File size: 10,727 Bytes
1f0c7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric
from torchdiffeq import odeint
from torch_scatter import scatter_mean, scatter_sum
import torch.distributions as dist

import numpy as np


LOG2PI = np.log(2 * np.pi)


class BFNBase(nn.Module):
    # this is a general method which could be used for implement vector field in CNF or
    def __init__(self, *args, **kwargs):
        super(BFNBase, self).__init__(*args, **kwargs)

    # def zero_center_of_mass(self, x_pos, segment_ids):
    #     size = x_pos.size()
    #     assert len(size) == 2  # TODO check this
    #     seg_means = scatter_mean(x_pos, segment_ids, dim=0)
    #     mean_for_each_segment = seg_means.index_select(0, segment_ids)
    #     x = x_pos - mean_for_each_segment

    #     return x

    def get_k_params(self, bins):
        """
        function to get the k parameters for the discretised variable
        """
        # k = torch.ones_like(mu)
        # ones_ = torch.ones((mu.size()[1:])).cuda()
        # ones_ = ones_.unsqueeze(0)
        list_c = []
        list_l = []
        list_r = []
        for k in range(1, int(bins + 1)):
            # k = torch.cat([k,torch.ones_like(mu)*(i+1)],dim=1
            k_c = (2 * k - 1) / bins - 1
            k_l = k_c - 1 / bins
            k_r = k_c + 1 / bins
            list_c.append(k_c)
            list_l.append(k_l)
            list_r.append(k_r)
        # k_c = torch.cat(list_c,dim=0)
        # k_l = torch.cat(list_l,dim=0)
        # k_r = torch.cat(list_r,dim=0)

        return list_c, list_l, list_l

    def discretised_cdf(self, mu, sigma, x):
        """
        cdf function for the discretised variable
        """
        # in this case we use the discretised cdf for the discretised output function
        mu = mu.unsqueeze(1)
        sigma = sigma.unsqueeze(1)  # B,1,D

        f_ = 0.5 * (1 + torch.erf((x - mu) / (sigma * np.sqrt(2))))
        flag_upper = torch.ge(x, 1)
        flag_lower = torch.le(x, -1)
        f_ = torch.where(flag_upper, torch.ones_like(f_), f_)
        f_ = torch.where(flag_lower, torch.zeros_like(f_), f_)

        return f_

    def continuous_var_bayesian_update(self, t, sigma1, x):
        """
        x: [N, D]
        """
        """
        TODO: rename this function to bayesian flow
        """
        # Eq.(77): p_F(θ|x;t) ~ N (μ | γ(t)x, γ(t)(1 − γ(t))I)
        gamma = 1 - torch.pow(sigma1, 2 * t)  # [B]
        mu = gamma * x + torch.randn_like(x) * torch.sqrt(gamma * (1 - gamma))
        return mu, gamma

    def discrete_var_bayesian_update(self, t, beta1, x, K):
        """
        x: [N, K]
        """
        # Eq.(182): β(t) = t**2 β(1)
        beta = beta1 * (t**2)  # (B,)

        # Eq.(185): p_F(θ|x;t) = E_{N(y | β(t)(Ke_x−1), β(t)KI)} δ (θ − softmax(y))
        # can be sampled by first drawing y ~ N(y | β(t)(Ke_x−1), β(t)KI)
        # then setting θ = softmax(y)
        one_hot_x = x  # (N, K)
        mean = beta * (K * one_hot_x - 1)
        std = (beta * K).sqrt()
        eps = torch.randn_like(mean)
        y = mean + std * eps
        theta = F.softmax(y, dim=-1)
        return theta

    def discreteised_var_bayesian_update(self, t, sigma1, x):
        """
        x: [N, D]
        Note, this is identical to the continuous_var_bayesian_update
        """
        gamma = 1 - torch.pow(sigma1, 2 * t)
        mu = gamma * x + torch.randn_like(x) * torch.sqrt(gamma * (1 - gamma))
        return mu, gamma

