Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,950 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import numpy as np
|
| 5 |
+
import random
|
| 6 |
+
import faiss
|
| 7 |
+
import json
|
| 8 |
+
import logging
|
| 9 |
+
import re
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
import os
|
| 13 |
+
import torch
|
| 14 |
+
import librosa
|
| 15 |
+
from gtts import gTTS
|
| 16 |
+
import tempfile
|
| 17 |
+
import io
|
| 18 |
+
import base64
|
| 19 |
+
import time
|
| 20 |
+
from audio_recorder_streamlit import audio_recorder
|
| 21 |
+
|
| 22 |
+
# Set up logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# ============================
|
| 27 |
+
# AUDIO PROCESSING UTILITIES
|
| 28 |
+
# ============================
|
| 29 |
+
|
| 30 |
+
class AudioProcessor:
|
| 31 |
+
def __init__(self):
|
| 32 |
+
"""Initialize audio processing components"""
|
| 33 |
+
try:
|
| 34 |
+
# Load Wav2Vec2 model for speech-to-text
|
| 35 |
+
self.stt_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
| 36 |
+
self.stt_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 37 |
+
logger.info("β
STT model loaded successfully")
|
| 38 |
+
except Exception as e:
|
| 39 |
+
logger.error(f"β Error loading STT model: {e}")
|
| 40 |
+
self.stt_processor = None
|
| 41 |
+
self.stt_model = None
|
| 42 |
+
|
| 43 |
+
def speech_to_text_from_bytes(self, audio_bytes):
|
| 44 |
+
"""Convert speech to text from audio bytes"""
|
| 45 |
+
if not self.stt_processor or not self.stt_model:
|
| 46 |
+
return "STT model not available"
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
# Create temporary file from bytes
|
| 50 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
| 51 |
+
tmp_file.write(audio_bytes)
|
| 52 |
+
tmp_file_path = tmp_file.name
|
| 53 |
+
|
| 54 |
+
# Load and preprocess audio
|
| 55 |
+
audio_input, sr = librosa.load(tmp_file_path, sr=16000)
|
| 56 |
+
|
| 57 |
+
# Clean up temp file
|
| 58 |
+
os.unlink(tmp_file_path)
|
| 59 |
+
|
| 60 |
+
# Check if audio is silent
|
| 61 |
+
if np.max(np.abs(audio_input)) < 0.01:
|
| 62 |
+
return "No speech detected. Please speak louder."
|
| 63 |
+
|
| 64 |
+
# Process audio
|
| 65 |
+
input_values = self.stt_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values
|
| 66 |
+
|
| 67 |
+
# Perform inference
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
logits = self.stt_model(input_values).logits
|
| 70 |
+
|
| 71 |
+
# Decode transcription
|
| 72 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 73 |
+
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
|
| 74 |
+
|
| 75 |
+
return transcription.strip() if transcription.strip() else "Could not transcribe audio"
|
| 76 |
+
|
| 77 |
+
except Exception as e:
|
| 78 |
+
logger.error(f"Error in speech-to-text: {e}")
|
| 79 |
+
return f"Error processing audio: {str(e)}"
|
| 80 |
+
|
| 81 |
+
def text_to_speech(self, text, lang='en'):
|
| 82 |
+
"""Convert text to speech using gTTS"""
|
| 83 |
+
try:
|
| 84 |
+
# Create TTS object
|
| 85 |
+
tts = gTTS(text=text, lang=lang, slow=False)
|
| 86 |
+
|
| 87 |
+
# Save to temporary file
|
| 88 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
| 89 |
+
tts.save(tmp_file.name)
|
| 90 |
+
return tmp_file.name
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.error(f"Error in text-to-speech: {e}")
|
| 94 |
+
return None
|
| 95 |
+
|
| 96 |
+
# ============================
|
| 97 |
+
# DATA PREPARATION
|
| 98 |
+
# ============================
|
| 99 |
+
|
| 100 |
+
def prepare_dataset():
|
| 101 |
+
"""Load and prepare the emotion dataset"""
|
| 102 |
+
print("π Loading emotion dataset...")
|
| 103 |
+
|
| 104 |
+
# Load the dataset
|
| 105 |
+
ds = load_dataset("cardiffnlp/tweet_eval", "emotion")
|
| 106 |
+
|
| 107 |
+
# Define emotion labels (matching the dataset)
|
| 108 |
+
emotion_labels = ["anger", "joy", "optimism", "sadness"]
|
| 109 |
+
|
| 110 |
+
def clean_text(text):
|
| 111 |
+
"""Clean and preprocess text"""
|
| 112 |
+
text = text.lower()
|
| 113 |
+
text = re.sub(r"http\S+", "", text) # remove URLs
|
| 114 |
+
text = re.sub(r"[^\w\s]", "", text) # remove special characters
|
| 115 |
+
text = re.sub(r"\d+", "", text) # remove numbers
|
| 116 |
+
text = re.sub(r"\s+", " ", text) # normalize whitespace
|
| 117 |
+
return text.strip()
|
| 118 |
+
|
| 119 |
+
# Sample and prepare training data
|
| 120 |
+
train_data = ds['train']
|
| 121 |
+
train_sample = random.sample(list(train_data), min(1000, len(train_data)))
|
| 122 |
+
|
| 123 |
+
# Convert to RAG format
|
| 124 |
+
rag_json = []
|
| 125 |
+
for row in train_sample:
|
| 126 |
+
cleaned_text = clean_text(row['text'])
|
| 127 |
+
if len(cleaned_text) > 10: # Filter out very short texts
|
| 128 |
+
rag_json.append({
|
| 129 |
+
"text": cleaned_text,
|
| 130 |
+
"emotion": emotion_labels[row['label']],
