Spaces:
Running
Running
Upload 4 files
Browse files- .dockerignore +19 -0
- Dockerfile +33 -0
- app.py +299 -0
- requirements.txt +9 -0
.dockerignore
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.pyd
|
| 5 |
+
.Python
|
| 6 |
+
*.so
|
| 7 |
+
*.egg
|
| 8 |
+
*.egg-info
|
| 9 |
+
dist
|
| 10 |
+
build
|
| 11 |
+
.git
|
| 12 |
+
.gitignore
|
| 13 |
+
.env
|
| 14 |
+
.venv
|
| 15 |
+
venv/
|
| 16 |
+
*.md
|
| 17 |
+
!README.md
|
| 18 |
+
main.py
|
| 19 |
+
|
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
# Install system dependencies
|
| 4 |
+
RUN apt-get update && apt-get install -y \
|
| 5 |
+
libgl1-mesa-glx \
|
| 6 |
+
libglib2.0-0 \
|
| 7 |
+
libsm6 \
|
| 8 |
+
libxext6 \
|
| 9 |
+
libxrender-dev \
|
| 10 |
+
libgomp1 \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Set working directory
|
| 14 |
+
WORKDIR /app
|
| 15 |
+
|
| 16 |
+
# Copy requirements first for better caching
|
| 17 |
+
COPY requirements.txt .
|
| 18 |
+
|
| 19 |
+
# Install Python dependencies
|
| 20 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 21 |
+
|
| 22 |
+
# Copy application code
|
| 23 |
+
COPY app.py .
|
| 24 |
+
|
| 25 |
+
# Expose port (Hugging Face Spaces uses port 7860 by default)
|
| 26 |
+
EXPOSE 7860
|
| 27 |
+
|
| 28 |
+
# Set environment variables
|
| 29 |
+
ENV PYTHONUNBUFFERED=1
|
| 30 |
+
|
| 31 |
+
# Run the application
|
| 32 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 33 |
+
|
app.py
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
import json
|
| 7 |
+
import requests
|
| 8 |
+
|
| 9 |
+
# Import deepface with error handling
|
| 10 |
+
try:
|
| 11 |
+
from deepface import DeepFace
|
| 12 |
+
import cv2
|
| 13 |
+
import numpy as np
|
| 14 |
+
DEEPFACE_AVAILABLE = True
|
| 15 |
+
except ImportError as e:
|
| 16 |
+
DEEPFACE_AVAILABLE = False
|
| 17 |
+
print(f"Warning: DeepFace not available. Please install dependencies: {e}")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def convert_to_serializable(obj):
|
| 21 |
+
"""Convert numpy types and other non-serializable types to native Python types"""
|
| 22 |
+
if DEEPFACE_AVAILABLE:
|
| 23 |
+
if isinstance(obj, np.integer):
|
| 24 |
+
return int(obj)
|
| 25 |
+
elif isinstance(obj, np.floating):
|
| 26 |
+
return float(obj)
|
| 27 |
+
elif isinstance(obj, np.ndarray):
|
| 28 |
+
return obj.tolist()
|
| 29 |
+
|
| 30 |
+
# Handle dict and list recursively
|
| 31 |
+
if isinstance(obj, dict):
|
| 32 |
+
return {key: convert_to_serializable(value) for key, value in obj.items()}
|
| 33 |
+
elif isinstance(obj, list):
|
| 34 |
+
return [convert_to_serializable(item) for item in obj]
|
| 35 |
+
|
| 36 |
+
# Try to convert to float if it's a number-like object
|
| 37 |
+
try:
|
| 38 |
+
if hasattr(obj, 'item'): # numpy scalar
|
| 39 |
+
return obj.item()
|
| 40 |
+
except (AttributeError, ValueError):
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
return obj
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
app = FastAPI(title="Age, Emotion, and Gender Detection API", version="1.0.0")
|
| 47 |
+
|
| 48 |
+
# Add CORS middleware to allow requests from React app
|
| 49 |
+
app.add_middleware(
|
| 50 |
+
CORSMiddleware,
|
| 51 |
+
allow_origins=["*"], # In production, replace with specific origins
|
| 52 |
+
allow_credentials=True,
|
| 53 |
+
