File size: 2,021 Bytes
1f0c7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import logging
import os
import random
import time

import numpy as np
import torch
import yaml
from easydict import EasyDict


class BlackHole(object):
    def __setattr__(self, name, value):
        pass

    def __call__(self, *args, **kwargs):
        return self

    def __getattr__(self, name):
        return self


def load_config(path):
    with open(path, 'r') as f:
        return EasyDict(yaml.safe_load(f))


def get_logger(name, log_dir=None):
    logger = logging.getLogger(name)
    logger.setLevel(logging.DEBUG)
    formatter = logging.Formatter('[%(asctime)s::%(name)s::%(levelname)s] %(message)s')

    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)

    if log_dir is not None:
        file_handler = logging.FileHandler(os.path.join(log_dir, 'log.txt'))
        file_handler.setLevel(logging.DEBUG)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)

    return logger


def get_new_log_dir(root='./logs', prefix='', tag=''):
    fn = time.strftime('%Y_%m_%d__%H_%M_%S', time.localtime())
    if prefix != '':
        fn = prefix + '_' + fn
    if tag != '':
        fn = fn + '_' + tag
    log_dir = os.path.join(root, fn)
    os.makedirs(log_dir)
    return log_dir


def seed_all(seed):
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)


def log_hyperparams(writer, args):
    from torch.utils.tensorboard.summary import hparams
    vars_args = {k: v if isinstance(v, str) else repr(v) for k, v in vars(args).items()}
    exp, ssi, sei = hparams(vars_args, {})
    writer.file_writer.add_summary(exp)
    writer.file_writer.add_summary(ssi)
    writer.file_writer.add_summary(sei)


def int_tuple(argstr):
    return tuple(map(int, argstr.split(',')))


def str_tuple(argstr):
    return tuple(argstr.split(','))


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)