Spaces:
Runtime error
Runtime error
Save the model to the data directory
Browse files
app.py
CHANGED
|
@@ -15,45 +15,29 @@ import numpy as np
|
|
| 15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 17 |
|
| 18 |
-
# Get Hugging Face token from environment variable
|
| 19 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
-
|
| 21 |
-
# Set up persistent storage paths
|
| 22 |
log_dir = "/data/logs"
|
| 23 |
downloads_dir = "/data/downloads"
|
| 24 |
outputs_dir = "/data/outputs"
|
| 25 |
-
models_dir = "/data/models"
|
| 26 |
-
|
| 27 |
-
# Create directories if they don't exist
|
| 28 |
os.makedirs(log_dir, exist_ok=True)
|
| 29 |
-
os.makedirs(downloads_dir, exist_ok=True)
|
| 30 |
-
os.makedirs(outputs_dir, exist_ok=True)
|
| 31 |
-
os.makedirs(models_dir, exist_ok=True)
|
| 32 |
|
| 33 |
logging.basicConfig(
|
| 34 |
filename=os.path.join(log_dir, "app.log"),
|
| 35 |
level=logging.INFO,
|
| 36 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 37 |
)
|
| 38 |
|
| 39 |
logger = logging.getLogger(__name__)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
def get_llama_cpp_notes(
|
| 43 |
-
gguf_files,
|
| 44 |
-
new_repo_url,
|
| 45 |
-
split_model,
|
| 46 |
-
model_id=None,
|
| 47 |
-
):
|
| 48 |
try:
|
| 49 |
result = subprocess.run(
|
| 50 |
-
[
|
| 51 |
stdout=subprocess.PIPE,
|
| 52 |
stderr=subprocess.PIPE,
|
| 53 |
check=True,
|
| 54 |
-
text=True
|
| 55 |
)
|
| 56 |
-
version = result.stdout.strip().split(
|
| 57 |
text = f"""
|
| 58 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
| 59 |
## llama.cpp quantization
|
|
@@ -62,8 +46,7 @@ Original model: https://huggingface.co/{model_id}
|
|
| 62 |
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
| 63 |
## Prompt format
|
| 64 |
```
|
| 65 |
-
{{system_prompt}}
|
| 66 |
-
{{prompt}}
|
| 67 |
```
|
| 68 |
## Download a file (not the whole branch) from below:
|
| 69 |
| Filename | Quant type | File Size | Split |
|
|
@@ -95,51 +78,32 @@ You can either specify a new local-dir (deepseek-ai_DeepSeek-V3-0324-Q8_0) or do
|
|
| 95 |
|
| 96 |
|
| 97 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 98 |
-
if repo_owner ==
|
| 99 |
return username
|
| 100 |
for org in user_orgs:
|
| 101 |
-
if org[
|
| 102 |
-
return org[
|
| 103 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
| 104 |
|
| 105 |
-
|
| 106 |
def escape(s: str) -> str:
|
| 107 |
-
return (
|
| 108 |
-
s.replace("&", "&")
|
| 109 |
-
.replace("<", "<")
|
| 110 |
-
.replace(">", ">")
|
| 111 |
-
.replace('"', """)
|
| 112 |
-
.replace("\n", "<br/>")
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
|
| 116 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
| 117 |
if oauth_token is None or oauth_token.token is None:
|
| 118 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 119 |
if not export_to_org:
|
| 120 |
-
return gr.update(visible=False, choices=["self"], value="self"), gr.update(
|
| 121 |
-
visible=False, value=""
|
| 122 |
-
)
|
| 123 |
info = whoami(oauth_token.token)
|
| 124 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
| 125 |
-
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(
|
| 126 |
-
visible=True
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
|
| 130 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
| 131 |
imatrix_command = [
|
| 132 |
"./llama.cpp/llama-imatrix",
|
| 133 |
-
"-m",
|
| 134 |
-
|
| 135 |
-
"-
|
| 136 |
-
|
| 137 |
-
"-
|
| 138 |
-
"99",
|
| 139 |
-
"--output-frequency",
|
| 140 |
-
"10",
|
| 141 |
-
"-o",
|
| 142 |
-
output_path,
|
| 143 |
]
|
| 144 |
|
| 145 |
if not os.path.isfile(model_path):
|
|
@@ -151,9 +115,7 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
| 151 |
try:
|
| 152 |
process.wait(timeout=60) # added wait
|
| 153 |
except subprocess.TimeoutExpired:
|
| 154 |
-
print(
|
| 155 |
-
"Imatrix computation timed out. Sending SIGINT to allow graceful termination..."
