Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import subprocess
|
| 3 |
+
import time
|
| 4 |
+
import io
|
| 5 |
+
import contextlib
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import librosa.display
|
| 8 |
+
import gc
|
| 9 |
+
import os
|
| 10 |
+
import random
|
| 11 |
+
import numpy as np
|
| 12 |
+
from scipy.signal.windows import hann
|
| 13 |
+
from scipy.stats import kurtosis, skew
|
| 14 |
+
import soundfile as sf
|
| 15 |
+
import torch
|
| 16 |
+
import tempfile
|
| 17 |
+
import librosa
|
| 18 |
+
import noisereduce as nr
|
| 19 |
+
from scipy import signal
|
| 20 |
+
import warnings
|
| 21 |
+
import requests
|
| 22 |
+
from pathlib import Path
|
| 23 |
+
warnings.filterwarnings("ignore")
|
| 24 |
+
|
| 25 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
| 26 |
+
torch.set_float32_matmul_precision("high")
|
| 27 |
+
|
| 28 |
+
# Control for GPU utilization
|
| 29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 30 |
+
print(f"Using device: {device}")
|
| 31 |
+
|
| 32 |
+
# Create necessary directories
|
| 33 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
| 34 |
+
output_folder = os.path.join(base_dir, 'output_file')
|
| 35 |
+
model_folder = os.path.join(base_dir, 'model')
|
| 36 |
+
config_folder = os.path.join(base_dir, 'configs')
|
| 37 |
+
|
| 38 |
+
for folder in [output_folder, model_folder, config_folder]:
|
| 39 |
+
if not os.path.exists(folder):
|
| 40 |
+
os.makedirs(folder)
|
| 41 |
+
print(f"Created folder: {folder}")
|
| 42 |
+
|
| 43 |
+
# Model URLs
|
| 44 |
+
MODEL_URLS = {
|
| 45 |
+
'MP3 Enhancer': {
|
| 46 |
+
'model': 'https://huggingface.co/JusperLee/Apollo/resolve/main/pytorch_model.bin',
|
| 47 |
+
'config': 'https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/config_apollo.yaml'
|
| 48 |
+
},
|
| 49 |
+
'Lew Vocal Enhancer': {
|
| 50 |
+
'model': 'https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/apollo_model.ckpt',
|
| 51 |
+
'config': 'https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/config_apollo.yaml'
|
| 52 |
+
},
|
| 53 |
+
'Lew Vocal Enhancer v2 (beta)': {
|
| 54 |
+
'model': 'https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/apollo_model_v2.ckpt',
|
| 55 |
+
'config': 'https://huggingface.co/jarredou/lew_apollo_vocal_enhancer/resolve/main/config_apollo_vocal.yaml'
|
| 56 |
+
},
|
| 57 |
+
'Apollo Universal Model': {
|
| 58 |
+
'model': 'https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/apollo_universal_model.ckpt',
|
| 59 |
+
'config': 'https://huggingface.co/ASesYusuf1/Apollo_universal_model/resolve/main/config_apollo.yaml'
|
| 60 |
+
}
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
def download_file(url, destination):
|
| 64 |
+
if not os.path.exists(destination):
|
| 65 |
+
print(f"Downloading {os.path.basename(destination)}...")