    def ctime4continuous_loss(self, t, sigma1, x_pred, x, segment_ids=None):
        # Eq.(101): L∞(x) = −ln(σ1) * E_{t∼U (0,1), p_F(θ|x;t)} [|x − x_hat(θ,t)|**2 / (σ_1**2)**t]
        if segment_ids is not None:
            loss = scatter_mean(
                torch.pow(sigma1, -2 * t.view(-1))
                * ((x_pred - x).view(x.shape[0], -1).abs().pow(2).sum(dim=1)),
                segment_ids,
                dim=0,
            )
        else:
            loss = torch.pow(sigma1, -2 * t.view(-1)) * (x_pred - x).view(
                x.shape[0], -1
            ).abs().pow(2).sum(dim=1)
        return -torch.log(sigma1) * loss

    def dtime4continuous_loss(self, i, N, sigma1, x_pred, x, segment_ids=None):
        # TODO not debuged yet
        weight = N * (1 - torch.pow(sigma1, 2 / N)) / (2 * torch.pow(sigma1, 2 * i / N))
        # print(x_pred.shape, x.shape , i.shape,weight.shape)
        # print(segment_ids)
        if segment_ids is not None:
            loss = scatter_mean(
                weight.view(-1) * ((x_pred - x) ** 2).sum(-1), segment_ids, dim=0
            )
        else:
            loss = (
                N
                * (1 - torch.pow(sigma1, 2 / N))
                / (2 * torch.pow(sigma1, 2 * i / N))
                * (x_pred - x).view(x.shape[0], -1).abs().pow(2).sum(dim=1)
            )

        # print(loss.shape)
        return loss

    def ctime4discrete_loss(self, t, beta1, one_hot_x, p_0, K, segment_ids=None):
        # Eq.(205): L∞(x) = Kβ(1) E_{t∼U (0,1), p_F (θ|x,t)} [t|e_x − e_hat(θ, t)|**2,
        # where e_hat(θ, t) = (\sum_k p_O^(1) (k | θ; t)e_k, ..., \sum_k p_O^(D) (k | θ; t)e_k)
        e_x = one_hot_x  # [N, K]
        e_hat = p_0  # (N, K)
        assert e_x.size() == e_hat.size()
        if segment_ids is not None:
            L_infinity = scatter_mean(
                K * beta1 * t.view(-1) * ((e_x - e_hat) ** 2).sum(dim=-1),
                segment_ids,
                dim=0,
            )
        else:
            L_infinity = K * beta1 * t.view(-1) * ((e_x - e_hat) ** 2).sum(dim=-1)
        return L_infinity

    def dtime4discrete_loss_prob(
        self, i, N, beta1, one_hot_x, p_0, K, n_samples=200, segment_ids=None
    ):
        # this is based on the official implementation of BFN.
        # import pdb
        # pdb.set_trace()
        target_x = one_hot_x  # [D, K]
        e_hat = p_0  # (D,  K)
        alpha = beta1 * (2 * i - 1) / N**2  # [D]
        alpha = alpha.view(-1, 1) # [D, 1]
        classes = torch.arange(K, device=target_x.device).long().unsqueeze(0)  # [ 1, K]
        e_x = F.one_hot(classes.long(), K) #[1,K, K]
        # print(e_x.shape)
        receiver_components = dist.Independent(
            dist.Normal(
                alpha.unsqueeze(-1) * ((K * e_x) - 1), # [D K, K]
                (K * alpha.unsqueeze(-1)) ** 0.5, # [D, 1, 1]
            ),
            1,
        )  # [D,T, K, K]
        receiver_mix_distribution = dist.Categorical(probs=e_hat)  # [D, K]
        receiver_dist = dist.MixtureSameFamily(
            receiver_mix_distribution, receiver_components
        )  # [D, K]
        sender_dist = dist.Independent( dist.Normal(
            alpha* ((K * target_x) - 1), ((K * alpha) ** 0.5)
        ),1)  # [D, K]
        y = sender_dist.sample(torch.Size([n_samples])) 
        loss = N * (sender_dist.log_prob(y) - receiver_dist.log_prob(y)).mean(0).mean(
            -1, keepdims=True
        )
        # loss = (
        #         (sender_dist.log_prob(y) - receiver_dist.log_prob(y))
        #         .mean(0)
        #         .flatten(start_dim=1)
        #         .mean(1, keepdims=True)
        #     )
        # #
        return loss.mean()

    def dtime4discrete_loss(self, i, N, beta1, one_hot_x, p_0, K, segment_ids=None):
        # i in {1,n}
        # Algorithm 7 in BFN
        e_x = one_hot_x  # [D, K]
        e_hat = p_0  # (D, K)
        assert e_x.size() == e_hat.size()
        alpha = beta1 * (2 * i - 1) / N**2  # [D]

