Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,110 +1,110 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import os
|
| 6 |
-
import json
|
| 7 |
-
import base64
|
| 8 |
-
from io import BytesIO
|
| 9 |
-
import requests
|
| 10 |
-
from typing import Dict, List, Any, Optional
|
| 11 |
-
from transformers.pipelines import pipeline
|
| 12 |
-
|
| 13 |
-
# Initialize the model
|
| 14 |
-
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
| 15 |
-
|
| 16 |
-
# Function to generate embeddings from an image
|
| 17 |
-
def generate_embedding(image):
|
| 18 |
-
if image is None:
|
| 19 |
-
return None
|
| 20 |
-
|
| 21 |
-
# Convert to PIL Image if needed
|
| 22 |
-
if not isinstance(image, Image.Image):
|
| 23 |
-
image = Image.fromarray(image)
|
| 24 |
-
|
| 25 |
-
try:
|
| 26 |
-
# Generate embedding using the transformers pipeline
|
| 27 |
-
result = model(image)
|
| 28 |
-
|
| 29 |
-
# Process the result based on its type
|
| 30 |
-
embedding_list = None
|
| 31 |
-
|
| 32 |
-
# Handle different possible output types
|
| 33 |
-
if isinstance(result, torch.Tensor):
|
| 34 |
-
embedding_list = result.detach().cpu().numpy().flatten().tolist()
|
| 35 |
-
elif isinstance(result, np.ndarray):
|
| 36 |
-
embedding_list = result.flatten().tolist()
|
| 37 |
-
elif isinstance(result, list):
|
| 38 |
-
# If it's a list of tensors or arrays
|
| 39 |
-
if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
|
| 40 |
-
embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
|
| 41 |
-
else:
|
| 42 |
-
embedding_list = result
|
| 43 |
-
else:
|
| 44 |
-
# Try to convert to a list as a last resort
|
| 45 |
-
try:
|
| 46 |
-
if result is not None:
|
| 47 |
-
embedding_list = list(result)
|
| 48 |
-
else:
|
| 49 |
-
print("Result is None")
|
| 50 |
-
return None
|
| 51 |
-
except:
|
| 52 |
-
print(f"Couldn't convert result of type {type(result)} to list")
|
| 53 |
-
return None
|
| 54 |
-
|
| 55 |
-
# Ensure we have a valid embedding list
|
| 56 |
-
if embedding_list is None:
|
| 57 |
-
return None
|
| 58 |
-
|
| 59 |
-
# Calculate embedding dimension
|
| 60 |
-
embedding_dim = len(embedding_list)
|
| 61 |
-
|
| 62 |
-
return {
|
| 63 |
-
"embedding": embedding_list,
|
| 64 |
-
"dimension": embedding_dim
|
| 65 |
-
}
|
| 66 |
-
except Exception as e:
|
| 67 |
-
print(f"Error generating embedding: {str(e)}")
|
| 68 |
-
return None
|
| 69 |
-
|
| 70 |
-
# Function to generate embeddings from an image URL
|
| 71 |
-
def embed_image_from_url(image_url):
|
| 72 |
-
try:
|
| 73 |
-
# Download the image
|
| 74 |
-
response = requests.get(image_url)
|
| 75 |
-
image = Image.open(BytesIO(response.content))
|
| 76 |
-
|
| 77 |
-
# Generate embedding
|
| 78 |
-
return generate_embedding(image)
|
| 79 |
-
except Exception as e:
|
| 80 |
-
return {"error": str(e)}
|
| 81 |
-
|
| 82 |
-
# Function to generate embeddings from base64 image data
|
| 83 |
-
def embed_image_from_base64(image_data):
|
| 84 |
-
try:
|
| 85 |
-
# Decode the base64 image
|
| 86 |
-
decoded_data = base64.b64decode(image_data)
|
| 87 |
-
image = Image.open(BytesIO(decoded_data))
|
| 88 |
-
|
| 89 |
-
# Generate embedding
|
| 90 |
-
return generate_embedding(image)
|
| 91 |
-
except Exception as e:
|
| 92 |
-
return {"error": str(e)}
|
| 93 |
-
|
| 94 |
-
# Create a Gradio app
|
| 95 |
-
app = gr.Interface(
|
| 96 |
-
fn=generate_embedding,
|
| 97 |
-
inputs=gr.Image(type="pil", label="Input Image"),
|
| 98 |
-
outputs=[
|
| 99 |
-
gr.JSON(label="Embedding Output"),
|
| 100 |
-
gr.Textbox(label="Embedding Dimension")
|
| 101 |
-
],
|
| 102 |
-
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
| 103 |
-
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
| 104 |
-
examples=[["examples/example1.jpg"], ["examples/example2.jpg"]],
|
| 105 |
-
allow_flagging="never"
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
# Launch the app
|
| 109 |
-
if __name__ == "__main__":
|
| 110 |
-
app.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import os
|
| 6 |
+
import json