|
| 66 |
+
response = requests.get(url, stream=True)
|
| 67 |
+
response.raise_for_status()
|
| 68 |
+
with open(destination, 'wb') as f:
|
| 69 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 70 |
+
if chunk:
|
| 71 |
+
f.write(chunk)
|
| 72 |
+
print(f"Downloaded {os.path.basename(destination)}")
|
| 73 |
+
else:
|
| 74 |
+
print(f"File already exists: {os.path.basename(destination)}")
|
| 75 |
+
|
| 76 |
+
def ensure_model_files(model_name):
|
| 77 |
+
model_url = MODEL_URLS[model_name]['model']
|
| 78 |
+
config_url = MODEL_URLS[model_name]['config']
|
| 79 |
+
|
| 80 |
+
model_filename = os.path.join(model_folder, os.path.basename(model_url))
|
| 81 |
+
config_filename = os.path.join(config_folder, os.path.basename(config_url))
|
| 82 |
+
|
| 83 |
+
download_file(model_url, model_filename)
|
| 84 |
+
download_file(config_url, config_filename)
|
| 85 |
+
|
| 86 |
+
return model_filename, config_filename
|
| 87 |
+
|
| 88 |
+
def process_audio(input_file, model, chunk_size, overlap):
|
| 89 |
+
input_file_path = input_file.name
|
| 90 |
+
original_file_name = os.path.splitext(os.path.basename(input_file_path))[0]
|
| 91 |
+
output_file_path = f'{output_folder}/{original_file_name}.wav'
|
| 92 |
+
|
| 93 |
+
# Download necessary model files
|
| 94 |
+
ckpt, config = ensure_model_files(model)
|
| 95 |
+
print(f"Using model: {model}")
|
| 96 |
+
|
| 97 |
+
print("Processing started. Please wait...")
|
| 98 |
+
command = f"python inference.py --in_wav '{input_file_path}' --out_wav '{output_file_path}' --chunk_size {chunk_size} --overlap {overlap} --ckpt '{ckpt}' --config '{config}'"
|
| 99 |
+
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
| 100 |
+
|
| 101 |
+
for line in process.stdout:
|
| 102 |
+
print(f"Processing: {line.strip()}")
|
| 103 |
+
|
| 104 |
+
process.stdout.close()
|
| 105 |
+
process.wait()
|
| 106 |
+
|
| 107 |
+
if process.returncode != 0:
|
| 108 |
+
return "An error occurred while processing the audio.", None, None
|
| 109 |
+
|
| 110 |
+
print("Processing completed.")
|
| 111 |
+
return output_file_path, input_file_path
|
| 112 |
+
|
| 113 |
+
def mid_side_separation(audio_file):
|
| 114 |
+
y, sr = librosa.load(audio_file.name, sr=None, mono=False)
|
| 115 |
+
if y.ndim == 1:
|
| 116 |
+
raise ValueError("Stereo audio file required!")
|
| 117 |
+
|
| 118 |
+
left, right = y[0], y[1]
|
| 119 |
+
mid = (left + right) / 2
|
| 120 |
+
side = (left - right) / 2
|
| 121 |
+
|
| 122 |
+
mid_path = os.path.join(output_folder, "mid.wav")
|
| 123 |
+
side_path = os.path.join(output_folder, "side.wav")
|
| 124 |
+
sf.write(mid_path, mid, sr)
|
| 125 |
+
sf.write(side_path, side, sr)
|
| 126 |
+
|
| 127 |
+
return mid_path, side_path, sr
|
| 128 |
+
|
| 129 |
+
def mid_side_combine(mid_file, side_file, output_path):
|
| 130 |
+
mid_data, sr_mid = librosa.load(mid_file, sr=None, mono=True)
|
| 131 |
+
side_data, sr_side = librosa.load(side_file, sr=None, mono=True)
|
| 132 |
+
|
| 133 |
+
if sr_mid != sr_side:
|
| 134 |
+
raise ValueError("Mid and Side files have different sample rates!")
|
| 135 |
+
|
| 136 |
+
left = mid_data + side_data
|
| 137 |
+
right = mid_data - side_data
|
| 138 |
+
stereo = np.stack([left, right], axis=0)
|
| 139 |
+
|
| 140 |
+
sf.write(output_path, stereo.T, sr_mid)
|
| 141 |
+
return output_path
|
| 142 |
+
|
| 143 |
+
def process_mid_side_upscale(input_file, model, chunk_size, overlap):
|
| 144 |
+
try:
|
| 145 |
+
print("Separating Mid and Side channels...")
