Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from fastai.vision.all import * | |
| import pathlib | |
| plt = platform.system() | |
| if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath | |
| learn = load_learner('nihal_model.pkl') | |
| def classify_image(img): | |
| pred,pred_idx,probs = learn.predict(img) | |
| #return both the prediction and the probability either nihal or not and format in perccentage | |
| return pred, "{:.0%}".format(float(probs[pred_idx])),float(probs[~pred_idx]) | |
| #return f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}' | |
| if __name__ == '__main__': | |
| # Define inputs and outputs for Gradio interface | |
| inputs = [gr.Image(type="pil", label="Select an image of Nihal")] | |
| outputs = [ | |
| gr.Label(""), | |
| gr.Label(label="Confidence"), | |
| ] | |
| # Launch the Gradio interface | |
| interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs) | |
| interface.launch() |