|
| 131 |
+
"original_text": row['text']
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
print(f"Dataset prepared with {len(rag_json)} samples")
|
| 135 |
+
return rag_json
|
| 136 |
+
|
| 137 |
+
# ============================
|
| 138 |
+
# EMOTION DETECTION MODEL
|
| 139 |
+
# ============================
|
| 140 |
+
|
| 141 |
+
class EmotionDetector:
|
| 142 |
+
def __init__(self):
|
| 143 |
+
self.model_name = "j-hartmann/emotion-english-distilroberta-base"
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 147 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
| 148 |
+
self.classifier = pipeline(
|
| 149 |
+
"text-classification",
|
| 150 |
+
model=self.model,
|
| 151 |
+
tokenizer=self.tokenizer,
|
| 152 |
+
return_all_scores=False
|
| 153 |
+
)
|
| 154 |
+
except Exception as e:
|
| 155 |
+
st.error(f"β Error loading emotion model: {e}")
|
| 156 |
+
raise
|
| 157 |
+
|
| 158 |
+
def detect_emotion(self, text):
|
| 159 |
+
"""Detect emotion from text"""
|
| 160 |
+
try:
|
| 161 |
+
result = self.classifier(text)
|
| 162 |
+
emotion = result[0]['label'].lower()
|
| 163 |
+
confidence = result[0]['score']
|
| 164 |
+
|
| 165 |
+
# Map model outputs to our emotion categories
|
| 166 |
+
emotion_mapping = {
|
| 167 |
+
'anger': 'anger',
|
| 168 |
+
'disgust': 'sadness',
|
| 169 |
+
'neutral': 'neutral',
|
| 170 |
+
'joy': 'joy',
|
| 171 |
+
'love': 'joy',
|
| 172 |
+
'happiness': 'joy',
|
| 173 |
+
'sadness': 'sadness',
|
| 174 |
+
'fear': 'sadness',
|
| 175 |
+
'surprise': 'optimism',
|
| 176 |
+
'optimism': 'optimism'
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
mapped_emotion = emotion_mapping.get(emotion, 'optimism')
|
| 180 |
+
return mapped_emotion, confidence
|
| 181 |
+
|
| 182 |
+
except Exception as e:
|
| 183 |
+
logger.error(f"Error in emotion detection: {e}")
|
| 184 |
+
return 'optimism', 0.5
|
| 185 |
+
|
| 186 |
+
# ============================
|
| 187 |
+
# RAG SYSTEM WITH FAISS
|
| 188 |
+
# ============================
|
| 189 |
+
|
| 190 |
+
class RAGSystem:
|
| 191 |
+
def __init__(self, rag_data):
|
| 192 |
+
self.rag_data = rag_data
|
| 193 |
+
self.texts = [entry['text'] for entry in rag_data]
|
| 194 |
+
|
| 195 |
+
# Initialize embedding model
|
| 196 |
+
self.embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 197 |
+
|
| 198 |
+
# Create embeddings
|
| 199 |
+
self.embeddings = self.embed_model.encode(
|
| 200 |
+
self.texts,
|
| 201 |
+
convert_to_numpy=True,
|
| 202 |
+
show_progress_bar=False
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Create FAISS index
|
| 206 |
+
dimension = self.embeddings.shape[1]
|
| 207 |
+
self.index = faiss.IndexFlatL2(dimension)
|
| 208 |
+
self.index.add(self.embeddings)
|
| 209 |
+
|
| 210 |
+
def retrieve_templates(self, user_input, detected_emotion, top_k=3):
|
| 211 |
+
"""Retrieve relevant templates based on emotion and similarity"""
|
| 212 |
+
|
| 213 |
+
# Filter by emotion first
|
| 214 |
+
emotion_filtered_indices = [
|
| 215 |
+
i for i, entry in enumerate(self.rag_data)
|
| 216 |
+
if entry['emotion'] == detected_emotion
|
| 217 |
+
]
|
| 218 |
+
|
| 219 |
+
if not emotion_filtered_indices:
|
| 220 |
+
emotion_filtered_indices = list(range(len(self.rag_data)))
|
| 221 |
+
|
| 222 |
+
# Get filtered embeddings
|
| 223 |
+
filtered_embeddings = self.embeddings[emotion_filtered_indices]
|
| 224 |
+
filtered_texts = [self.texts[i] for i in emotion_filtered_indices]
|
| 225 |
+
|
| 226 |
+
# Create temporary index for filtered data
|
| 227 |
+
temp_index = faiss.IndexFlatL2(filtered_embeddings.shape[1])
|
| 228 |
+
temp_index.add(filtered_embeddings)
|
| 229 |
+
|
| 230 |
+
# Search for similar templates
|
| 231 |
+
user_embedding = self.embed_model.encode([user_input], convert_to_numpy=True)
|
| 232 |
+
distances, indices = temp_index.search(
|
| 233 |
+
user_embedding,
|
| 234 |
+
min(top_k, len(filtered_texts))
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Top templates
|
| 238 |
+
top_templates = [filtered_texts[i] for i in indices[0]]
|
| 239 |
+
|
| 240 |
+
return top_templates
|
| 241 |
+
|
| 242 |
+
# ============================
|
| 243 |
+
# RESPONSE GENERATOR
|
| 244 |
+
# ============================
|
| 245 |
+
|
| 246 |
+
class ResponseGenerator:
|
| 247 |
+
def __init__(self, emotion_detector, rag_system):
|
| 248 |
+
self.emotion_detector = emotion_detector
|
| 249 |
+
self.rag_system = rag_system
|
| 250 |
+
|
| 251 |
+
# Empathetic response templates by emotion
|
| 252 |
+
self.response_templates = {
|
| 253 |
+
'anger': [
|
| 254 |
+
"I can understand why you're feeling frustrated. It's completely valid to feel this way.",
|
| 255 |
+
"Your anger is understandable. Sometimes situations can be really challenging.",
|
| 256 |
+
"I hear that you're upset, and that's okay. These feelings are important."