|
| 7 |
+
import base64
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
import requests
|
| 10 |
+
from typing import Dict, List, Any, Optional
|
| 11 |
+
from transformers.pipelines import pipeline
|
| 12 |
+
|
| 13 |
+
# Initialize the model
|
| 14 |
+
model = pipeline("image-feature-extraction", model="nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
|
| 15 |
+
|
| 16 |
+
# Function to generate embeddings from an image
|
| 17 |
+
def generate_embedding(image):
|
| 18 |
+
if image is None:
|
| 19 |
+
return None
|
| 20 |
+
|
| 21 |
+
# Convert to PIL Image if needed
|
| 22 |
+
if not isinstance(image, Image.Image):
|
| 23 |
+
image = Image.fromarray(image)
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
# Generate embedding using the transformers pipeline
|
| 27 |
+
result = model(image)
|
| 28 |
+
|
| 29 |
+
# Process the result based on its type
|
| 30 |
+
embedding_list = None
|
| 31 |
+
|
| 32 |
+
# Handle different possible output types
|
| 33 |
+
if isinstance(result, torch.Tensor):
|
| 34 |
+
embedding_list = result.detach().cpu().numpy().flatten().tolist()
|
| 35 |
+
elif isinstance(result, np.ndarray):
|
| 36 |
+
embedding_list = result.flatten().tolist()
|
| 37 |
+
elif isinstance(result, list):
|
| 38 |
+
# If it's a list of tensors or arrays
|
| 39 |
+
if result and isinstance(result[0], (torch.Tensor, np.ndarray)):
|
| 40 |
+
embedding_list = result[0].flatten().tolist() if hasattr(result[0], 'flatten') else result[0]
|
| 41 |
+
else:
|
| 42 |
+
embedding_list = result
|
| 43 |
+
else:
|
| 44 |
+
# Try to convert to a list as a last resort
|
| 45 |
+
try:
|
| 46 |
+
if result is not None:
|
| 47 |
+
embedding_list = list(result)
|
| 48 |
+
else:
|
| 49 |
+
print("Result is None")
|
| 50 |
+
return None
|
| 51 |
+
except:
|
| 52 |
+
print(f"Couldn't convert result of type {type(result)} to list")
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
# Ensure we have a valid embedding list
|
| 56 |
+
if embedding_list is None:
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
# Calculate embedding dimension
|
| 60 |
+
embedding_dim = len(embedding_list)
|
| 61 |
+
|
| 62 |
+
return {
|
| 63 |
+
"embedding": embedding_list,
|
| 64 |
+
"dimension": embedding_dim
|
| 65 |
+
}
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error generating embedding: {str(e)}")
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
# Function to generate embeddings from an image URL
|
| 71 |
+
def embed_image_from_url(image_url):
|
| 72 |
+
try:
|
| 73 |
+
# Download the image
|
| 74 |
+
response = requests.get(image_url)
|
| 75 |
+
image = Image.open(BytesIO(response.content))
|
| 76 |
+
|
| 77 |
+
# Generate embedding
|
| 78 |
+
return generate_embedding(image)
|
| 79 |
+
except Exception as e:
|
| 80 |
+
return {"error": str(e)}
|
| 81 |
+
|
| 82 |
+
# Function to generate embeddings from base64 image data
|
| 83 |
+
def embed_image_from_base64(image_data):
|
| 84 |
+
try:
|
| 85 |
+
# Decode the base64 image
|
| 86 |
+
decoded_data = base64.b64decode(image_data)
|
| 87 |
+
image = Image.open(BytesIO(decoded_data))
|
| 88 |
+
|
| 89 |
+
# Generate embedding
|
| 90 |
+
return generate_embedding(image)
|
| 91 |
+
except Exception as e:
|
| 92 |
+
return {"error": str(e)}
|
| 93 |
+
|
| 94 |
+
# Create a Gradio app
|
| 95 |
+
app = gr.Interface(
|
| 96 |
+
fn=generate_embedding,
|
| 97 |
+
inputs=gr.Image(type="pil", label="Input Image"),
|
| 98 |
+
outputs=[
|
| 99 |
+
gr.JSON(label="Embedding Output"),
|
| 100 |
+
gr.Textbox(label="Embedding Dimension")
|
| 101 |
+
],
|
| 102 |
+
title="Nomic Vision Embedding Model (nomic-ai/nomic-embed-vision-v1.5)",
|
| 103 |
+
description="Upload an image to generate embeddings using the Nomic Vision model.",
|
| 104 |
+
examples=[["examples/example1.jpg"], ["examples/example2.jpg"]],
|
| 105 |
+
allow_flagging="never"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Launch the app
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
app.launch(mcp_server=True)
|