allow_methods=["*"],
|
| 54 |
+
allow_headers=["*"],
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.get("/")
|
| 59 |
+
async def root():
|
| 60 |
+
return {
|
| 61 |
+
"message": "Age, Emotion, and Gender Detection API",
|
| 62 |
+
"endpoints": {
|
| 63 |
+
"/analyze": "POST - Upload an image to detect age, emotion, and gender",
|
| 64 |
+
"/skin-analysis": "POST - Upload an image for comprehensive skin analysis"
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@app.post("/analyze")
|
| 70 |
+
async def analyze_image(file: UploadFile = File(...)):
|
| 71 |
+
"""
|
| 72 |
+
Upload an image and get age, emotion, and gender detection results.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
file: Image file to analyze (supports common image formats)
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
JSON response with age, gender, and emotion information
|
| 79 |
+
"""
|
| 80 |
+
# Check if DeepFace is available
|
| 81 |
+
if not DEEPFACE_AVAILABLE:
|
| 82 |
+
raise HTTPException(
|
| 83 |
+
status_code=503,
|
| 84 |
+
detail="DeepFace module not available. Please install dependencies: pip install -r requirements.txt"
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Validate file type
|
| 88 |
+
if not file.content_type or not file.content_type.startswith('image/'):
|
| 89 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 90 |
+
|
| 91 |
+
# Create a temporary file to save the uploaded image
|
| 92 |
+
tmp_file_path = None
|
| 93 |
+
try:
|
| 94 |
+
# Read file contents
|
| 95 |
+
contents = await file.read()
|
| 96 |
+
|
| 97 |
+
# Create temporary file and write contents
|
| 98 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as tmp_file:
|
| 99 |
+
tmp_file.write(contents)
|
| 100 |
+
tmp_file_path = tmp_file.name
|
| 101 |
+
|
| 102 |
+
# Analyze the image
|
| 103 |
+
try:
|
| 104 |
+
results = DeepFace.analyze(
|
| 105 |
+
img_path=tmp_file_path,
|
| 106 |
+
actions=['age', 'gender', 'emotion'],
|
| 107 |
+
enforce_detection=False # Continue even if face detection fails
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Handle both single result and list of results
|
| 111 |
+
if isinstance(results, list):
|
| 112 |
+
result = results[0]
|
| 113 |
+
else:
|
| 114 |
+
result = results
|
| 115 |
+
|
| 116 |
+
# Extract age (convert to native Python int)
|
| 117 |
+
age = int(result.get("age", 0))
|
| 118 |
+
|
| 119 |
+
# Extract gender and convert numpy types
|
| 120 |
+
gender_dict = result.get("gender", {})
|
| 121 |
+
gender_dict = convert_to_serializable(gender_dict)
|
| 122 |
+
if gender_dict:
|
| 123 |
+
dominant_gender = max(gender_dict, key=gender_dict.get)
|
| 124 |
+
gender_confidence = float(gender_dict[dominant_gender])
|
| 125 |
+
else:
|
| 126 |
+
dominant_gender = "Unknown"
|
| 127 |
+
gender_confidence = 0.0
|
| 128 |
+
|
| 129 |
+
# Extract emotion and convert numpy types
|
| 130 |
+
emotion_dict = result.get("emotion", {})
|
| 131 |
+
emotion_dict = convert_to_serializable(emotion_dict)
|
| 132 |
+
if emotion_dict:
|
| 133 |
+
dominant_emotion = max(emotion_dict, key=emotion_dict.get)
|
| 134 |
+
emotion_confidence = float(emotion_dict[dominant_emotion])
|
| 135 |
+
else:
|
| 136 |
+
dominant_emotion = "Unknown"
|
| 137 |
+
emotion_confidence = 0.0
|
| 138 |
+
|
| 139 |
+