|
| 257 |
+
],
|
| 258 |
+
'sadness': [
|
| 259 |
+
"I'm sorry you're going through a difficult time. Your feelings are valid.",
|
| 260 |
+
"It sounds like you're dealing with something really tough right now.",
|
| 261 |
+
"I can sense your sadness, and I want you to know that it's okay to feel this way."
|
| 262 |
+
],
|
| 263 |
+
'joy': [
|
| 264 |
+
"I'm so happy to hear about your positive experience! That's wonderful.",
|
| 265 |
+
"Your joy is contagious! It's great to hear such positive news.",
|
| 266 |
+
"I love hearing about things that make you happy. That sounds amazing!"
|
| 267 |
+
],
|
| 268 |
+
'optimism': [
|
| 269 |
+
"Your positive outlook is inspiring. That's a great way to look at things.",
|
| 270 |
+
"I appreciate your hopeful perspective. That's really encouraging.",
|
| 271 |
+
"It's wonderful to hear your optimistic thoughts. Keep that positive energy!"
|
| 272 |
+
],
|
| 273 |
+
'neutral': [
|
| 274 |
+
"Thanks for sharing that. I hear you.",
|
| 275 |
+
"I understand. Let's continue exploring this topic together.",
|
| 276 |
+
"I appreciate you telling me that. Let's keep going."
|
| 277 |
+
]
|
| 278 |
+
}
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def generate_response(self, user_input, top_k=3):
|
| 282 |
+
"""Generate empathetic response using RAG and few-shot prompting"""
|
| 283 |
+
|
| 284 |
+
try:
|
| 285 |
+
# Step 1: Detect emotion
|
| 286 |
+
detected_emotion, confidence = self.emotion_detector.detect_emotion(user_input)
|
| 287 |
+
|
| 288 |
+
# Step 2: Retrieve relevant templates
|
| 289 |
+
templates = self.rag_system.retrieve_templates(
|
| 290 |
+
user_input, detected_emotion, top_k=top_k
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Step 3: Create response using templates and emotion
|
| 294 |
+
base_responses = self.response_templates.get(
|
| 295 |
+
detected_emotion,
|
| 296 |
+
self.response_templates['optimism']
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Combine base response with context from templates
|
| 300 |
+
selected_base = random.choice(base_responses)
|
| 301 |
+
|
| 302 |
+
# Create contextual response
|
| 303 |
+
if templates:
|
| 304 |
+
context_template = random.choice(templates)
|
| 305 |
+
# Enhanced response generation
|
| 306 |
+
response = f"{selected_base} I can relate to what you're sharing - {context_template[:80]}. Remember that your feelings are important and valid."
|
| 307 |
+
else:
|
| 308 |
+
response = selected_base
|
| 309 |
+
|
| 310 |
+
# Add disclaimer
|
| 311 |
+
disclaimer = "\n\nβ οΈ This is an automated response. For serious emotional concerns, please consult a mental health professional."
|
| 312 |
+
|
| 313 |
+
return response + disclaimer, detected_emotion, confidence
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
error_msg = f"I apologize, but I encountered an error: {str(e)}"
|
| 317 |
+
disclaimer = "\n\nβ οΈ This is an automated response. Please consult a professional if needed."
|
| 318 |
+
return error_msg + disclaimer, 'neutral', 0.0
|
| 319 |
+
|
| 320 |
+
# ============================
|
| 321 |
+
# STREAMLIT APP
|
| 322 |
+
# ============================
|
| 323 |
+
|
| 324 |
+
def main():
|
| 325 |
+
# Page config with better settings
|
| 326 |
+
st.set_page_config(
|
| 327 |
+
page_title="Empathetic AI Companion",
|
| 328 |
+
page_icon="π€",
|
| 329 |
+
layout="wide",
|
| 330 |
+
initial_sidebar_state="expanded"
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# CSS with modern design
|
| 334 |
+
st.markdown("""
|
| 335 |
+
<style>
|
| 336 |
+
/* Import Google Fonts */
|
| 337 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
| 338 |
+
|
| 339 |
+
/* Global styles */
|
| 340 |
+
.stApp {
|
| 341 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 342 |
+
font-family: 'Inter', sans-serif;
|
| 343 |
+
}
|
| 344 |
+
|
| 345 |
+
/* Main header - more elegant */
|
| 346 |
+
.main-header {
|
| 347 |
+
background: rgba(255, 255, 255, 0.15);
|
| 348 |
+
padding: 2rem;
|
| 349 |
+
border-radius: 20px;
|
| 350 |
+
text-align: center;
|
| 351 |
+
margin-bottom: 2rem;
|
| 352 |
+
backdrop-filter: blur(20px);
|
| 353 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
| 354 |
+
color: white;
|
| 355 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
|
| 356 |
+
transition: all 0.3s ease;
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
.main-header:hover {
|
| 360 |
+
transform: translateY(-5px);
|
| 361 |
+
box-shadow: 0 12px 40px rgba(0,0,0,0.2);
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
.main-header h1 {
|
| 365 |
+
font-size: 2.5rem;
|
| 366 |
+
font-weight: 700;
|
| 367 |
+
margin-bottom: 0.5rem;
|
| 368 |
+