|
| 156 |
-
)
|
| 157 |
process.send_signal(signal.SIGINT)
|
| 158 |
try:
|
| 159 |
process.wait(timeout=5) # grace period
|
|
@@ -163,17 +125,7 @@ def generate_importance_matrix(model_path: str, train_data_path: str, output_pat
|
|
| 163 |
|
| 164 |
print("Importance matrix generation completed.")
|
| 165 |
|
| 166 |
-
|
| 167 |
-
def split_upload_model(
|
| 168 |
-
model_path: str,
|
| 169 |
-
outdir: str,
|
| 170 |
-
repo_id: str,
|
| 171 |
-
oauth_token: gr.OAuthToken | None,
|
| 172 |
-
split_max_tensors=256,
|
| 173 |
-
split_max_size=None,
|
| 174 |
-
org_token=None,
|
| 175 |
-
export_to_org=False,
|
| 176 |
-
):
|
| 177 |
print(f"Model path: {model_path}")
|
| 178 |
print(f"Output dir: {outdir}")
|
| 179 |
|
|
@@ -192,9 +144,7 @@ def split_upload_model(
|
|
| 192 |
split_cmd.append(str(split_max_tensors))
|
| 193 |
|
| 194 |
# args for output
|
| 195 |
-
model_path_prefix =
|
| 196 |
-
model_path.split(".")[:-1]
|
| 197 |
-
) # remove the file extension
|
| 198 |
split_cmd.append(model_path)
|
| 199 |
split_cmd.append(model_path_prefix)
|
| 200 |
|
|
@@ -213,19 +163,15 @@ def split_upload_model(
|
|
| 213 |
if os.path.exists(model_path):
|
| 214 |
os.remove(model_path)
|
| 215 |
|
| 216 |
-
model_file_prefix = model_path_prefix.split(
|
| 217 |
print(f"Model file name prefix: {model_file_prefix}")
|
| 218 |
-
sharded_model_files = [
|
| 219 |
-
f
|
| 220 |
-
for f in os.listdir(outdir)
|
| 221 |
-
if f.startswith(model_file_prefix) and f.endswith(".gguf")
|
| 222 |
-
]
|
| 223 |
if sharded_model_files:
|
| 224 |
print(f"Sharded model files: {sharded_model_files}")
|
| 225 |
-
if export_to_org and org_token
|
| 226 |
-
|
| 227 |
else:
|
| 228 |
-
|
| 229 |
for file in sharded_model_files:
|
| 230 |
file_path = os.path.join(outdir, file)
|
| 231 |
print(f"Uploading file: {file_path}")
|
|
@@ -242,22 +188,9 @@ def split_upload_model(
|
|
| 242 |
|
| 243 |
print("Sharded model has been uploaded successfully!")
