Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,10 +11,8 @@ from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
from datetime import datetime
|
| 13 |
import numpy as np
|
| 14 |
-
import shutil
|
| 15 |
-
|
| 16 |
-
|
| 17 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 18 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 19 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 20 |
|
|
@@ -227,19 +225,21 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 227 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 228 |
|
| 229 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
|
|
|
| 230 |
local_dir = Path(tmpdir)/model_name
|
| 231 |
-
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + " Start download")
|
| 232 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 233 |
-
|
| 234 |
config_dir = local_dir/"config.json"
|
| 235 |
adapter_config_dir = local_dir/"adapter_config.json"
|
| 236 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 237 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 238 |
-
|
|
|
|
| 239 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
|
|
|
| 240 |
if result.returncode != 0:
|
| 241 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 242 |
-
|
| 243 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 244 |
if use_imatrix:
|
| 245 |
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
|
@@ -249,9 +249,10 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 249 |
|
| 250 |
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
| 251 |
suffix = "imat" if use_imatrix else None
|
| 252 |
-
|
| 253 |
gguf_files = []
|
| 254 |
for method in quant_methods:
|
|
|
|
| 255 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 256 |
path = str(Path(outdir)/name)
|
| 257 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
|
@@ -261,6 +262,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
| 261 |
size = os.path.getsize(path)/1024/1024/1024
|
| 262 |
gguf_files.append((name, path, size, method))
|
| 263 |
|
|
|
|
| 264 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 265 |
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 266 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
|
|
|
| 11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 12 |
from datetime import datetime
|
| 13 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 14 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 15 |
+
|
| 16 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 17 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 18 |
|
|
|
|
| 225 |
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 226 |
|
| 227 |
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 228 |
+
print("Downloading")
|
| 229 |
local_dir = Path(tmpdir)/model_name
|
|
|
|
| 230 |
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 231 |
+
|
| 232 |
config_dir = local_dir/"config.json"
|
| 233 |
adapter_config_dir = local_dir/"adapter_config.json"
|
| 234 |
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 235 |
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 236 |
+
|
| 237 |
+
print("Download successfully")
|
| 238 |
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 239 |
+
print("Converted to f16")
|
| 240 |
if result.returncode != 0:
|
| 241 |
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 242 |
+
|
| 243 |
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 244 |
if use_imatrix:
|
| 245 |
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
|
|
|
| 249 |
|
| 250 |
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
| 251 |
suffix = "imat" if use_imatrix else None
|
| 252 |
+
|
| 253 |
gguf_files = []
|
| 254 |
for method in quant_methods:
|
| 255 |
+
print("Begin quantize")
|
| 256 |
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 257 |
path = str(Path(outdir)/name)
|
| 258 |
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
|
|
|
| 262 |
size = os.path.getsize(path)/1024/1024/1024
|
| 263 |
gguf_files.append((name, path, size, method))
|
| 264 |
|
| 265 |
+
print("Quantize successfully!")
|
| 266 |
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 267 |
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 268 |
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|