background: linear-gradient(45deg, #fff, #f0f0f0);
|
| 369 |
+
-webkit-background-clip: text;
|
| 370 |
+
-webkit-text-fill-color: transparent;
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
.main-header p {
|
| 374 |
+
font-size: 1.2rem;
|
| 375 |
+
opacity: 0.9;
|
| 376 |
+
font-weight: 400;
|
| 377 |
+
margin: 0;
|
| 378 |
+
}
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
/* Improved chat messages */
|
| 382 |
+
.chat-message {
|
| 383 |
+
margin-bottom: 1.5rem;
|
| 384 |
+
animation: fadeInUp 0.5s ease;
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
@keyframes fadeInUp {
|
| 388 |
+
from { opacity: 0; transform: translateY(20px); }
|
| 389 |
+
to { opacity: 1; transform: translateY(0); }
|
| 390 |
+
}
|
| 391 |
+
|
| 392 |
+
.user-message {
|
| 393 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 394 |
+
color: white;
|
| 395 |
+
padding: 1rem 1.5rem;
|
| 396 |
+
border-radius: 20px 20px 5px 20px;
|
| 397 |
+
margin-left: auto;
|
| 398 |
+
margin-right: 0;
|
| 399 |
+
max-width: 75%;
|
| 400 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
|
| 401 |
+
font-weight: 500;
|
| 402 |
+
line-height: 1.5;
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
.bot-message {
|
| 406 |
+
background: linear-gradient(to top, #a18cd1 0%, #fbc2eb 100%);;
|
| 407 |
+
color: white;
|
| 408 |
+
padding: 1rem 1.5rem;
|
| 409 |
+
border-radius: 20px 20px 20px 5px;
|
| 410 |
+
margin-left: 0;
|
| 411 |
+
margin-right: auto;
|
| 412 |
+
max-width: 75%;
|
| 413 |
+
box-shadow: 0 4px 15px rgba(240, 147, 251, 0.3);
|
| 414 |
+
font-weight: 500;
|
| 415 |
+
line-height: 1.5;
|
| 416 |
+
}
|
| 417 |
+
|
| 418 |
+
/* Message headers */
|
| 419 |
+
.message-header {
|
| 420 |
+
font-size: 0.85rem;
|
| 421 |
+
opacity: 0.9;
|
| 422 |
+
margin-bottom: 0.5rem;
|
| 423 |
+
font-weight: 600;
|
| 424 |
+
}
|
| 425 |
+
|
| 426 |
+
/* Emotion badges - hidden but styled */
|
| 427 |
+
.emotion-badge {
|
| 428 |
+
display: inline-block;
|
| 429 |
+
padding: 0.2rem 0.6rem;
|
| 430 |
+
border-radius: 12px;
|
| 431 |
+
font-size: 0.75rem;
|
| 432 |
+
font-weight: 600;
|
| 433 |
+
margin-left: 0.5rem;
|
| 434 |
+
opacity: 0.8;
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
/* Enhanced buttons */
|
| 440 |
+
.stButton > button {
|
| 441 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 442 |
+
color: white !important;
|
| 443 |
+
border: none !important;
|
| 444 |
+
border-radius: 50px !important;
|
| 445 |
+
padding: 1rem 2rem !important;
|
| 446 |
+
font-weight: 600 !important;
|
| 447 |
+
font-size: 1rem !important;
|
| 448 |
+
transition: all 0.3s ease !important;
|
| 449 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
|
| 450 |
+
min-height: 50px !important;
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
.stButton > button:hover {
|
| 454 |
+
transform: translateY(-3px) !important;
|
| 455 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.4) !important;
|
| 456 |
+
background: linear-gradient(135deg, #7c8ff0 0%, #8a5ab8 100%) !important;
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
/* Play button styling */
|
| 460 |
+
.play-button {
|
| 461 |
+
background: linear-gradient(135deg, #28a745 0%, #20c997 100%) !important;
|
| 462 |
+
border-radius: 25px !important;
|
| 463 |
+
padding: 0.5rem 1rem !important;
|
| 464 |
+
font-size: 0.9rem !important;
|
| 465 |
+
margin-top: 0.5rem !important;
|
| 466 |
+
box-shadow: 0 4px 15px rgba(40, 167, 69, 0.3) !important;
|
| 467 |
+
}
|
| 468 |
+
|
| 469 |
+
/* Sidebar enhancements */
|
| 470 |
+
.css-1d391kg {
|
| 471 |
+
background: rgba(255, 255, 255, 0.1) !important;
|
| 472 |
+
backdrop-filter: blur(20px) !important;
|
| 473 |
+
}
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
/* Stats and metrics */
|
| 477 |
+
.metric-card {
|
| 478 |
+
background: rgba(255, 255, 255, 0.9);
|
| 479 |
+
padding: 1.5rem;
|
| 480 |
+
border-radius: 15px;
|
| 481 |
+
text-align: center;
|
| 482 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
|
| 483 |
+
margin-bottom: 1rem;
|
| 484 |
+
transition: transform 0.3s ease;
|
| 485 |
+
}
|
| 486 |
+
|
| 487 |
+
.metric-card:hover {
|
| 488 |
+
transform: translateY(-3px);
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
/* Progress bars */
|
| 492 |
+
.stProgress > div > div > div {
|
| 493 |
+
background: linear-gradient(90deg, #667eea, #764ba2) !important;
|
| 494 |
+
border-radius: 10px !important;
|
| 495 |
+
}
|
| 496 |
+
|
| 497 |
+
/* Hide default Streamlit elements */
|
| 498 |
+
.stDeployButton {display: none;}
|
| 499 |
+
footer {visibility: hidden;}
|
| 500 |
+
.stApp > header {visibility: hidden;}
|
| 501 |
+
|
| 502 |
+
/* Custom scrollbar */
|
| 503 |
+