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
q_method,
|
| 249 |
-
use_imatrix,
|
| 250 |
-
imatrix_q_method,
|
| 251 |
-
private_repo,
|
| 252 |
-
train_data_file,
|
| 253 |
-
split_model,
|
| 254 |
-
split_max_tensors,
|
| 255 |
-
split_max_size,
|
| 256 |
-
export_to_org,
|
| 257 |
-
repo_owner,
|
| 258 |
-
org_token,
|
| 259 |
-
oauth_token: gr.OAuthToken | None,
|
| 260 |
-
):
|
| 261 |
if oauth_token is None or oauth_token.token is None:
|
| 262 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 263 |
|
|
@@ -267,176 +200,91 @@ def process_model(
|
|
| 267 |
if not export_to_org:
|
| 268 |
repo_owner = "self"
|
| 269 |
|
|
|
|
| 270 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 271 |
-
logger.info(
|
| 272 |
-
f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}"
|
| 273 |
-
)
|
| 274 |
|
| 275 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 276 |
-
model_name = model_id.split(
|
| 277 |
try:
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
else (q_method if isinstance(q_method, list) else [q_method])
|
| 352 |
-
)
|
| 353 |
-
suffix = "imat" if use_imatrix else None
|
| 354 |
-
|
| 355 |
-
gguf_files = []
|
| 356 |
-
for method in quant_methods:
|
| 357 |
-
name = (
|
| 358 |
-
f"{model_name.lower()}-{method.lower()}-{suffix}.gguf"
|
| 359 |
-
if suffix
|
| 360 |
-
else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 361 |
-
)
|
| 362 |
-
path = str(Path(outdir) / name)
|
| 363 |
-
quant_cmd = (
|
| 364 |
-
[
|
| 365 |
-
"./llama.cpp/llama-quantize",
|
| 366 |
-
"--imatrix",
|
| 367 |
-
imatrix_path,
|
| 368 |
-
fp16,
|
| 369 |
-
path,
|
| 370 |
-
method,
|
| 371 |
-
]
|
| 372 |
-
if use_imatrix
|
| 373 |
-
else ["./llama.cpp/llama-quantize", fp16, path, method]
|
| 374 |
-
)
|
| 375 |
-
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 376 |
-
if result.returncode != 0:
|
| 377 |
-
raise Exception(
|
| 378 |
-
f"Quantization failed ({method}): {result.stderr.decode()}"
|
| 379 |
-
)
|
| 380 |
-
size = os.path.getsize(path) / 1024 / 1024 / 1024
|
| 381 |
-
gguf_files.append((name, path, size, method))
|
| 382 |
-
|
| 383 |
-
suffix_for_repo = (
|
| 384 |
-
f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 385 |
-
)
|
| 386 |
-
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 387 |
-
new_repo_url = api.create_repo(
|
| 388 |
-
repo_id=repo_id, exist_ok=True, private=private_repo
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
try:
|
| 392 |
-
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 393 |
-
except:
|
| 394 |
-
card = ModelCard("")
|
| 395 |
-
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
| 396 |
-
card.data.base_model = model_id
|
| 397 |
-
card.text = dedent(
|
| 398 |
-
get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id)
|
| 399 |
-
)
|
| 400 |
-
readme_path = Path(outdir) / "README.md"
|
| 401 |
-
card.save(readme_path)
|
| 402 |
-
for name, path, _, _ in gguf_files:
|
| 403 |
-
if split_model:
|
| 404 |
-
split_upload_model(
|
| 405 |
-
path,
|
| 406 |
-
outdir,
|
| 407 |
-
repo_id,
|
| 408 |
-
oauth_token,
|
| 409 |
-
split_max_tensors,
|
| 410 |
-
split_max_size,
|
| 411 |
-
org_token,
|
| 412 |
-
export_to_org,
|
| 413 |
-
)
|
| 414 |
-
else:
|
| 415 |
-
api.upload_file(
|
| 416 |
-
path_or_fileobj=path, path_in_repo=name, repo_id=repo_id
|
| 417 |
-
)
|
| 418 |
-
if use_imatrix and os.path.isfile(imatrix_path):
|
| 419 |
-
api.upload_file(
|
| 420 |
-
path_or_fileobj=imatrix_path,
|
| 421 |
-
path_in_repo="imatrix.dat",
|
| 422 |
-
repo_id=repo_id,
|
| 423 |
-
)
|
| 424 |
-
api.upload_file(
|
| 425 |
-
path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id
|
| 426 |
-
)
|
| 427 |
-
|
| 428 |
-
return (
|
| 429 |
-
f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>',
|
| 430 |
-
f"llama{np.random.randint(9)}.png",
|
| 431 |
-
)
|
| 432 |
except Exception as e:
|
| 433 |
-
raise (
|
| 434 |
-
f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>',
|
| 435 |
-
"error.png",
|
| 436 |
-
)
|
| 437 |
|
| 438 |
|
| 439 |
-
css
|
| 440 |
.gradio-container {overflow-y: auto;}
|
| 441 |
"""
|
| 442 |
model_id = HuggingfaceHubSearch(
|
|
@@ -448,36 +296,30 @@ model_id = HuggingfaceHubSearch(
|
|
| 448 |
export_to_org = gr.Checkbox(
|
| 449 |
label="Export to Organization Repository",
|
| 450 |
value=False,
|
| 451 |
-
info="If checked, you can select an organization to export to."