# Prepare response with all values converted to native Python types
|
| 140 |
+
response = {
|
| 141 |
+
"success": True,
|
| 142 |
+
"age": age,
|
| 143 |
+
"gender": {
|
| 144 |
+
"prediction": dominant_gender,
|
| 145 |
+
"confidence": round(gender_confidence, 2),
|
| 146 |
+
"all_predictions": gender_dict
|
| 147 |
+
},
|
| 148 |
+
"emotion": {
|
| 149 |
+
"prediction": dominant_emotion,
|
| 150 |
+
"confidence": round(emotion_confidence, 2),
|
| 151 |
+
"all_predictions": emotion_dict
|
| 152 |
+
}
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
return JSONResponse(content=response)
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
raise HTTPException(
|
| 159 |
+
status_code=500,
|
| 160 |
+
detail=f"Error analyzing image: {str(e)}"
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
finally:
|
| 164 |
+
# Clean up temporary file (close it first on Windows)
|
| 165 |
+
if tmp_file_path and os.path.exists(tmp_file_path):
|
| 166 |
+
try:
|
| 167 |
+
# On Windows, we need to ensure the file is closed before deletion
|
| 168 |
+
import time
|
| 169 |
+
time.sleep(0.1) # Small delay to ensure file is released
|
| 170 |
+
os.unlink(tmp_file_path)
|
| 171 |
+
except (PermissionError, OSError) as e:
|
| 172 |
+
# If deletion fails, try to delete on next attempt or ignore
|
| 173 |
+
# The OS will clean up temp files eventually
|
| 174 |
+
pass
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@app.post("/skin-analysis")
|
| 178 |
+
async def skin_analysis(file: UploadFile = File(...)):
|
| 179 |
+
"""
|
| 180 |
+
Upload an image and get comprehensive skin analysis results.
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
file: Image file to analyze (supports common image formats)
|
| 184 |
+
|
| 185 |
+
Returns:
|
| 186 |
+
JSON response with detailed skin analysis information
|
| 187 |
+
"""
|
| 188 |
+
# Validate file type
|
| 189 |
+
if not file.content_type or not file.content_type.startswith('image/'):
|
| 190 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
| 191 |
+
|
| 192 |
+
# Get API key from environment variable
|
| 193 |
+
api_key = os.getenv("AILABAPI_API_KEY", "")
|
| 194 |
+
|
| 195 |
+
# Create a temporary file to save the uploaded image
|
| 196 |
+
tmp_file_path = None
|
| 197 |
+
try:
|
| 198 |
+
# Read file contents
|
| 199 |
+
contents = await file.read()
|
| 200 |
+
|
| 201 |
+
# Create temporary file and write contents
|
| 202 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file.filename)[1]) as tmp_file:
|
| 203 |
+
tmp_file.write(contents)
|
| 204 |
+
tmp_file_path = tmp_file.name
|
| 205 |
+
|
| 206 |
+
# Prepare request to ailabapi
|
| 207 |
+
url = "https://www.ailabapi.com/api/portrait/analysis/skin-analysis"
|
| 208 |
+
|
| 209 |
+
# Open the temporary file for the request
|
| 210 |
+
with open(tmp_file_path, 'rb') as image_file:
|
| 211 |
+
files = {"image": (file.filename or "image.jpg", image_file, file.content_type)}
|
| 212 |
+
headers = {"ailabapi-api-key": api_key}
|
| 213 |
+
|
| 214 |
+
# Make request to ailabapi
|
| 215 |
+
response = requests.post(url, files=files, headers=headers)
|
| 216 |
+
|
| 217 |
+
if response.status_code != 200:
|
| 218 |
+
raise HTTPException(
|
| 219 |
+
status_code=response.status_code,
|
| 220 |
+
detail=f"External API error: {response.text}"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