.chat-container::-webkit-scrollbar {
|
| 504 |
+
width: 6px;
|
| 505 |
+
}
|
| 506 |
+
|
| 507 |
+
|
| 508 |
+
/* π Audio recorder container fix */
|
| 509 |
+
.audio-recorder-container {
|
| 510 |
+
background: transparent !important;
|
| 511 |
+
border: none !important;
|
| 512 |
+
box-shadow: none !important;
|
| 513 |
+
padding: 0 !important;
|
| 514 |
+
margin: 0 !important;
|
| 515 |
+
}
|
| 516 |
+
|
| 517 |
+
/* π€ Recorder button style */
|
| 518 |
+
.audio-recorder-container button {
|
| 519 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 520 |
+
color: #fff !important;
|
| 521 |
+
border: none !important;
|
| 522 |
+
border-radius: 50% !important; /* Makes it a perfect circle */
|
| 523 |
+
width: 60px !important;
|
| 524 |
+
height: 60px !important;
|
| 525 |
+
font-size: 1.2rem !important;
|
| 526 |
+
font-weight: bold !important;
|
| 527 |
+
cursor: pointer !important;
|
| 528 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.25) !important;
|
| 529 |
+
transition: all 0.3s ease !important;
|
| 530 |
+
}
|
| 531 |
+
|
| 532 |
+
/* Hover effect */
|
| 533 |
+
.audio-recorder-container button:hover {
|
| 534 |
+
transform: scale(1.08);
|
| 535 |
+
box-shadow: 0 6px 18px rgba(0,0,0,0.35) !important;
|
| 536 |
+
}
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
</style>
|
| 540 |
+
""", unsafe_allow_html=True)
|
| 541 |
+
|
| 542 |
+
# Enhanced Header with animation
|
| 543 |
+
st.markdown("""
|
| 544 |
+
<div class="main-header">
|
| 545 |
+
<h1>π€ Empathetic AI Companion</h1>
|
| 546 |
+
<p>Your intelligent partner for emotional support and meaningful conversations</p>
|
| 547 |
+
</div>
|
| 548 |
+
""", unsafe_allow_html=True)
|
| 549 |
+
|
| 550 |
+
# Initialize session state
|
| 551 |
+
if "chat_history" not in st.session_state:
|
| 552 |
+
st.session_state.chat_history = []
|
| 553 |
+
|
| 554 |
+
if "initialized" not in st.session_state:
|
| 555 |
+
initialize_chatbot()
|
| 556 |
+
|
| 557 |
+
if "audio_processor" not in st.session_state:
|
| 558 |
+
st.session_state.audio_processor = AudioProcessor()
|
| 559 |
+
|
| 560 |
+
if "last_transcription" not in st.session_state:
|
| 561 |
+
st.session_state.last_transcription = ""
|
| 562 |
+
|
| 563 |
+
# Enhanced Sidebar
|
| 564 |
+
with st.sidebar:
|
| 565 |
+
st.markdown("### ποΈ Control Panel")
|
| 566 |
+
|
| 567 |
+
# Voice Settings Section
|
| 568 |
+
with st.expander("ποΈ Voice Settings", expanded=True):
|
| 569 |
+
tts_language = st.selectbox(
|
| 570 |
+
"Text-to-Speech Language",
|
| 571 |
+
options=['en', 'es', 'fr', 'de', 'it'],
|
| 572 |
+
index=0,
|
| 573 |
+
help="Choose your preferred TTS accent"
|
| 574 |
+
)
|
| 575 |
+
st.session_state.tts_language = tts_language
|
| 576 |
+
|
| 577 |
+
auto_tts = st.toggle(
|
| 578 |
+
"Auto-play Bot Responses",
|
| 579 |
+
value=False,
|
| 580 |
+
help="Automatically play TTS for all bot responses"
|
| 581 |
+
)
|
| 582 |
+
st.session_state.auto_tts = auto_tts
|
| 583 |
+
|
| 584 |
+
st.divider()
|
| 585 |
+
|
| 586 |
+
# Enhanced Statistics Section
|
| 587 |
+
if st.session_state.chat_history:
|
| 588 |
+
with st.expander("π Session Analytics", expanded=False):
|
| 589 |
+
emotions = [chat['emotion'] for chat in st.session_state.chat_history if 'emotion' in chat]
|
| 590 |
+
if emotions:
|
| 591 |
+
emotion_counts = {}
|
| 592 |
+
for emotion in emotions:
|
| 593 |
+
emotion_counts[emotion] = emotion_counts.get(emotion, 0) + 1
|
| 594 |
+
|
| 595 |
+
# Display emotion distribution
|
| 596 |
+
for emotion, count in emotion_counts.items():
|
| 597 |
+
percentage = (count / len(emotions)) * 100
|
| 598 |
+
st.metric(
|
| 599 |
+
f"{emotion.title()}",
|
| 600 |
+
f"{count} messages",
|
| 601 |
+
f"{percentage:.1f}%"
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
# Quick Actions
|
| 605 |
+
with st.expander("β‘ Quick Actions", expanded=True):
|
| 606 |
+
col1, col2 = st.columns(2)
|
| 607 |
+
|
| 608 |
+
with col1:
|
| 609 |
+
if st.button("π§ͺ Test AI", use_container_width=True):
|
| 610 |
+
test_emotion_detection()
|
| 611 |
+
|
| 612 |
+
with col2:
|
| 613 |
+
if st.button("ποΈ Clear Chat", use_container_width=True):
|
| 614 |
+
st.session_state.chat_history = []
|
| 615 |
+
st.session_state.last_transcription = ""
|
| 616 |
+
st.rerun()
|
| 617 |
+
|
| 618 |
+
st.divider()
|
| 619 |
+
|
| 620 |
+
# Sample Messages - More engaging
|
| 621 |
+
with st.expander("π‘ Try These Messages", expanded=False):
|
| 622 |
+
sample_messages = [
|
| 623 |
+
("π", "I'm feeling really happy today!"),
|
| 624 |
+
("π€", "I'm so frustrated with everything"),
|
| 625 |
+
("π’", "I feel really sad and alone"),
|
| 626 |
+
("π", "I'm excited about my future!")