|
| 452 |
)
|
| 453 |
|
| 454 |
repo_owner = gr.Dropdown(
|
| 455 |
-
choices=["self"],
|
|
|
|
|
|
|
|
|
|
| 456 |
)
|
| 457 |
|
| 458 |
-
org_token = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
q_method = gr.Dropdown(
|
| 461 |
-
[
|
| 462 |
-
"Q2_K",
|
| 463 |
-
"Q3_K_S",
|
| 464 |
-
"Q3_K_M",
|
| 465 |
-
"Q3_K_L",
|
| 466 |
-
"Q4_0",
|
| 467 |
-
"Q4_K_S",
|
| 468 |
-
"Q4_K_M",
|
| 469 |
-
"Q5_0",
|
| 470 |
-
"Q5_K_S",
|
| 471 |
-
"Q5_K_M",
|
| 472 |
-
"Q6_K",
|
| 473 |
-
"Q8_0",
|
| 474 |
-
],
|
| 475 |
label="Quantization Method",
|
| 476 |
info="GGML quantization type",
|
| 477 |
value="Q4_K_M",
|
| 478 |
filterable=False,
|
| 479 |
visible=True,
|
| 480 |
-
multiselect=True
|
| 481 |
)
|
| 482 |
|
| 483 |
imatrix_q_method = gr.Dropdown(
|
|
@@ -486,36 +328,44 @@ imatrix_q_method = gr.Dropdown(
|
|
| 486 |
info="GGML imatrix quants type",
|
| 487 |
value="IQ4_NL",
|
| 488 |
filterable=False,
|
| 489 |
-
visible=False
|
| 490 |
)
|
| 491 |
|
| 492 |
use_imatrix = gr.Checkbox(
|
| 493 |
value=False,
|
| 494 |
label="Use Imatrix Quantization",
|
| 495 |
-
info="Use importance matrix for quantization."
|
| 496 |
)
|
| 497 |
|
| 498 |
private_repo = gr.Checkbox(
|
| 499 |
-
value=False,
|
|
|
|
|
|
|
| 500 |
)
|
| 501 |
|
| 502 |
-
train_data_file = gr.File(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
|
| 504 |
split_model = gr.Checkbox(
|
| 505 |
-
value=False,
|
|
|
|
|
|
|
| 506 |
)
|
| 507 |
|
| 508 |
split_max_tensors = gr.Number(
|
| 509 |
value=256,
|
| 510 |
label="Max Tensors per File",
|
| 511 |
info="Maximum number of tensors per file when splitting model.",
|
| 512 |
-
visible=False
|
| 513 |
)
|
| 514 |
|
| 515 |
split_max_size = gr.Textbox(
|
| 516 |
label="Max File Size",
|
| 517 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
| 518 |
-
visible=False
|
| 519 |
)
|
| 520 |
|
| 521 |
iface = gr.Interface(
|
|
@@ -532,47 +382,35 @@ iface = gr.Interface(
|
|
| 532 |
split_max_size,
|
| 533 |
export_to_org,
|
| 534 |
repo_owner,
|
| 535 |
-
org_token
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
],
|
| 537 |
-
outputs=[gr.Markdown(label="Output"), gr.Image(show_label=False)],
|
| 538 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
| 539 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 540 |
-
api_name=False
|
| 541 |
)
|
| 542 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 543 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 544 |
gr.LoginButton(min_width=250)
|
| 545 |
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
)
|
| 549 |
-
|
| 550 |
-
split_model.change(
|
| 551 |
-
|
| 552 |
-
inputs=split_model,
|
| 553 |
-
outputs=[split_max_tensors, split_max_size],
|
| 554 |
-
)
|
| 555 |
-
use_imatrix.change(
|
| 556 |
-
fn=lambda use: (
|
| 557 |
-
gr.update(visible=not use),
|
| 558 |
-
gr.update(visible=use),
|
| 559 |
-
gr.update(visible=use),
|
| 560 |
-
),
|
| 561 |
-
inputs=use_imatrix,
|
| 562 |
-
outputs=[q_method, imatrix_q_method, train_data_file],
|
| 563 |
-
)
|
| 564 |
|
| 565 |
iface.render()
|
| 566 |
|
| 567 |
|
| 568 |
def restart_space():
|
| 569 |
-
HfApi().restart_space(
|
| 570 |
-
repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
|
| 574 |
scheduler = BackgroundScheduler()
|
| 575 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
| 576 |
scheduler.start()
|
| 577 |
|
| 578 |
-
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