|
| 146 |
+
mid_path, side_path, sr = mid_side_separation(input_file)
|
| 147 |
+
|
| 148 |
+
print("Processing Mid channel...")
|
| 149 |
+
mid_restored, _ = process_audio(
|
| 150 |
+
type('obj', (object,), {'name': mid_path}), model, chunk_size, overlap
|
| 151 |
+
)
|
| 152 |
+
print("Processing Side channel...")
|
| 153 |
+
side_restored, _ = process_audio(
|
| 154 |
+
type('obj', (object,), {'name': side_path}), model, chunk_size, overlap
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
original_file_name = os.path.splitext(os.path.basename(input_file.name))[0]
|
| 158 |
+
final_output_path = os.path.join(output_folder, f"{original_file_name}_upscaled.wav")
|
| 159 |
+
print("Combining processed Mid and Side channels...")
|
| 160 |
+
final_audio = mid_side_combine(mid_restored, side_restored, final_output_path)
|
| 161 |
+
|
| 162 |
+
print("Mid/Side upscaling completed.")
|
| 163 |
+
return final_audio, input_file.name
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
return f"Error: {str(e)}", None
|
| 167 |
+
|
| 168 |
+
def show_credits():
|
| 169 |
+
return """This Web UI was created using AI tools and written by U.Z.S.
|
| 170 |
+
|
| 171 |
+
**Apollo-Colab-Inference** (https://github.com/jarredou/Apollo-Colab-Inference):
|
| 172 |
+
This project was developed by Jarred Ou and provides a colab-based inference implementation of the Apollo model for audio enhancement.
|
| 173 |
+
|
| 174 |
+
**Apollo** (https://github.com/JusperLee/Apollo):
|
| 175 |
+
Created by Jusper Lee, Apollo is a deep learning-based model aimed at improving vocal clarity and overall audio quality in recordings.
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
def spectrum(audio_file):
|
| 179 |
+
if audio_file is None:
|
| 180 |
+
return None, "No file selected"
|
| 181 |
+
|
| 182 |
+
try:
|
| 183 |
+
chunk_duration = 60
|
| 184 |
+
hop_length = 512
|
| 185 |
+
n_fft = 4096
|
| 186 |
+
|
| 187 |
+
with sf.SoundFile(audio_file.name) as sf_desc:
|
| 188 |
+
duration = len(sf_desc) / sf_desc.samplerate
|
| 189 |
+
|
| 190 |
+
num_chunks = int(np.ceil(duration / chunk_duration))
|
| 191 |
+
freqs = librosa.fft_frequencies(sr=sf_desc.samplerate, n_fft=n_fft)
|
| 192 |
+
total_frames = int(np.ceil(duration * sf_desc.samplerate / hop_length))
|
| 193 |
+
S_db_full = np.zeros((len(freqs), total_frames))
|
| 194 |
+
|
| 195 |
+
for chunk_idx in range(num_chunks):
|
| 196 |
+
start_time = chunk_idx * chunk_duration
|
| 197 |
+
y, sr = librosa.load(audio_file.name, offset=start_time, duration=chunk_duration, sr=None)
|
| 198 |
+
S_chunk = np.abs(librosa.stft(y, n_fft=n_fft, hop_length=hop_length))
|
| 199 |
+
S_db_chunk = librosa.amplitude_to_db(S_chunk, ref=np.max)
|
| 200 |
+
start_frame = int(start_time * sr / hop_length)
|
| 201 |
+
end_frame = start_frame + S_db_chunk.shape[1]
|
| 202 |
+
S_db_full[:, start_frame:end_frame] = S_db_chunk
|
| 203 |
+