|
| 627 |
+
]
|
| 628 |
+
|
| 629 |
+
for i, (emoji, msg) in enumerate(sample_messages):
|
| 630 |
+
if st.button(f"{emoji} {msg[:20]}...", key=f"sample_{i}", use_container_width=True):
|
| 631 |
+
process_message(msg)
|
| 632 |
+
st.rerun()
|
| 633 |
+
|
| 634 |
+
st.divider()
|
| 635 |
+
|
| 636 |
+
# Enhanced Info Section
|
| 637 |
+
st.markdown("""
|
| 638 |
+
<div style="background: rgba(255,255,255,0.1); padding: 1rem; border-radius: 10px; backdrop-filter: blur(10px);">
|
| 639 |
+
<h4 style="color: white; margin-bottom: 0.5rem;">β¨ Features</h4>
|
| 640 |
+
<ul style="color: rgba(255,255,255,0.9); font-size: 0.9rem; margin: 0;">
|
| 641 |
+
<li>π€ Voice Recording & STT</li>
|
| 642 |
+
<li>π Natural TTS Responses</li>
|
| 643 |
+
<li>π Advanced Emotion AI</li>
|
| 644 |
+
<li>π¬ Context-Aware Replies</li>
|
| 645 |
+
<li>π Real-time Analytics</li>
|
| 646 |
+
</ul>
|
| 647 |
+
</div>
|
| 648 |
+
""", unsafe_allow_html=True)
|
| 649 |
+
|
| 650 |
+
# Main Layout - Improved
|
| 651 |
+
col_main, col_stats = st.columns([7, 3])
|
| 652 |
+
|
| 653 |
+
with col_main:
|
| 654 |
+
# Enhanced Chat Display
|
| 655 |
+
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
|
| 656 |
+
|
| 657 |
+
if st.session_state.chat_history:
|
| 658 |
+
for i, chat in enumerate(st.session_state.chat_history[-15:]): # Show more messages
|
| 659 |
+
# User message with better styling
|
| 660 |
+
st.markdown(f"""
|
| 661 |
+
<div class="chat-message">
|
| 662 |
+
<div class="user-message">
|
| 663 |
+
<div class="message-header">π§ You β’ {chat['timestamp']}</div>
|
| 664 |
+
{chat['user']}
|
| 665 |
+
</div>
|
| 666 |
+
</div>
|
| 667 |
+
""", unsafe_allow_html=True)
|
| 668 |
+
|
| 669 |
+
# Bot response with enhanced styling
|
| 670 |
+
emotion_class = chat.get('emotion', 'optimism')
|
| 671 |
+
confidence = chat.get('confidence', 0.0)
|
| 672 |
+
|
| 673 |
+
st.markdown(f"""
|
| 674 |
+
<div class="chat-message">
|
| 675 |
+
<div class="bot-message">
|
| 676 |
+
<div class="message-header">
|
| 677 |
+
π€ AI Assistant
|
| 678 |
+
<span class="emotion-badge {emotion_class}">
|
| 679 |
+
{emotion_class.title()} {confidence:.0%}
|
| 680 |
+
</span>
|
| 681 |
+
</div>
|
| 682 |
+
{chat['bot'].replace('β οΈ', 'β οΈ ')}
|
| 683 |
+
</div>
|
| 684 |
+
</div>
|
| 685 |
+
""", unsafe_allow_html=True)
|
| 686 |
+
|
| 687 |
+
# Enhanced TTS button
|
| 688 |
+
col_tts, col_spacer = st.columns([2, 6])
|
| 689 |
+
with col_tts:
|
| 690 |
+
if st.button(f"π Play Audio", key=f"tts_{i}", help="Listen to response"):
|
| 691 |
+
play_tts(chat['bot'])
|
| 692 |
+
|
| 693 |
+
# Auto-play logic
|
| 694 |
+
if (st.session_state.auto_tts and
|
| 695 |
+
i == len(st.session_state.chat_history) - 1 and
|
| 696 |
+
chat.get('should_play_tts', False)):
|
| 697 |
+
play_tts(chat['bot'])
|
| 698 |
+
st.session_state.chat_history[-1]['should_play_tts'] = False
|
| 699 |
+
|
| 700 |
+
# Enhanced Input Section
|
| 701 |
+
st.markdown('<div class="input-section">', unsafe_allow_html=True)
|
| 702 |
+
|
| 703 |
+
# Input layout
|
| 704 |
+
col_text = st.container()
|
| 705 |
+
col_voice, col_send = st.columns(2)
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
with col_text:
|
| 709 |
+
user_input = st.text_input(
|
| 710 |
+
"",
|
| 711 |
+
placeholder="Share what's on your mind... How can I help you today?",
|
| 712 |
+
label_visibility="collapsed",
|
| 713 |
+
key="main_input"
|
| 714 |
+
)
|
| 715 |
+
from st_audiorec import st_audiorec
|
| 716 |
+
with col_voice:
|
| 717 |
+
audio_file = st.audio_input("Record a voice message")
|
| 718 |
+
audio_bytes = None
|
| 719 |
+
if audio_file is not None:
|
| 720 |
+
# Convert to bytes
|
| 721 |
+
audio_bytes = audio_file.read()
|
| 722 |
+
# Play it back
|
| 723 |
+
st.audio(audio_bytes, format="audio/wav")
|
| 724 |
+
|
| 725 |
+
with col_send:
|
| 726 |
+
if st.button("π€ Send Message", type="primary", key="send_btn", use_container_width=True):
|
| 727 |
+
if user_input.strip():
|
| 728 |
+
process_message(user_input.strip())
|
| 729 |
+
st.rerun()
|
| 730 |
+
|
| 731 |
+
# Voice processing with better feedback
|
| 732 |
+
if audio_bytes is not None:
|
| 733 |
+
with st.spinner("π Processing your voice..."):
|
| 734 |
+