|
| 15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
| 16 |
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
log_dir = "/data/logs"
|
| 19 |
downloads_dir = "/data/downloads"
|
| 20 |
outputs_dir = "/data/outputs"
|
|
|
|
|
|
|
|
|
|
| 21 |
os.makedirs(log_dir, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
logging.basicConfig(
|
| 24 |
filename=os.path.join(log_dir, "app.log"),
|
| 25 |
level=logging.INFO,
|
| 26 |
+
format="%(asctime)s - %(levelname)s - %(message)s"
|
| 27 |
)
|
| 28 |
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
+
def get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id = None,):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
try:
|
| 33 |
result = subprocess.run(
|
| 34 |
+
['git', '-C', './llama.cpp', 'describe', '--tags', '--always'],
|
| 35 |
stdout=subprocess.PIPE,
|
| 36 |
stderr=subprocess.PIPE,
|
| 37 |
check=True,
|
| 38 |
+
text=True
|
| 39 |
)
|
| 40 |
+
version = result.stdout.strip().split('-')[0]
|
| 41 |
text = f"""
|
| 42 |
*Produced by [Antigma Labs](https://antigma.ai)*
|
| 43 |
## llama.cpp quantization
|
|
|
|
| 46 |
Run them directly with [llama.cpp](https://github.com/ggml-org/llama.cpp), or any other llama.cpp based project
|
| 47 |
## Prompt format
|
| 48 |
```
|
| 49 |
+
<|begin▁of▁sentence|>{{system_prompt}}<|User|>{{prompt}}<|Assistant|><|end▁of▁sentence|><|Assistant|>
|
|
|
|
| 50 |
```
|
| 51 |
## Download a file (not the whole branch) from below:
|
| 52 |
| Filename | Quant type | File Size | Split |
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def get_repo_namespace(repo_owner, username, user_orgs):
|
| 81 |
+
if repo_owner == 'self':
|
| 82 |
return username
|
| 83 |
for org in user_orgs:
|
| 84 |
+
if org['name'] == repo_owner:
|
| 85 |
+
return org['name']
|
| 86 |
raise ValueError(f"Invalid repo_owner: {repo_owner}")
|
| 87 |
|
|
|
|
| 88 |
def escape(s: str) -> str:
|
| 89 |
+
return s.replace("&", "&").replace("<", "<").replace(">", ">").replace('"', """).replace("\n", "<br/>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
def toggle_repo_owner(export_to_org, oauth_token: gr.OAuthToken | None):
|
| 92 |
if oauth_token is None or oauth_token.token is None:
|
| 93 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 94 |
if not export_to_org:
|
| 95 |
+
return gr.update(visible=False, choices=["self"], value="self"), gr.update(visible=False, value="")
|
|
|
|
|
|
|
| 96 |
info = whoami(oauth_token.token)
|
| 97 |
orgs = [org["name"] for org in info.get("orgs", [])]
|
| 98 |
+
return gr.update(visible=True, choices=["self"] + orgs, value="self"), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
| 100 |
imatrix_command = [
|
| 101 |
"./llama.cpp/llama-imatrix",
|
| 102 |
+
"-m", model_path,
|
| 103 |
+
"-f", train_data_path,
|
| 104 |
+
"-ngl", "99",
|
| 105 |
+
"--output-frequency", "10",
|
| 106 |
+
"-o", output_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
]
|
| 108 |
|
| 109 |
if not os.path.isfile(model_path):
|
|
|
|
| 115 |
try:
|
| 116 |
process.wait(timeout=60) # added wait
|
| 117 |
except subprocess.TimeoutExpired:
|
| 118 |
+
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
|
|
|
|
|
|
|
| 119 |
process.send_signal(signal.SIGINT)
|
| 120 |
try:
|
| 121 |
process.wait(timeout=5) # grace period
|
|
|
|
| 125 |
|
| 126 |
print("Importance matrix generation completed.")