del S_chunk, S_db_chunk
|
| 204 |
+
gc.collect()
|
| 205 |
+
|
| 206 |
+
downsample_factor = 4
|
| 207 |
+
S_db_downsampled = S_db_full[:, ::downsample_factor]
|
| 208 |
+
threshold = np.max(S_db_downsampled) - 60
|
| 209 |
+
significant_freqs = freqs[np.any(S_db_downsampled > threshold, axis=1)]
|
| 210 |
+
max_freq = np.max(significant_freqs) if len(significant_freqs) > 0 else sr / 2
|
| 211 |
+
|
| 212 |
+
plt.figure(figsize=(30, 16))
|
| 213 |
+
display_hop = 4
|
| 214 |
+
librosa.display.specshow(
|
| 215 |
+
S_db_full[:, ::display_hop],
|
| 216 |
+
sr=sr,
|
| 217 |
+
hop_length=hop_length * display_hop,
|
| 218 |
+
x_axis='time',
|
| 219 |
+
y_axis='hz',
|
| 220 |
+
cmap='magma'
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
freq_ticks = [2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 22000, 24000]
|
| 224 |
+
plt.yticks(freq_ticks, [f"{f/1000:.0f}" for f in freq_ticks])
|
| 225 |
+
plt.colorbar(format='%+2.0f dB')
|
| 226 |
+
plt.title('Frequency Spectrum', fontsize=24)
|
| 227 |
+
plt.xlabel('Time (seconds)', fontsize=20)
|
| 228 |
+
plt.ylabel('Frequency (kHz)', fontsize=20)
|
| 229 |
+
|
| 230 |
+
output_image_path = os.path.join(output_folder, 'spectrum.png')
|
| 231 |
+
plt.savefig(output_image_path, bbox_inches='tight', dpi=300)
|
| 232 |
+
plt.close()
|
| 233 |
+
|
| 234 |
+
del S_db_full, S_db_downsampled
|
| 235 |
+
gc.collect()
|
| 236 |
+
|
| 237 |
+
closest_freq = min(freq_ticks, key=lambda x: abs(x - max_freq))
|
| 238 |
+
return output_image_path, f"Maximum Frequency {int(closest_freq)} Hz"
|
| 239 |
+
|
| 240 |
+
except Exception as e:
|
| 241 |
+
return None, f"Error: {str(e)}"
|
| 242 |
+
|
| 243 |
+
# Gradio Interface
|
| 244 |
+
with gr.Blocks(css="""
|
| 245 |
+
.gradio-container { background-color: black; color: white; font-family: Arial, sans-serif; }
|
| 246 |
+
.footer { position: absolute; bottom: 10px; right: 10px; font-size: 12px; color: white; }
|
| 247 |
+
.gradio-button { background-color: #6a0dad; color: white; border: 1px solid #5a0b8a; border-radius: 5px; }
|
| 248 |
+
.gradio-button:hover { background-color: #5a0b8a; }
|
| 249 |
+
.gradio-input { background-color: rgba(106, 13, 173, 0.8); border: 1px solid #5a0b8a; color: white; border-radius: 5px; }
|
| 250 |
+
.gradio-input:focus { border-color: #ffffff; box-shadow: 0 0 5px rgba(255, 255, 255, 0.5); }
|
| 251 |
+
.gradio-slider { background-color: rgba(106, 13, 173, 0.8); color: white; }
|
| 252 |
+
.gradio-label { color: white; }
|
| 253 |
+
.gradio-tabs { background-color: rgba(106, 13, 173, 0.8); color: white; }
|
| 254 |
+
@media (max-width: 600px) {
|
| 255 |
+
.gradio-button { width: 100%; font-size: 16px; }
|
| 256 |
+
.gradio-input { width: 100%; font-size: 16px; }
|
| 257 |
+
.gradio-slider { width: 100%; }
|
| 258 |
+
.gradio-label { font-size: 14px; }
|
| 259 |
+
}
|
| 260 |
+
""") as app:
|
| 261 |
+
|
| 262 |
+
with gr.Tab("Home"):
|
| 263 |