transcription = st.session_state.audio_processor.speech_to_text_from_bytes(audio_bytes)
|
| 735 |
+
|
| 736 |
+
if transcription and transcription not in ["No speech detected. Please speak louder.", "Could not transcribe audio"]:
|
| 737 |
+
st.success(f"ποΈ **Transcribed:** \"{transcription}\"")
|
| 738 |
+
|
| 739 |
+
if transcription != st.session_state.last_transcription:
|
| 740 |
+
st.session_state.last_transcription = transcription
|
| 741 |
+
process_message(transcription, from_voice=True)
|
| 742 |
+
st.rerun()
|
| 743 |
+
else:
|
| 744 |
+
st.warning(f"β οΈ {transcription}")
|
| 745 |
+
|
| 746 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 747 |
+
|
| 748 |
+
# Enhanced Statistics Panel
|
| 749 |
+
with col_stats:
|
| 750 |
+
if st.session_state.chat_history:
|
| 751 |
+
st.markdown("### π Live Insights")
|
| 752 |
+
|
| 753 |
+
# Emotion trends
|
| 754 |
+
recent_emotions = [
|
| 755 |
+
chat.get('emotion', 'optimism')
|
| 756 |
+
for chat in st.session_state.chat_history[-10:]
|
| 757 |
+
if 'emotion' in chat
|
| 758 |
+
]
|
| 759 |
+
|
| 760 |
+
if recent_emotions:
|
| 761 |
+
st.markdown("**Recent Emotions:**")
|
| 762 |
+
emotion_scores = {'anger': 0, 'sadness': 0, 'joy': 0, 'optimism': 0}
|
| 763 |
+
|
| 764 |
+
for emotion in recent_emotions:
|
| 765 |
+
emotion_scores[emotion] = emotion_scores.get(emotion, 0) + 1
|
| 766 |
+
|
| 767 |
+
total = len(recent_emotions)
|
| 768 |
+
for emotion, count in emotion_scores.items():
|
| 769 |
+
if count > 0:
|
| 770 |
+
progress = count / total
|
| 771 |
+
st.progress(progress, text=f"{emotion.title()}: {count}/{total}")
|
| 772 |
+
|
| 773 |
+
# Session metrics
|
| 774 |
+
if len(st.session_state.chat_history) > 2:
|
| 775 |
+
st.divider()
|
| 776 |
+
st.markdown("**Session Overview:**")
|
| 777 |
+
|
| 778 |
+
total_messages = len(st.session_state.chat_history)
|
| 779 |
+
emotions = [chat.get('emotion', 'optimism') for chat in st.session_state.chat_history]
|
| 780 |
+
|
| 781 |
+
# Metrics cards
|
| 782 |
+
st.metric("Messages", total_messages)
|
| 783 |
+
|
| 784 |
+
if emotions:
|
| 785 |
+
most_common = max(set(emotions), key=emotions.count)
|
| 786 |
+
st.metric("Dominant Emotion", most_common.title())
|
| 787 |
+
|
| 788 |
+
# Mood indicator
|
| 789 |
+
positive_emotions = ['joy', 'optimism']
|
| 790 |
+
positive_count = sum(1 for e in emotions if e in positive_emotions)
|
| 791 |
+
mood_score = positive_count / len(emotions)
|
| 792 |
+
|
| 793 |
+
if mood_score > 0.6:
|
| 794 |
+
st.success("π Positive Mood")
|
| 795 |
+
elif mood_score > 0.4:
|
| 796 |
+
st.info("π Balanced Mood")
|
| 797 |
+
else:
|
| 798 |
+
st.warning("π Needs Support")
|
| 799 |
+
else:
|
| 800 |
+
# Getting started tips
|
| 801 |
+
st.markdown("""
|
| 802 |
+
### π Getting Started
|
| 803 |
+
|
| 804 |
+
**Tips for better conversations:**
|
| 805 |
+
- Be specific about your feelings
|
| 806 |
+
- Share context about your situation
|
| 807 |
+
- Use voice input for natural interaction
|
| 808 |
+
- Try the sample messages below
|
| 809 |
+
|
| 810 |
+
**Privacy Note:**
|
| 811 |
+
Your conversations are processed locally and not stored permanently.
|
| 812 |
+
""")
|
| 813 |
+
|
| 814 |
+
def initialize_chatbot():
|
| 815 |
+
"""Initialize the chatbot components with better feedback"""
|
| 816 |
+
with st.spinner("π Loading AI models..."):
|
| 817 |
+
try:
|
| 818 |
+
progress_bar = st.progress(0)
|
| 819 |
+
status_text = st.empty()
|
| 820 |
+
|
| 821 |
+
# Load dataset
|
| 822 |
+
status_text.text("π Loading emotion dataset...")
|
| 823 |
+
progress_bar.progress(25)
|
| 824 |
+
st.session_state.rag_data = prepare_dataset()
|
| 825 |
+
|
| 826 |
+
# Initialize emotion detector
|
| 827 |
+
status_text.text("π§ Loading emotion detection model...")
|
| 828 |
+
progress_bar.progress(50)
|
| 829 |
+
st.session_state.emotion_detector = EmotionDetector()
|
| 830 |
+
|
| 831 |
+
# Initialize RAG system
|
| 832 |
+
status_text.text("π Setting up knowledge retrieval...")
|
| 833 |
+
progress_bar.progress(75)
|
| 834 |
+
st.session_state.rag_system = RAGSystem(st.session_state.rag_data)
|
| 835 |
+
|
| 836 |
+
# Initialize response generator
|
| 837 |
+
status_text.text("π¬ Preparing response generation...")