|
| 127 |
|
| 128 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None, org_token=None, export_to_org=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
print(f"Model path: {model_path}")
|
| 130 |
print(f"Output dir: {outdir}")
|
| 131 |
|
|
|
|
| 144 |
split_cmd.append(str(split_max_tensors))
|
| 145 |
|
| 146 |
# args for output
|
| 147 |
+
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
|
|
|
|
|
|
|
| 148 |
split_cmd.append(model_path)
|
| 149 |
split_cmd.append(model_path_prefix)
|
| 150 |
|
|
|
|
| 163 |
if os.path.exists(model_path):
|
| 164 |
os.remove(model_path)
|
| 165 |
|
| 166 |
+
model_file_prefix = model_path_prefix.split('/')[-1]
|
| 167 |
print(f"Model file name prefix: {model_file_prefix}")
|
| 168 |
+
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
if sharded_model_files:
|
| 170 |
print(f"Sharded model files: {sharded_model_files}")
|
| 171 |
+
if export_to_org and org_token!="":
|
| 172 |
+
api = HfApi(token = org_token)
|
| 173 |
else:
|
| 174 |
+
api = HfApi(token=oauth_token.token)
|
| 175 |
for file in sharded_model_files:
|
| 176 |
file_path = os.path.join(outdir, file)
|
| 177 |
print(f"Uploading file: {file_path}")
|
|
|
|
| 188 |
|
| 189 |
print("Sharded model has been uploaded successfully!")
|
| 190 |
|
| 191 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo,
|
| 192 |
+
train_data_file, split_model, split_max_tensors, split_max_size,
|
| 193 |
+
export_to_org, repo_owner, org_token, oauth_token: gr.OAuthToken | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
if oauth_token is None or oauth_token.token is None:
|
| 195 |
raise gr.Error("You must be logged in to use GGUF-my-repo")
|
| 196 |
|
|
|
|
| 200 |
if not export_to_org:
|
| 201 |
repo_owner = "self"
|
| 202 |
|
| 203 |
+
|
| 204 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 205 |
+
logger.info(f"Time {current_time}, Username {username}, Model_ID, {model_id}, q_method {','.join(q_method)}")
|
|
|
|
|
|
|
| 206 |
|
| 207 |
repo_namespace = get_repo_namespace(repo_owner, username, user_orgs)
|
| 208 |
+
model_name = model_id.split('/')[-1]
|
| 209 |
try:
|
| 210 |
+
api_token = org_token if (export_to_org and org_token!="") else oauth_token.token
|
| 211 |
+
api = HfApi(token=api_token)
|
| 212 |
+
|
| 213 |
+
dl_pattern = ["*.md", "*.json", "*.model"]
|
| 214 |
+
pattern = "*.safetensors" if any(
|
| 215 |
+
f.path.endswith(".safetensors")
|
| 216 |
+
for f in api.list_repo_tree(repo_id=model_id, recursive=True)
|
| 217 |
+
) else "*.bin"
|
| 218 |
+
dl_pattern += [pattern]
|
| 219 |
+
|
| 220 |
+
os.makedirs(downloads_dir, exist_ok=True)
|
| 221 |
+
os.makedirs(outputs_dir, exist_ok=True)
|
| 222 |
+
|
| 223 |
+
with tempfile.TemporaryDirectory(dir=outputs_dir) as outdir:
|
| 224 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
| 225 |
+
|
| 226 |
+
with tempfile.TemporaryDirectory(dir=downloads_dir) as tmpdir:
|
| 227 |
+
local_dir = Path(tmpdir)/model_name
|
| 228 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
| 229 |
+
|
| 230 |
+
config_dir = local_dir/"config.json"
|
| 231 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
| 232 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
| 233 |
+
raise Exception("adapter_config.json is present. If converting LoRA, use GGUF-my-lora.")