+
gr.Markdown("# Apollo Audio Enhancement")
|
| 264 |
+
with gr.Row():
|
| 265 |
+
audio_input = gr.File(label="Select Audio File", file_types=["audio"])
|
| 266 |
+
model = gr.Radio(
|
| 267 |
+
["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
|
| 268 |
+
label="Select Model"
|
| 269 |
+
)
|
| 270 |
+
gr.Markdown("**For Universal model, please set Chunk_Size to 19**", elem_classes="model-note")
|
| 271 |
+
chunk_size = gr.Slider(minimum=3, maximum=25, step=1, value=25, label="Chunk Size")
|
| 272 |
+
overlap = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Overlap")
|
| 273 |
+
output_audio = gr.Audio(label="Processed Audio")
|
| 274 |
+
original_audio = gr.Audio(label="Original Audio")
|
| 275 |
+
process_button = gr.Button("Process Audio")
|
| 276 |
+
process_button.click(process_audio, inputs=[audio_input, model, chunk_size, overlap], outputs=[output_audio, original_audio])
|
| 277 |
+
|
| 278 |
+
with gr.Tab("Spectrum"):
|
| 279 |
+
gr.Markdown("# Spectrum Analysis")
|
| 280 |
+
spectrogram_input = gr.File(label="Select Audio File for Spectrum", file_types=["audio"])
|
| 281 |
+
output_spectrum = gr.Image(label="Frequency Spectrum")
|
| 282 |
+
max_freq_info = gr.Textbox(label="Maximum Frequency Information")
|
| 283 |
+
spectrum_button = gr.Button("Show Spectrum")
|
| 284 |
+
spectrum_button.click(spectrum, inputs=[spectrogram_input], outputs=[output_spectrum, max_freq_info])
|
| 285 |
+
|
| 286 |
+
with gr.Tab("Mid/Side Upscale"):
|
| 287 |
+
gr.Markdown("# 🎚️ Mid/Side Audio Upscaling")
|
| 288 |
+
gr.Markdown("Upload a stereo audio file to separate, enhance, and recombine its Mid and Side channels using Apollo.")
|
| 289 |
+
with gr.Row():
|
| 290 |
+
ms_input = gr.File(label="Select Stereo Audio File", file_types=["audio"])
|
| 291 |
+
ms_model = gr.Radio(
|
| 292 |
+
["MP3 Enhancer", "Lew Vocal Enhancer", "Lew Vocal Enhancer v2 (beta)", "Apollo Universal Model"],
|
| 293 |
+
label="Select Model",
|
| 294 |
+
value="Apollo Universal Model"
|
| 295 |
+
)
|
| 296 |
+
ms_chunk_size = gr.Slider(minimum=3, maximum=25, step=1, value=18, label="Chunk Size")
|
| 297 |
+
ms_overlap = gr.Slider(minimum=2, maximum=10, step=1, value=2, label="Overlap")
|
| 298 |
+
ms_output = gr.Audio(label="Upscaled Audio")
|
| 299 |
+
ms_original = gr.Audio(label="Original Audio")
|
| 300 |
+
ms_process_button = gr.Button("Process Mid/Side Upscale")
|
| 301 |
+
ms_process_button.click(
|
| 302 |
+
process_mid_side_upscale,
|
| 303 |
+
inputs=[ms_input, ms_model, ms_chunk_size, ms_overlap],
|
| 304 |
+
outputs=[ms_output, ms_original]
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
with gr.Tab("Credits"):
|
| 308 |
+
gr.Markdown("## Credits")
|
| 309 |
+
gr.Markdown(show_credits())
|
| 310 |
+
|
| 311 |
+
gr.Markdown("Developed by U.Z.S using Claude.", elem_classes="footer")
|
| 312 |
+
|
| 313 |
+
if __name__ == "__main__":
|
| 314 |
+
app.launch()
|