|
| 838 |
+
progress_bar.progress(100)
|
| 839 |
+
st.session_state.response_generator = ResponseGenerator(
|
| 840 |
+
st.session_state.emotion_detector,
|
| 841 |
+
st.session_state.rag_system
|
| 842 |
+
)
|
| 843 |
+
|
| 844 |
+
st.session_state.initialized = True
|
| 845 |
+
|
| 846 |
+
# Clear loading elements
|
| 847 |
+
progress_bar.empty()
|
| 848 |
+
status_text.empty()
|
| 849 |
+
|
| 850 |
+
st.success("β
AI Companion ready! Start your conversation below.")
|
| 851 |
+
|
| 852 |
+
except Exception as e:
|
| 853 |
+
st.error(f"β Failed to initialize: {str(e)}")
|
| 854 |
+
st.info("π‘ Try refreshing the page or check your internet connection.")
|
| 855 |
+
st.stop()
|
| 856 |
+
|
| 857 |
+
def process_message(user_input, from_voice=False):
|
| 858 |
+
"""Enhanced message processing with better error handling"""
|
| 859 |
+
if not user_input.strip():
|
| 860 |
+
return
|
| 861 |
+
|
| 862 |
+
try:
|
| 863 |
+
# Show typing indicator
|
| 864 |
+
with st.spinner("π€ AI is thinking..."):
|
| 865 |
+
# Generate response
|
| 866 |
+
bot_response, detected_emotion, confidence = st.session_state.response_generator.generate_response(
|
| 867 |
+
user_input,
|
| 868 |
+
top_k=3
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
# Create chat entry
|
| 872 |
+
chat_entry = {
|
| 873 |
+
'user': user_input,
|
| 874 |
+
'bot': bot_response,
|
| 875 |
+
'emotion': detected_emotion,
|
| 876 |
+
'confidence': confidence,
|
| 877 |
+
'timestamp': datetime.now().strftime("%H:%M"),
|
| 878 |
+
'from_voice': from_voice,
|
| 879 |
+
'should_play_tts': st.session_state.get('auto_tts', False)
|
| 880 |
+
}
|
| 881 |
+
|
| 882 |
+
st.session_state.chat_history.append(chat_entry)
|
| 883 |
+
|
| 884 |
+
# Log interaction
|
| 885 |
+
logger.info(f"User ({'Voice' if from_voice else 'Text'}): {user_input[:50]}... | Emotion: {detected_emotion} ({confidence:.2f})")
|
| 886 |
+
|
| 887 |
+
except Exception as e:
|
| 888 |
+
st.error(f"β Something went wrong: {str(e)}")
|
| 889 |
+
st.info("π‘ Please try again or rephrase your message.")
|
| 890 |
+
logger.error(f"Processing error: {e}")
|
| 891 |
+
|
| 892 |
+
def play_tts(text):
|
| 893 |
+
"""Enhanced TTS with better error handling"""
|
| 894 |
+
try:
|
| 895 |
+
# Clean text for TTS
|
| 896 |
+
clean_text = re.sub(r'[^\w\s\.\,\!\?\']', '', text)
|
| 897 |
+
clean_text = clean_text.replace('β οΈ', '').strip()
|
| 898 |
+
|
| 899 |
+
if not clean_text:
|
| 900 |
+
return
|
| 901 |
+
|
| 902 |
+
# Generate TTS
|
| 903 |
+
tts_lang = st.session_state.get('tts_language', 'en')
|
| 904 |
+
|
| 905 |
+
with st.spinner("π Generating audio..."):
|
| 906 |
+
audio_file = st.session_state.audio_processor.text_to_speech(
|
| 907 |
+
clean_text[:500], # Limit length
|
| 908 |
+
lang=tts_lang
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
if audio_file:
|
| 912 |
+
with open(audio_file, 'rb') as f:
|
| 913 |
+
audio_bytes = f.read()
|
| 914 |
+
|
| 915 |
+
st.audio(audio_bytes, format='audio/mp3', autoplay=True)
|
| 916 |
+
os.unlink(audio_file) # Clean up
|
| 917 |
+
|
| 918 |
+
except Exception as e:
|
| 919 |
+
logger.error(f"TTS error: {e}")
|
| 920 |
+
st.toast("β οΈ Could not generate audio", icon="π")
|
| 921 |
+
|
| 922 |
+
def test_emotion_detection():
|
| 923 |
+
"""Enhanced emotion testing with better display"""
|
| 924 |
+
test_texts = [
|
| 925 |
+
"I'm absolutely thrilled about my new promotion!",
|
| 926 |
+
"I feel completely overwhelmed and sad today",
|
| 927 |
+
"This traffic is making me so angry and frustrated!",
|
| 928 |
+
"I have hope that everything will work out perfectly"
|
| 929 |
+
]
|
| 930 |
+
|
| 931 |
+
st.markdown("### π§ͺ Emotion Detection Demo")
|
| 932 |
+
|
| 933 |
+
for i, text in enumerate(test_texts):
|
| 934 |
+
with st.container():
|
| 935 |
+
emotion, confidence = st.session_state.emotion_detector.detect_emotion(text)
|
| 936 |
+
|
| 937 |
+
col1, col2 = st.columns([3, 1])
|
| 938 |
+
with col1:
|
| 939 |
+
st.write(f"**Text:** {text}")
|
| 940 |
+
st.write(f"**Detected:** {emotion.title()} ({confidence:.1%} confidence)")
|
| 941 |
+
with col2:
|
| 942 |
+
# Emotion emoji mapping
|
| 943 |
+
emoji_map = {'anger': 'π ', 'sadness': 'π’', 'joy': 'π', 'optimism': 'π'}
|
| 944 |
+
st.markdown(f"### {emoji_map.get(emotion, 'π€')}")
|
| 945 |
+
|
| 946 |
+
if i < len(test_texts) - 1:
|
| 947 |
+
st.divider()
|
| 948 |
+
|
| 949 |
+
if __name__ == "__main__":
|
| 950 |
+
main()
|