|
| 234 |
+
|
| 235 |
+
result = subprocess.run(["python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16], shell=False, capture_output=True)
|
| 236 |
+
if result.returncode != 0:
|
| 237 |
+
raise Exception(f"Error converting to fp16: {result.stderr.decode()}")
|
| 238 |
+
|
| 239 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
| 240 |
+
if use_imatrix:
|
| 241 |
+
train_data_path = train_data_file.name if train_data_file else "llama.cpp/groups_merged.txt"
|
| 242 |
+
if not os.path.isfile(train_data_path):
|
| 243 |
+
raise Exception(f"Training data not found: {train_data_path}")
|
| 244 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
| 245 |
+
|
| 246 |
+
quant_methods = [imatrix_q_method] if use_imatrix else (q_method if isinstance(q_method, list) else [q_method])
|
| 247 |
+
suffix = "imat" if use_imatrix else None
|
| 248 |
+
|
| 249 |
+
gguf_files = []
|
| 250 |
+
for method in quant_methods:
|
| 251 |
+
name = f"{model_name.lower()}-{method.lower()}-{suffix}.gguf" if suffix else f"{model_name.lower()}-{method.lower()}.gguf"
|
| 252 |
+
path = str(Path(outdir)/name)
|
| 253 |
+
quant_cmd = ["./llama.cpp/llama-quantize", "--imatrix", imatrix_path, fp16, path, method] if use_imatrix else ["./llama.cpp/llama-quantize", fp16, path, method]
|
| 254 |
+
result = subprocess.run(quant_cmd, shell=False, capture_output=True)
|
| 255 |
+
if result.returncode != 0:
|
| 256 |
+
raise Exception(f"Quantization failed ({method}): {result.stderr.decode()}")
|
| 257 |
+
size = os.path.getsize(path)/1024/1024/1024
|
| 258 |
+
gguf_files.append((name, path, size, method))
|
| 259 |
+
|
| 260 |
+
suffix_for_repo = f"{imatrix_q_method}-imat" if use_imatrix else "-".join(quant_methods)
|
| 261 |
+
repo_id = f"{repo_namespace}/{model_name}-{suffix_for_repo}-GGUF"
|
| 262 |
+
new_repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=private_repo)
|
| 263 |
+
|
| 264 |
+
try:
|
| 265 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
| 266 |
+
except:
|
| 267 |
+
card = ModelCard("")
|
| 268 |
+
card.data.tags = (card.data.tags or []) + ["llama-cpp", "gguf-my-repo"]
|
| 269 |
+
card.data.base_model = model_id
|
| 270 |
+
card.text = dedent(get_llama_cpp_notes(gguf_files, new_repo_url, split_model, model_id))
|
| 271 |
+
readme_path = Path(outdir)/"README.md"
|
| 272 |
+
card.save(readme_path)
|
| 273 |
+
for name, path, _, _ in gguf_files:
|
| 274 |
+
if split_model:
|
| 275 |
+
split_upload_model(path, outdir, repo_id, oauth_token, split_max_tensors, split_max_size, org_token, export_to_org)
|
| 276 |
+
else:
|
| 277 |
+
api.upload_file(path_or_fileobj=path, path_in_repo=name, repo_id=repo_id)
|
| 278 |
+
if use_imatrix and os.path.isfile(imatrix_path):
|
| 279 |
+
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=repo_id)
|
| 280 |
+
api.upload_file(path_or_fileobj=readme_path, path_in_repo="README.md", repo_id=repo_id)
|
| 281 |
+
|
| 282 |
+
return (f'<h1>✅ DONE</h1><br/>Repo: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{repo_id}</a>', f"llama{np.random.randint(9)}.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
except Exception as e:
|
| 284 |
+
raise (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
|
| 287 |
+
css="""/* Custom CSS to allow scrolling */
|
| 288 |
.gradio-container {overflow-y: auto;}
|
| 289 |
"""
|
| 290 |
model_id = HuggingfaceHubSearch(
|
|
|
|
| 296 |
export_to_org = gr.Checkbox(
|
| 297 |
label="Export to Organization Repository",
|
| 298 |
value=False,
|
| 299 |
+
info="If checked, you can select an organization to export to."