        # print(alpha.shape)
        mean_ = alpha * (K * e_x - 1)  # [D, K]
        std_ = torch.sqrt(alpha * K)  # [D,1] TODO check shape
        eps = torch.randn_like(mean_)  # [D,K,]
        y_ = mean_ + std_ * eps
        # modify this line:
        matrix_ek = torch.eye(K, K).unsqueeze(0).to(e_x.device)
        matrix_ek.repeat(alpha.size(0), 1, 1)  # [D,K,K]
        mean_matrix = alpha.unsqueeze(-1) * (K * matrix_ek - 1)  # [D,K,K]
        std_matrix = torch.sqrt(alpha * K).unsqueeze(-1)  #
        likelihood = (
            torch.exp(
                -((y_.unsqueeze(1).repeat(1, K, 1) - mean_matrix) ** 2)
                / (2 * std_matrix**2)
            )
            / (std_matrix * np.sqrt(2 * np.pi))
        ).prod(
            -1
        )  # [D,K]

        if segment_ids is not None:
            L_N = -scatter_mean(
                torch.log((likelihood * e_hat).sum(dim=-1)), segment_ids, dim=0
            )
        else:
            L_N = -torch.log((likelihood * e_hat).sum(dim=-1))  # [D]
        # print(L_N.shape)
        #
        return N * L_N

    def dtime4discrete_loss_gjj(self, i, N, beta1, one_hot_x, p_0, K, segment_ids=None):
        # i in {1,n}
        # Algorithm 7 in BFN
        e_x = one_hot_x  # [D, K]
        e_hat = p_0  # (D, K)
        assert e_x.size() == e_hat.size()
        alpha = beta1 * (2 * i - 1) / N**2  # [D]

        # print(alpha.shape)
        mean_ = alpha * (K * e_x - 1)  # [D, K]
        std_ = torch.sqrt(alpha * K)  # [D,1] TODO check shape
        eps = torch.randn_like(mean_)  # [D,K,]
        y_ = mean_ + std_ * eps  # [D, K]
        # modify this line:
        matrix_ek = torch.eye(K, K).to(e_x.device)  # [K, K]
        mean_matrix = K * matrix_ek - 1  # [K, K]
        std_matrix = torch.sqrt(alpha * K).unsqueeze(-1)  #
        _log_gaussians = (  # [D, K]
            (-0.5 * LOG2PI - torch.log(std_matrix))
            - (y_.unsqueeze(1) - mean_matrix) ** 2 / (2 * std_matrix**2)
        ).sum(-1)

        _inner_log_likelihood = torch.log(
            torch.sum(e_hat * torch.exp(_log_gaussians), dim=-1)
        )  # (D,)

        _inner_log_likelihood = torch.log(e_hat) + _log_gaussians  # [D, K]
        log_likelihood = torch.logsumexp(_inner_log_likelihood, dim=-1)  # [D]

        if segment_ids is not None:
            L_N = -scatter_mean(log_likelihood, segment_ids, dim=0)
        else:
            L_N = -log_likelihood.sum(dim=-1)  # [D]
        # print(L_N.shape)
        #
        return N * L_N

    def ctime4discreteised_loss(self, t, sigma1, x_pred, x, segment_ids=None):
        if segment_ids is not None:
            loss = scatter_sum(
                (x_pred - x).view(x.shape[0], -1).abs().pow(2), segment_ids, dim=0
            )
        else:
            raise NotImplementedError
            loss = (x_pred - x).view(x.shape[0], -1).abs().pow(2).sum(dim=1)
        return -torch.log(sigma1) * loss * torch.pow(sigma1, -2 * t.view(-1))

    def interdependency_modeling(self):
        raise NotImplementedError

    def forward(self):
        raise NotImplementedError

    def loss_one_step(self):
        raise NotImplementedError

    def sample(self):
        raise NotImplementedError