X_d[ref_is].mean(0)
mu_c = X_c[ref_is].mean(0)
Sigma_d = safe_cov_torch(X_d[ref_is])
Sigma_c = safe_cov_torch(X_c[ref_is])
C_dc = (X_d[ref_is] - mu_d).T @ (X_c[ref_is] - mu_c) / (len(ref_is) - 1)
inv_Sd = torch.linalg.inv(Sigma_d)
lam_min = torch.linalg.eigvalsh(Sigma_d).min().clamp_min(1e-9).item()
lam_max = torch.linalg.eigvalsh(Sigma_d).max()
trace = torch.trace(Sigma_d).item()
diff_d = X_d[out_i] - mu_d
diff_c = X_c[out_i] - mu_c
A_d = float(mahalanobis_torch(X_d[out_i], mu_d, inv_Sd))
r_i = diff_c - C_dc.T @ inv_Sd @ diff_d
S_i = (
Sigma_c
- C_dc.T @ inv_Sd @ C_dc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
term_i = math.sqrt(float(r_i @ torch.linalg.solve(S_i, r_i)))
B_d, term_j = float("inf"), 0.0
Sig_o = None
for o in spk_ids:
if o == s:
continue
o_idxs = [
i
for i, l in enumerate(labels)
if l.startswith(o) and not l.endswith("-out")
]
muo_d = X_d[o_idxs].mean(0)
muo_c = X_c[o_idxs].mean(0)
Sig_o_tmp = safe_cov_torch(X_d[o_idxs])
inv_So = torch.linalg.inv(Sig_o_tmp)
this_B = float(mahalanobis_torch(X_d[out_i], muo_d, inv_So))
if this_B < B_d:
B_d = this_B
Sig_o = Sig_o_tmp
diff_do = X_d[out_i] - muo_d
diff_co = X_c[out_i] - muo_c
C_oc = (
(X_d[o_idxs] - muo_d).T @ (X_c[o_idxs] - muo_c) / (len(o_idxs) - 1)
)
r_j = diff_co - C_oc.T @ inv_So @ diff_do
S_j = (
safe_cov_torch(X_c[o_idxs])
- C_oc.T @ inv_So @ C_oc
+ torch.eye(X_c.shape[1], device=X_c.device) * 1e-9
)
term_j = math.sqrt(float(r_j @ torch.linalg.solve(S_j, r_j)))
denom = A_d + B_d
bias[s] = (B_d * term_i + A_d * term_j) / (denom**2)
if Sig_o is not None:
lam_min_o = torch.linalg.eigvalsh(Sig_o).min().clamp_min(1e-9).item()
lam_max_o = torch.linalg.eigvalsh(Sig_o).max().item()
trace_o = torch.trace(Sig_o).item()
n_eff = max(int(0.7 * len(ref_is)), 3)
RIDGE = 0.05
lam_min_eff = max(lam_min, RIDGE * lam_max.item())
lam_min_o_eff = max(lam_min_o, RIDGE * lam_max_o)
eps_i_sg = _maha_eps_m(
A_d,
lam_min_eff,
lam_max.item(),
_mean_dev(lam_max.item(), delta / 2, n_eff),
_rel_cov_dev(lam_max.item(), trace, delta / 2, n_eff),
)
eps_j_sg = _maha_eps_m(
B_d,
lam_min_o_eff,
lam_max_o,
_mean_dev(lam_max_o, delta / 2, n_eff),
_rel_cov_dev(lam_max_o, trace_o, delta / 2, n_eff),
)
grad_l2 = math.hypot(A_d, B_d) / (A_d + B_d) ** 2
ps_radius = grad_l2 * math.hypot(eps_i_sg, eps_j_sg)
prob[s] = min(1.0, ps_radius)
else:
prob[s] = 0.0
return bias, prob