MAPSS-measures / utils.py
AIvry's picture
Upload 11 files
b759ccc verified
raw
history blame
5.68 kB
import gc
import threading
import warnings
from dataclasses import dataclass
from pathlib import Path
import numpy as np
import torch
warnings.filterwarnings("ignore", message="Some weights of Wav2Vec2Model")
def get_gpu_count(max_gpus=None):
"""
Get the number of available GPUs.
:param max_gpus: maximal number of GPUs to utilize.
"""
ngpu = torch.cuda.device_count()
if max_gpus is not None:
ngpu = min(ngpu, max_gpus)
return ngpu
def clear_gpu_memory():
"""
Enhanced GPU memory clearing
"""
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
with torch.cuda.device(i):
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
torch.cuda.empty_cache()
def get_gpu_memory_info(verbose=False):
"""
Get GPU memory info.
:param verbose: if True, get info.
"""
if not verbose:
return
for i in range(torch.cuda.device_count()):
try:
free_b, total_b = torch.cuda.mem_get_info(i)
free_gb = free_b / 1024**3
total_gb = total_b / 1024**3
except Exception:
total_gb = torch.cuda.get_device_properties(i).total_memory / 1024**3
free_gb = total_gb - (torch.cuda.memory_reserved(i) / 1024**3)
mem_allocated = torch.cuda.memory_allocated(i) / 1024**3
print(f"GPU {i}: {mem_allocated:.2f}GB allocated, {free_gb:.2f}GB free / {total_gb:.2f}GB total")
class GPUWorkDistributor:
"""
Distribute GPU memory into multiple GPUs.
"""
def __init__(self, max_gpus=None):
ngpu = get_gpu_count(max_gpus)
self.gpu_locks = [threading.Lock() for _ in range(max(1, min(ngpu, 2)))]
self.gpu_load = [0 for _ in range(max(1, min(ngpu, 2)))]
self.ngpu = ngpu
def get_least_loaded_gpu(self):
return int(np.argmin(self.gpu_load))
def execute_on_gpu(self, func, *args, **kwargs):
if self.ngpu == 0:
kwargs.pop("device", None)
return func(*args, **kwargs)
gid = self.get_least_loaded_gpu()
with self.gpu_locks[gid]:
self.gpu_load[gid] += 1
try:
with torch.cuda.device(gid):
kwargs["device"] = f"cuda:{gid}"
result = func(*args, **kwargs)
torch.cuda.empty_cache()
return result
finally:
self.gpu_load[gid] -= 1
@dataclass
class Mixture:
mixture_id: str
refs: list[Path]
systems: dict[str, list[Path]]
speaker_ids: list[str]
def canonicalize_mixtures(mixtures, systems=None):
canon = []
if not mixtures:
return canon
def as_paths(seq):
return [p if isinstance(p, Path) else Path(str(p)) for p in seq]
def speaker_id_from_ref(ref_path, idx, mixture_id):
stem = (ref_path.stem or "").strip()
if not stem:
stem = f"spk{idx:02d}"
return f"{mixture_id}__{stem}"
if isinstance(mixtures[0], dict):
for m in mixtures:
mid = str(m.get("mixture_id") or m.get("id") or "").strip()
if not mid:
raise ValueError("Each mixture must include 'mixture_id'.")
refs = as_paths(m.get("references", []))
if not refs:
raise ValueError(f"Mixture {mid}: 'references' must be non-empty.")
sysmap = {}
if isinstance(m.get("systems"), dict):
for algo, outs in m["systems"].items():
sysmap[str(algo)] = as_paths(outs)
spk_ids = [speaker_id_from_ref(r, i, mid) for i, r in enumerate(refs)]
canon.append(Mixture(mid, refs, sysmap, spk_ids))
return canon
if isinstance(mixtures[0], list):
for i, group in enumerate(mixtures):
mid = f"mix_{i:03d}"
refs, spk_ids = [], []
for d in group:
if not isinstance(d, dict) or "ref" not in d or "id" not in d:
raise ValueError(
"Legacy mixtures expect dicts with 'id' and 'ref'."
)
rp = Path(d["ref"])
refs.append(rp)
spk_ids.append(f"{mid}__{str(d['id']).strip()}")
sysmap = {}
if systems:
for algo, per_mix in systems.items():
if mid in per_mix:
sysmap[algo] = as_paths(per_mix[mid])
canon.append(Mixture(mid, refs, sysmap, spk_ids))
return canon
raise ValueError("Unsupported 'mixtures' format.")
def safe_cov_torch(X):
"""
Compute the covariance matrix of X.
:param X: array to compute covariance matrix of.
:return: regularized covariance matrix.
"""
Xc = X - X.mean(dim=0, keepdim=True)
cov = Xc.T @ Xc / (Xc.shape[0] - 1)
if torch.linalg.matrix_rank(cov) < cov.shape[0]:
cov += torch.eye(cov.shape[0], device=cov.device) * 1e-6
return cov
def mahalanobis_torch(x, mu, inv):
"""
Compute the mahalanobis distance with x centered around mu with inverse covariance matrix inv.
:param x: point to calculates distance from.
:param mu: x is centered around mu.
:param inv: the inverse covariance matrix.
:return: Mahalanobis distance.
"""
diff = x - mu
diff_T = diff.transpose(-1, -2) if diff.ndim >= 2 else diff
return torch.sqrt(diff @ inv @ diff_T + 1e-6)