data = response.json()
|
| 224 |
+
|
| 225 |
+
# Mapping dictionaries
|
| 226 |
+
yes_no_mapping = {0: "No", 1: "Yes"}
|
| 227 |
+
eyelids_mapping = {
|
| 228 |
+
0: "Single eyelids",
|
| 229 |
+
1: "Parallel Double Eyelids",
|
| 230 |
+
2: "Scalloped Double Eyelids"
|
| 231 |
+
}
|
| 232 |
+
skin_type_mapping = {
|
| 233 |
+
0: "Oily skin",
|
| 234 |
+
1: "Dry skin",
|
| 235 |
+
2: "Neutral skin",
|
| 236 |
+
3: "Combination skin"
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
# Fields that use Yes/No mapping
|
| 240 |
+
yes_no_fields = [
|
| 241 |
+
"pores_left_cheek", "nasolabial_fold", "eye_pouch", "forehead_wrinkle",
|
| 242 |
+
"skin_spot", "acne", "pores_forehead", "pores_jaw", "eye_finelines",
|
| 243 |
+
"dark_circle", "crows_feet", "pores_right_cheek", "blackhead",
|
| 244 |
+
"glabella_wrinkle", "mole"
|
| 245 |
+
]
|
| 246 |
+
|
| 247 |
+
# Transform the result data
|
| 248 |
+
if "result" in data:
|
| 249 |
+
result = data["result"]
|
| 250 |
+
|
| 251 |
+
# Transform Yes/No fields
|
| 252 |
+
for field in yes_no_fields:
|
| 253 |
+
if field in result and "value" in result[field]:
|
| 254 |
+
result[field]["value_label"] = yes_no_mapping.get(result[field]["value"], "Unknown")
|
| 255 |
+
|
| 256 |
+
# Transform eyelid fields
|
| 257 |
+
if "left_eyelids" in result and "value" in result["left_eyelids"]:
|
| 258 |
+
result["left_eyelids"]["value_label"] = eyelids_mapping.get(result["left_eyelids"]["value"], "Unknown")
|
| 259 |
+
|
| 260 |
+
if "right_eyelids" in result and "value" in result["right_eyelids"]:
|
| 261 |
+
result["right_eyelids"]["value_label"] = eyelids_mapping.get(result["right_eyelids"]["value"], "Unknown")
|
| 262 |
+
|
| 263 |
+
# Transform skin_type
|
| 264 |
+
if "skin_type" in result:
|
| 265 |
+
if "skin_type" in result["skin_type"]:
|
| 266 |
+
result["skin_type"]["skin_type_label"] = skin_type_mapping.get(result["skin_type"]["skin_type"], "Unknown")
|
| 267 |
+
if "details" in result["skin_type"]:
|
| 268 |
+
for detail in result["skin_type"]["details"]:
|
| 269 |
+
if "value" in detail:
|
| 270 |
+
detail["value_label"] = skin_type_mapping.get(detail["value"], "Unknown")
|
| 271 |
+
|
| 272 |
+
return JSONResponse(content=data)
|
| 273 |
+
|
| 274 |
+
except requests.exceptions.RequestException as e:
|
| 275 |
+
raise HTTPException(
|
| 276 |
+
status_code=500,
|
| 277 |
+
detail=f"Error calling external API: {str(e)}"
|
| 278 |
+
)
|
| 279 |
+
except Exception as e:
|
| 280 |
+
raise HTTPException(
|
| 281 |
+
status_code=500,
|
| 282 |
+
detail=f"Error processing image: {str(e)}"
|
| 283 |
+
)
|
| 284 |
+
finally:
|
| 285 |
+
# Clean up temporary file
|
| 286 |
+
if tmp_file_path and os.path.exists(tmp_file_path):
|
| 287 |
+
try:
|
| 288 |
+
import time
|
| 289 |
+
time.sleep(0.1)
|
| 290 |
+
os.unlink(tmp_file_path)
|
| 291 |
+
except (PermissionError, OSError):
|
| 292 |
+
pass
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
@app.get("/health")
|
| 296 |
+
async def health_check():
|
| 297 |
+
"""Health check endpoint"""
|
| 298 |
+
return {"status": "healthy"}
|
| 299 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
python-multipart
|
| 4 |
+
deepface
|
| 5 |
+
opencv-python
|
| 6 |
+
numpy
|
| 7 |
+
tensorflow-cpu
|
| 8 |
+
Pillow
|
| 9 |
+
requests
|