|
| 300 |
)
|
| 301 |
|
| 302 |
repo_owner = gr.Dropdown(
|
| 303 |
+
choices=["self"],
|
| 304 |
+
value="self",
|
| 305 |
+
label="Repository Owner",
|
| 306 |
+
visible=False
|
| 307 |
)
|
| 308 |
|
| 309 |
+
org_token = gr.Textbox(
|
| 310 |
+
label="Org Access Token",
|
| 311 |
+
type="password",
|
| 312 |
+
visible=False
|
| 313 |
+
)
|
| 314 |
|
| 315 |
q_method = gr.Dropdown(
|
| 316 |
+
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
label="Quantization Method",
|
| 318 |
info="GGML quantization type",
|
| 319 |
value="Q4_K_M",
|
| 320 |
filterable=False,
|
| 321 |
visible=True,
|
| 322 |
+
multiselect=True
|
| 323 |
)
|
| 324 |
|
| 325 |
imatrix_q_method = gr.Dropdown(
|
|
|
|
| 328 |
info="GGML imatrix quants type",
|
| 329 |
value="IQ4_NL",
|
| 330 |
filterable=False,
|
| 331 |
+
visible=False
|
| 332 |
)
|
| 333 |
|
| 334 |
use_imatrix = gr.Checkbox(
|
| 335 |
value=False,
|
| 336 |
label="Use Imatrix Quantization",
|
| 337 |
+
info="Use importance matrix for quantization."
|
| 338 |
)
|
| 339 |
|
| 340 |
private_repo = gr.Checkbox(
|
| 341 |
+
value=False,
|
| 342 |
+
label="Private Repo",
|
| 343 |
+
info="Create a private repo under your username."
|
| 344 |
)
|
| 345 |
|
| 346 |
+
train_data_file = gr.File(
|
| 347 |
+
label="Training Data File",
|
| 348 |
+
file_types=["txt"],
|
| 349 |
+
visible=False
|
| 350 |
+
)
|
| 351 |
|
| 352 |
split_model = gr.Checkbox(
|
| 353 |
+
value=False,
|
| 354 |
+
label="Split Model",
|
| 355 |
+
info="Shard the model using gguf-split."
|
| 356 |
)
|
| 357 |
|
| 358 |
split_max_tensors = gr.Number(
|
| 359 |
value=256,
|
| 360 |
label="Max Tensors per File",
|
| 361 |
info="Maximum number of tensors per file when splitting model.",
|
| 362 |
+
visible=False
|
| 363 |
)
|
| 364 |
|
| 365 |
split_max_size = gr.Textbox(
|
| 366 |
label="Max File Size",
|
| 367 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
| 368 |
+
visible=False
|
| 369 |
)
|
| 370 |
|
| 371 |
iface = gr.Interface(
|
|
|
|
| 382 |
split_max_size,
|
| 383 |
export_to_org,
|
| 384 |
repo_owner,
|
| 385 |
+
org_token
|
| 386 |
+
],
|
| 387 |
+
outputs=[
|
| 388 |
+
gr.Markdown(label="Output"),
|
| 389 |
+
gr.Image(show_label=False)
|
| 390 |
],
|
|
|
|
| 391 |
title="Make your own GGUF Quants — faster than ever before, believe me.",
|
| 392 |
description="We take your Hugging Face repo — a terrific repo — we quantize it, we package it beautifully, and we give you your very own repo. It's smart. It's efficient. It's huge. You're gonna love it.",
|
| 393 |
+
api_name=False
|
| 394 |
)
|
| 395 |
with gr.Blocks(css=".gradio-container {overflow-y: auto;}") as demo:
|
| 396 |
gr.Markdown("Logged in, you must be. Classy, secure, and victorious, it keeps us.")
|
| 397 |
gr.LoginButton(min_width=250)
|
| 398 |
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
export_to_org.change(fn=toggle_repo_owner, inputs=[export_to_org], outputs=[repo_owner, org_token])
|
| 402 |
+
|
| 403 |
+
split_model.change(fn=lambda sm: (gr.update(visible=sm), gr.update(visible=sm)), inputs=split_model, outputs=[split_max_tensors, split_max_size])
|
| 404 |
+
use_imatrix.change(fn=lambda use: (gr.update(visible=not use), gr.update(visible=use), gr.update(visible=use)), inputs=use_imatrix, outputs=[q_method, imatrix_q_method, train_data_file])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
iface.render()
|
| 407 |
|
| 408 |
|
| 409 |
def restart_space():
|
| 410 |
+
HfApi().restart_space(repo_id="Antigma/quantize-my-repo", token=HF_TOKEN, factory_reboot=True)
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
scheduler = BackgroundScheduler()
|
| 413 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
| 414 |
scheduler.start()
|
| 415 |
|
| 416 |
+
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|